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ABSTRACT 

Bone infection is a devastating condition resulting from implant or orthopaedic surgery. 

Therapeutic strategies are extremely complicated and may result in serious side effects 

or disabilities. The development of enhanced 3D scaffolds, able to promote efficient 

bone regeneration, combined with targeted antibiotic release to prevent bacterial 

colonization, is a promising tool for the successful repair of bone defects. Herein, 

polymeric electrospun scaffolds composed of polycaprolactone (PCL) nanofibres 

decorated with poly(lactic-co-glycolic acid) (PLGA) particles loaded with rifampicin 

were fabricated to achieve local and sustained drug release for more efficient prevention 

and treatment of infection. The release profile showed an initial burst of rifampicin in 

the first six hours, enabling complete elimination of bacteria. Sustained and long-term 

release was observed until the end of the experiments (28 days), facilitating a prolonged 

effect on the inhibition of bacterial growth, which is in agreement with the common 

knowledge concerning the acidic degradation of the microparticles. In addition, 

bactericidal effects against gram negative (Escherichia coli) and gram positive 

(Staphylococcus aureus) bacteria were demonstrated at concentrations of released 

rifampicin up to 58 ppm after 24 h, with greater efficacy against S. aureus (13 ppm vs 

58 ppm for E. coli). Cell morphology and cytocompatibility studies highlighted the 

suitability of the fabricated scaffolds to support cell growth, as well as their promising 

clinical application for bone regeneration combined with prevention or treatment of 

bacterial infection. 

Keywords: Electrospinning; Polymeric scaffold; Polycaprolactone; Poly(lactic-co-

glycolic acid); Rifampicin; Bone infection 

  



  

3 
 

1. Introduction 

Bone repair mediated by scaffold or substitute implantation is one of the most useful 

strategies in traumatology, orthopaedics, and maxillofacial surgery. Autologous bone 

graft implantation has been considered the main technique to successfully repair bone 

defects. However, in clinical practice, invasiveness at the donor site and inability to 

absorb large grafts are problematic (Dong et al., 2014; Ghassemi et al., 2018; Weisz and 

Errico, 2000). 

Bone infection resulting from implantation or orthopaedic surgery is a serious 

complication characterized by an inflammatory reaction and bone destruction (Arciola 

et al., 2012; Rumian et al., 2016). Although implant-associated infections in 

orthopaedics are relatively uncommon (2-5%), implant replacement and possible 

resulting disabilities have a high impact on the patient’s quality of life and result in 

economic and clinical burden (Darouiche, 2004).  

Most bone infections are caused by staphylococcal species, with Staphylococcus aureus 

being the most prevalent, though other microorganisms (i.e. Pseudomonas aeruginosa, 

Escherichia coli) may also be involved (Andrés et al., 2018; Arciola et al., 2012; 

Johnson and García, 2015). Intervention to prevent these infections is critical in the first 

hours after surgery, as they often originate during the surgical procedure. Rifampicin 

(RFP) is effective against staphylococcal infections and efficient for treatment at any 

bacterial growth stage (i.e. exponential, stationary, intracellular) (Frippiat et al., 2004; 

Sanz-Ruiz et al., 2017; Trampuz and Widmer, 2006). Furthermore, RFP is also one of 

the most effective first-line drugs for the treatment of tuberculosis and its bone-related 

effects (i.e. osteomyelitis, bone destruction) (Yuan et al., 2015). 

Oral and systemic administration of antibiotics for the prophylaxis or treatment of bone 

infections can be ineffective due to low delivery and permeation of antibiotics into bone 
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and the possible presence of bacterial biofilms (Flores et al., 2016; Furustrand Tafin et 

al., 2015; Zhu et al., 2015). Therefore, the need for local treatments, characterized by an 

initial burst of antibiotics followed by a sustained release of an adequate drug dose to 

prevent any further infection, seems to be imperative to successfully treat these 

pathologies (Gimeno et al., 2015; Rumian et al., 2016).  

Recently, the development of novel materials as scaffolds for bone regeneration has 

increased to provide therapeutic options for challenging bone pathologies, such as those 

resulting from trauma or tumour resection (Ghassemi et al., 2018). These scaffolds are 

designed as templates to mimic the extracellular matrix, providing adequate mechanical 

and architectural features as well as osteoconductive and osteoinductive properties. 

