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Whole sequence of the mitochondrial DNA genome of Kearns Sayre 

Syndrome patients: identification of deletions and variants 

Mitochondria both produce the energy of the cell as ATP via respiration and 

regulate cellular metabolism. Accordingly, any deletion or mutation in the 

mitochondrial DNA (mtDNA) may result in a disease. One of these diseases is 

Kearns Sayre syndrome (KSS), described for the first time in 1958, where 

different large-scale deletions of different sizes and at different positions have 

been reported in the mitochondrial genome of patients with similar clinical 

symptoms. In this study, sequences of the mitochondrial genome of three patients 

with clinic features of KSS were analyzed. Our results revealed the position, 

heteroplasmy percentage, size of deletions, and their haplogroups. Two patients 

contained deletions reported previously and one patient showed a new deletion 

not reported previously. These results display for the first time a systematic 

analysis of mtDNA variants in the whole mtDNA genome of patients with KSS 

to help to understand their association with the disease. 

Keywords: mitochondrial disease; large-scale deletion; heteroplasmy; 

haplogroup; phylogenetic analysis. 

Subject classification code: SCIENTIFIC RESEARCH 

 

1. Introduction 

Mitochondrial diseases result from alterations in either the mitochondrial or nuclear 

genome (Gorman et al. 2015; Chinnery, 2015) due to the close relationship of the 

genomes coding for the proteins that constitute the respiratory chain, which is the main 

source of cellular energy. The human mitochondrial genome is a double-stranded DNA 

molecule (mtDNA) of 16569 bp that encodes 13 subunits of the oxidative 

phosphorylation system and 24 RNAs for intra-mitochondrial protein synthesis 

(Gorman et al. 2016). Most of the estimated 1500 mitochondrial proteins are encoded 

by the nuclear genome (Calvo and Mootha 2015). However, mutations or 
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rearrangements in mtDNA, such as deletions and duplications, disturb multiple organ 

systems, particularly the brain and spinal cord, peripheral nerve, heart, muscle and 

endocrine organs (Wallace, 2015; Stewart and Chinnery 2015).  

There are several mutations, rearrangements, or deletions in the mitochondrial genome 

that cause well-known mitochondrial diseases, such as mitochondrial myopathy, 

encephalopathy, lactic acidosis and stroke-like episodes syndrome (MELAS), 

myoclonic epilepsy with ragged red fibers (MERRF), neurogenic muscle weakness, 

ataxia and retinitis pigmentosa (NARP), Leber hereditary optic neuropathy (LHON), 

Pearson Syndrome, chronic progressive external ophthalmoplegia (CPEO) and Kearns 

Sayre Syndrome (Gorman et al. 2016). Furthermore, different variants have been also 

associated with other diseases such as like Alzheimer and Parkinson (Wu et al. 2018; 

Shoffner et al. 1993; Coskun et al. 2012), cancer (Bai et al. 2007), metabolic syndrome 

(Juo et al. 2010) and diabetes (Jiang et al. 2017). 

Among these diseases, the present study focused on Kearns-Sayre Syndrome 

(KSS) with an onset before 20 years, as defined by the presence of ptosis and/or 

ophthalmoparesis due to mtDNA single large-scale deletion and at least one of the 

following features: retinopathy, ataxia, cardiac conduction defects, hearing loss, short 

stature, cognitive involvement, tremor and cardiomyopathy (Mancuso et al. 2015). 

Since KSS was first reported by Kearns and Sayre in 1958, there have been many 

reports of deletions in the mtDNA at different positions and size among patients (Holt et 

al. 1988; Nelson et al. 1989; Montiel-Sosa et al. 2013). In addition, a direct repeat of 13 

bases flanking a common pathogenic large-scale deletion of 4977 bp within nucleotides 

8470-8482 