Furthermore, the addition of biologically active molecules, such as growth factors or 

drugs, enhances their therapeutic potential for bone regeneration (Dorati et al., 2017; 

Porter et al., 2009).  

Several materials have been reported to promote bone repair. Specially, synthetic 

polymers, such as polylactic acid (PLA), polyglycolic acid (PGA), poly(lactic-co-

glycolic acid) (PLGA), or polycaprolactone (PCL), facilitate control of the physico-

chemical and mechanical features of the synthesised scaffolds (Dorati et al., 2017; 

Ghassemi et al., 2018; Liu and Ma, 2004). In particular, electrospun PCL fibres have 

been previously reported as highly mimetic of the extracellular matrix and promising 

for bone regeneration strategies, combining the versatility and simplicity of the 

electrospinning technique with the biocompatibility of PCL and its degradation products 

(Aragon et al., 2017; Baker et al., 2016; Porter et al., 2009; Song et al., 2013). 

Conversely, PLGA, an FDA-approved polymer, is widely used in biomedical 

applications, mainly in drug delivery and tissue engineering, due to its high 
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biocompatibility and hydrolytic degradation to its biocompatible constituents PLA and 

PGA (Makadia and Siegel, 2011).  

Antibiotic-loaded scaffolds for the in situ treatment of bone infection may provide 

targeted drug delivery and sustained release, resulting in sustained enhancement of 

osteogenic properties for the successful regeneration of bone. Furthermore, scaffolds 

eliminate the need for long-term oral and intravenous systemic multidrug 

administration, which results in toxic side effects, low delivery to the target site, and 

low patient adherence to treatment (Johnson and García, 2015; Yang et al., 2016; Yuan 

et al., 2015; Zhu et al., 2011). RFP-loaded PCL electrospun scaffolds showed an initial 

burst release, with 50% of the loaded drug remaining entrapped within the scaffold. 

Despite only 50% release, P. aeruginosa and Staphylococcus epidermidis growth was 

hindered compared to growth in response to unloaded scaffolds (Ruckh et al., 2012). 

Furthermore, studies (Yang et al., 2016) have demonstrated that chitosan grafted to 

printed scaffolds composed of PLGA and hydroxyapatite decreased bacterial adhesion 

and showed osteoconductive properties. 

The aim of this work was to synthesize and characterize a drug delivery system 

consisting of PCL electrospun nanofibres with RFP-PLGA electrosprayed particles 

within the scaffold to promote bone repair while preventing infection. The bactericidal 

ability of the synthesized electrospun material was assessed in vitro against gram 

positive (S. aureus) and gram negative (E. coli) bacteria, and the cytocompatibility was 

assessed in human osteoblast 3D cultures. 

2. Materials and methods 

2.1. Materials 

N,N-dimethylformamide (DMF; ≥99.8%), dichloromethane (DCM; ≥99.8%), acetic 

acid (≥99%), dimethyl sulfoxide (DMSO; ≥99.8%), PCL with an average molecular 
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weight of 80,000 Da, RFP (≥97%), and 3-(3,4-dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromide (MTT; ≥98%) were purchased from Sigma-Aldrich 

(Spain). PLGA 50:50 ester terminated with 38,000-54,000 Da molecular weight was 

purchased from Evonik Industries (Spain). Sodium dodecyl sulfate (SDS) and Triton X-

100 were obtained from Bio-Rad (USA). Escherichia coli S17 was kindly gifted by Dr. 

J. A. Aínsa, while Staphylococcus aureus (ATCC®25923) was purchased from Ielab 

(Spain). Trypticasein soy broth (TSB) and trypticasein soy agar (TSA) were acquired 

from Conda-Pronadisa (Spain). Osteoblast growth medium (OGM) and human 

osteoblasts (HOBs) were obtained from PromoCell (Germany). Trypsin-EDTA and 

Dulbecco's phosphate-buffered saline (DPBS) were obtained from Biowest (France). 

2.2. PLGA particles production 

PLGA particles were prepared by electrospray using a Yflow 2.2.D-500 electrospinner 

(Electrospinning Machines/R&D Microencapsulation, Spain). The following parameter 

settings were investigated to obtain the microparticles: polymer concentration (5, 7.5 

and 10% w/w); feeding flow rate (0.5 and 1.0 mL/h); and distance from the tip to the 

collector (15 and 30 cm). PLGA (0.50, 0.77, and 1.05 g) was dissolved in 10 mL of 

DMF to obtain final concentrations of 5, 7.5 and 10%, respectively (w/w). RFP (55, 85, 

and 117 mg) was added to each PLGA solution at 10% (w/w) and stirred overnight at 4 

°C. The solution was loaded into a 10 mL plastic syringe and fed through a needle 

connected to a positive power supply. The tip of the needle was fixed 15 or 30 cm 

above a rotating collection drum. The negative voltage power supply was connected to 

the collector, which was rotated at 100 rpm. Flow rates of 0.5 and 1.0 mL/h were 

investigated to optimize PLGA particle production. 

2.3. Electrospun scaffold production 
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PCL membranes decorated with PLGA particles loaded with RFP were also produced 

using a Yflow 2.2.D-500 electrospinner (Electrospinning Machines/R&D 

Microencapsulation, Spain) following the protocol described in previous studies 

(Aragón et al., 2018). Two needles were used to obtain the PCL fibres (needle 1) and to 

electrospray the PLGA-RFP particles (needle 2). Through needle 1, a 7.5% PCL (w/w) 

in a DCM-DMF (1:1) mixture was fed at 1.5 mL/h, while a PLGA-RFP solution was 

fed at 1.0 mL/h through needle 2. Both needles were connected to a positive power 

supply at a voltage of 18.7 kV. The tips of the needles were fixed at 18 cm (needle 1) 

and 15 cm (needle 2) above a rotating collection drum at 100 rpm. The negative voltage 

power supply (-3.3 kV) was connected to the collector. The production process required 

8 h. 

2.4. Scaffold characterization 

The morphology of PLGA particles and electrospun scaffolds was analyzed under a 

scanning electron microscope (SEM; Field Emission Scanning Electron Microscope 

CSEM‐FEG INSPECT 50, FEI, US). Particle and fibre diameters were measured by 

Image J software (Version 1.48f, NIH, US). 

Mechanical properties of the composite scaffolds were determined at room temperature 

using a uniaxial Instron test machine (Instron, US) with video extensometer 5548 (1 KN 

load cell, 1 mm/min). Five samples per membrane were cut into 50 mm × 5 mm strips 

and subjected to a tensile test. A full-scale load of 20 N and maximum extension of 100 

mm were used. 

The encapsulation efficiency (EE) of RFP was analyzed by absorbance measurement at 

334 nm using a calibration curve prepared from a RFP standard at 50 ppm in DMF 

using a microplate reader (Multimode Synergy HT Microplate Reader; Biotek, US). 
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Approximately 10-20 mg of PCL-PLGA-RFP scaffold (five replicas were analyzed) 

was placed in 1 mL of DMF and agitated for 3 h at 4 °C to extract the loaded RFP. 

The EE was calculated with Eq. 1, taking into account the exact weight of the scaffolds 

analyzed: 

   
                    

                      
         (1) 

The theoretical amount was calculated based on the RFP added to the electrospray 

solution. 

The in vitro release of RFP from loaded electrospun scaffolds (15-20 mg) was 

performed at 37 °C (Heater Memmert, Germany) in DPBS (1.5 mL). At scheduled time 

intervals (from 1 h to 28 days), all DPBS were harvested and an equal volume of fresh 

DPBS was added back to the vessels. The collected samples (five replicates per time 

point) were stored at ‐20 °C until analysis. 

To determine the RFP concentration, three aliquots (150 µL) per sample were added to 

a 96-well plate to measure the absorbance. The RFP calibration curves in DPBS were 

prepared across the range of 0-50 ppm and measured in triplicate 

2.5. Bactericidal tests 

To evaluate the antimicrobial efficiency of the fabricated materials, the minimum 

inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the 

PCL-PLGA-RFP electrospun scaffolds were determined against E. coli S17 as a gram 

negative model, and S. aureus as a gram positive infective model. 

Antibacterial activities of the RFP-loaded electrospun scaffolds against E. coli and S. 

aureus were studied using ASTM E-2180 (“ASTM E2180 - 18 Standard Test Method 

for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or 

Hydrophobic Materials,” n.d.), as it is the recommended methodology to quantitatively 

determine the antibacterial activity of hydrophobic materials. Briefly, an overnight 
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stationary growth phase of bacteria in TSB was diluted in sterile TSA solution at 40 °C 

to obtain a starting bacterial concentration of 105 colony forming units per milliliter 

(CFU/mL). The inoculated TSA was placed in a 12-well plate (2 mL per well). The 

electrospun scaffolds were sterilized on both sides by UV-irradiation for 1 h and 

weighed to obtain RFP concentrations ranging from 0.5 to 90 ppm, considering the total 

amount of RFP loaded in the scaffolds. Then, these scaffolds were placed in the 12-well 

plate on the bacteria-inoculated TSA. After incubation (37 °C, 24 h), the samples were 

collected in 10 mL of sterile TSB, sonicated in an ultrasonic bath (50 kHz) for 1 min, 

then vortex-mixed for 1 min to accurately determine the bacterial growth. Subsequently, 

the samples were serially diluted in PBS and spot-plated on TSA plates (four replicates 

per sample). Viable bacterial colonies were counted after overnight incubation at 37 °C 

and compared to those obtained from the control sample (PCL-PLGA electrospun 

scaffolds without RFP). Each experiment was performed in triplicate and the results are 

reported as mean ± S.D. 

2.6. Cell attachment and morphology 

Electrospun scaffolds (15 mm diameter, surface area 1.54 cm2) were sterilized on both 

sides by UV-irradiation for 1 h and successively soaked with an OGM culture medium 

for 1 h to avoid floating. HOBs were grown in the OGM culture medium in a 5% CO2 

atmosphere at 37 °C. The culture medium was removed and 10 µL of cell suspension 

(3.2 x 106 cells/mL) was seeded on the top region of the scaffolds. To promote cell 

adhesion to the scaffold, the samples were incubated for 1 h (5% CO2, 37 °C) followed 

by addition of 500 μL of OGM. The seeded scaffolds were cultured for 3, 7, 14, and 28 

days, renewing the culture medium every 2‐3 days. In addition, 2D cultures (HOBs 

seeded on 24-well plates) were also run as cell growth and proliferation control samples. 
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SEM was used to observe the morphology of the attached cells to the electrospun 

scaffolds. At the time points indicated above, the seeded scaffolds were washed with 

DPBS and fixed in a 4% paraformaldehyde solution (Affymetrix, US) for 30 min at 

room temperature. After fixation, the samples were washed with DPBS and distilled 

water, air-dried, and sputter-coated with a thin platinum layer prior to visualization by 

SEM (Field Emission Scanning Electron Microscope CSEM‐FEG INSPECT 50, FEI, 

US). 

Confocal analysis was performed to observe the cytoskeleton protein distribution of 

actin (Alexa Fluor™ 546 Phalloidin; Molecular Probes, US) after 3, 7, 14, and 28 days 

of cell culture. Seeded scaffolds were rinsed with DPBS and fixed with 4% 

paraformaldehyde solution for 15 min. Then, samples were permeabilized in ice-cold 

acetone (-20 °C, 5 min), air-dried, and rinsed with DPBS. Triton X-100 (0.5%) was 

added to the samples for blocking (30 min) with 5% normal donkey serum (NDS; 

Jackson ImmunoResearch Europe Ltd, UK). After blocking, actin staining (1:200; 

Alexa Fluor™ 546 Phalloidin; Molecular Probes, US) was performed for 30 min at 

room temperature. The scaffolds were then washed with DPBS and incubated with 8 

µM anthraquinone dye (DRAQ5; eBiocence, US) for 30 min at room temperature to 

stain the cellular nuclei. Finally, samples were washed, mounted, and visualized under a 

confocal laser scanning microscope (Leica TCS SP2, Leica, Germany). 

2.7. In vitro cytotoxicity studies 

The cytotoxicity of the seeded electrospun scaffolds with and without RFP was 

determined by the 3‐(3,4‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazoliumbromide (MTT) 

test at the time points described above (3-28 days) (Morelli et al., 2014). In brief, an 

MTT solution (5 mg/mL in DPBS) was diluted in OGM (final concentration 0.5 

mg/mL), added to the seeded scaffolds at the time points described above, and 



  

11 
 

incubated for 4 h at 37 °C and 5% CO2. The cell medium was discarded and the 

insoluble formazan crystals obtained were dissolved by addition of SDS (sodium 

dodecyl sulfate; Bio-Rad, US) solution (100 mg/mL in DMSO and 0.6% of acetic acid). 

Aliquots (100 µL) were transferred to a 96-well plate and the absorbance was read at 

570 nm in a Synergy HT microplate reader (Biotek, US). Results were expressed as 

mean ± SD of the total absorbance of the samples analyzed in triplicate.  

2.8. Statistical analysis 

All data are reported as mean ± SD. For fibre and particle diameter, n = 100 were 

studied. For confocal analysis, more than 50 planes per region and three regions per 

sample were evaluated. MTT determination was performed in triplicate and three 

measurements were performed per experiment (9 sets of data). Statistical analysis of 

data was performed using the Student-Newman-Keuls t-test and ANOVA 

(Statgraphics® Centurion XV statistical software, StatPoint Technologies, Inc., US). 

Statistically significant differences were considered when p ≤ 0.01. 

3. Results and discussion  

3.1.  Characterization of composite scaffolds 

Composite scaffolds were fabricated by electrospinning to obtain PCL fibres decorated 

with PLGA-RFP particles, which were synthesized by electrospraying. 

Different conditions were evaluated to determine their effects on PLGA-RFP particle 

fabrication and to optimize their synthesis. These conditions included the polymer 

concentration (5, 7.5 and 10% w/w), flow rate (0.5 and 1.0 mL/h), and distance from the 

tip to the collector (15 and 30 cm). The results obtained regarding particle diameter and 

morphology, and the percentage of size distribution, as functions of the different 

synthesis conditions evaluated, are detailed in Table SI1 and also shown in Figures 1, 

SI1, and SI2.  
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Modification of synthesis conditions resulted in low variation of the mean particle 

diameter, producing microparticles with mean diameters around 1 µm. However, the 

highest mean diameter (2 µm) was obtained when the polymer concentration was also 

the highest (10%), though these particles had the highest size dispersion percentage 

(57.8%) (Table SI1). The best results were obtained when the polymer concentration 

was 7.5% (w/w), the electrospray flux was 1.0 mL/h, and the distance from the tip to the 

collector was 15 cm. As shown in the SEM images (Fig. 1 and Fig. SI1), PLGA-RFP 

particles fabricated at the optimized conditions exhibited homogeneous morphology and 

the lowest percentage of dispersion of mean diameter (27.82%; Table SI1 and Fig. SI2). 

The histogram depicted a group of particles with diameters in the range of 0.8-2.0 µm, 

with a mean diameter of 1.3 ± 0.4 µm, though some larger particles were present (~3 

µm diameter). However, use of the same flux and tip-collector distance with the lowest 

polymer concentration (5%) did not produce well-defined particles (Fig. SI1) and a 

mean diameter could not be calculated (Fig. SI2).  

 

Fig. 1. a) SEM image of the electrosprayed PLGA-RFP particles obtained at a flux of 

1.0 mL/h, 7.5% PLGA concentration and a distance of 15 cm from the tip to the 

collector, scale bar = 10 µm.; b) histogram of the particle size distribution.  
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After particle synthesis optimization, the composite scaffolds were fabricated by 

simultaneous electrospray-electrospinning (Fig. 2). The optimized scaffolds showed 

homogenous morphology and particle distribution. PCL nanofibres showed a mean 

diameter of 477 ± 246 nm (Fig. 2A), while fibres with PLGA-RFP particles attached 

had a mean diameter of 678 ± 381 nm (Fig. 2B). Attached PLGA-RFP particles had a 

mean diameter of 1.1 ± 0.2 µm (19% of size dispersion). The fabricated multifunctional 

scaffold was characterized by a porous network with a large surface area-to-volume 

ratio, which is an essential condition for cell adhesion and proliferation and, therefore, 

adequate for bone regeneration. Absorbance measurements determined an RFP 

concentration loaded onto the synthesized scaffold of 2 ± 1 wt% (encapsulation 

efficiency of 57 ± 26%). 

Bone scaffolds are expected to have enough mechanical resistance to support cell 

expansion and tissue regeneration, and should be able to withstand manipulation. The 

mechanical properties of the scaffolds with and without RFP are described in Table 1, 

showing no significant differences between the types of scaffolds. These results are in 

agreement with previous studies regarding PCL electrospun scaffolds for bone 

regeneration applications (Heydari et al., 2017).  
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Fig. 2. SEM images of electrospun PCL fibres (A) and the PCL scaffolds decorated  

with the electrosprayed PLGA-RFP particles (B) at a flux of 1.0 mL/h, 7.5% PLGA 

concentration and a distance of 15 cm from the tip to the collector.  Scale bar = 10 µm. 

 

Table 1. Mechanical properties of the electrospun scaffolds. 

Condition PCL/PLGA PCL/PLGA-RFP 

Tensile strength (MPa) 2.4 ± 0.6 2.6 ± 0.7 

Young´s Module (MPa) 9.0 ± 4.0 8.0 ± 2.0 

Strain at break (%) 140.0 ± 20.0 150.0 ± 30.0 

 

The release profile of RFP was evaluated until the end of the experiments (28 days; Fig. 

3). Antibiotic release from the composite scaffolds displayed a sharp initial burst within 

the first 6 h, with the majority released within the first hour, followed by sustained 

release until 28 days. In contrast, previous studies evaluating electrospun PCL scaffolds 

directly loaded with RFP showed drug release up to 8 h (Ruckh et al., 2012). In our 

study, at the end of the experiments (28 days), the total RFP released was 82% of the 

loaded drug in the scaffolds. The initial burst and the subsequent long-term sustained 

release is applicable to bone infection-control, allowing adequate regeneration of bone 
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while avoiding the impairment of bone repair (Gimeno et al., 2015; Rumian et al., 

2016).  

 

 

Fig. 3. Rifampicin release profile obtained from the composite scaffolds until the end of 

the experiments (28 days). The inset details the drug release for the first 24 h. 

 

3.2. MIC and MBC determination 

The bactericidal effects of the fabricated composite scaffolds were tested against E. coli 

S17 (gram negative) and S. aureus (gram positive). The scaffold masses evaluated were 

calculated to evaluate RFP concentrations in the range of 0.5-90 ppm (0.5, 1, 5, 10, 15, 

20, 25, 30, 45, 60, 75, and 90 ppm).  

The effects observed were significantly different between gram negative and gram 

positive bacteria, with MIC values of 75 ppm in E. coli and 5 ppm in S. aureus, which 

corresponds to 48 ppm and 3 ppm of released RFP in 24 h, respectively. These 

differences were consistent with MBC values, in which 90 ppm of loaded RFP (58 ppm 
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of released RFP in 24 h) was needed to completely eliminate E. coli, whereas 20 ppm 

(13 ppm of released RFP in 24 h) was enough to eradicate S. aureus. These values are 

higher than reported RFP serum levels (1-6 µg/mL) after administration of the 

maximum recommended therapeutic dosage (450-600 mg/day) for the treatment of bone 

infection and tuberculosis (Mehta et al., 2001; Roth, 1984; van Ingen et al., 2011). 

Therefore, the fabricated scaffolds were able to successfully release a therapeutically 

effective amount of RFP directly into the target tissue, avoiding acid degradation and 

kidney and liver clearance of RFP after oral administration. Furthermore, side effects 

resulting from oral administration are not relevant with local administration (Singh et 

al., 2013). Moreover, according to our results, the required concentration of RFP to 

eradicate bacteria (13-58 ppm released in 24 h) was also achieved in the release assays 

as reported above (96-116 ppm in 24 h), highlighting the potential of these scaffolds to 

achieve their clinical purpose.  

RFP is a wide antibacterial spectrum antibiotic with a bactericidal mechanism of action 

mediated by inhibition of bacterial RNA polymerase. Different sensitivities of gram 

negative and gram positive bacteria to RFP treatment have been previously 

demonstrated, and were not attributed to differences in polymerases, but to the better 

penetrability of RFP through gram positive cell walls than through gram negative outer 

membranes  (Wehrli, 1983). 

3.3. In vitro cell studies 

Human osteoblasts were seeded onto RFP-loaded composite scaffolds to evaluate cell 

adhesion, proliferation and morphology by SEM and confocal microscopy (Figs. 4 and 

5, Video SI). Both types of scaffolds assayed (PCL-PLGA and PCL-PLGA-RFP) 

showed adhesion and homogeneous distribution of HOBs on the scaffold surface. Cell 

proliferation was also demonstrated as the surface was completely covered by HOBs at 
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the end of the experiments (28 days), though PCL-PLGA-RFP scaffolds had lower cell 

density on their surface, pointing to a possible toxicity mediated by RFP. 

 

 

Fig. 4. Cell proliferation on rifampicin-loaded scaffolds (B, D, F, H) and on PCL-PLGA 

scaffolds (A, C, E, G) at different time points: 3 days (A, B), 7 days (C, D), 14 days (E, 

F) and 28 days (G, H). Cell structure is apparent when the fibre morphology is blurred 

due to cell growth on the fibres. Scale bar = 100 µm; Inset scale bar = 30 µm. 

 

 



  

18 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Cell morphology and proliferation on PCL-PLGA scaffolds (left panel) and on 

rifampicin-loaded PCL-PLGA (RFP) scaffolds (right panel) at the time points studied. 

Nuclei are stained in blue (left column in each panel) and cytoskeleton in red (medium 

column in each panel). The last column in each panel displays the merge images. Scale 

bar = 100 µm.   

 

MTT assays (Fig. 6) confirmed the growth pattern of HOBs on RFP-loaded scaffolds, 

showing slightly lower viability when the antibiotic was present, in accordance with 

previous studies that reported decreased cell viability after treatment with free RFP at 

similar drug concentrations (≤100 µg/mL vs 96-148 µg/mL RFP released from our 

scaffolds) (Yuan et al., 2015). At the end of the experiments (28 days), cell viability was 

not different between 2D cultures and 3D cultures on RFP-loaded scaffolds, whereas 3D 

cell cultures exerted higher viability percentages, highlighting the effect of RFP on cell 



  

19 
 

proliferation and the 3D effect on cell growth. However, the effect of RFP may not be 

considered relevant to cell growth as the scaffold surface was completely covered by 

HOBs after 28 days, pointing to their suitability for bone regeneration purposes.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Cell viability of human osteoblasts seeded on a 2D system and on the two types 

of scaffolds assayed, PCL-PLGA and rifampicin (RFP)-loaded scaffolds, at the time 

points studied. Data are represented as absorbance values (mean ± SD; n = 9). 

Statistically significant differences between groups were considered when p ≤ 0.01. 

 

4. Conclusions 

A polymeric multifunctional scaffold was developed combining electrospun PCL 

nanofibres with electrosprayed RFP-PLGA microparticles for bone repair and 

prevention or treatment of bone infection. The RFP scaffold load was 2 ± 1 wt% with an 

encapsulation efficiency of 57%. The synthesized scaffold showed a porous network 
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with a homogeneous distribution of RFP-PLGA microparticles (around 1 µm diameter). 

An initial burst of RFP release was followed by sustained release until the end of the 

experiments, reaching 82% release of the loaded drug. This release profile is suitable for 

clinical application, as bone infection is initially controlled by the burst, with sustained 

release providing prophylaxis to avoid bone reinfection. Microbiological studies 

supported the potential of the fabricated scaffolds for bone infection treatment, as 

concentrations ≤58 ppm were able to eliminate E. coli and S. aureus and are in the range 

of the serum therapeutic dosages clinically recommended. Moreover, HOBs seeded on 

these scaffolds proliferated and completely colonized the surface. We thus have 

demonstrated that our scaffolds are potential candidates for bone repair when infection 

may impair regeneration of the tissue, though further studies regarding the in vivo 

efficacy of the fabricated scaffolds against bone infection should be conducted to fully 

understand their suitability for the intended clinical application. 
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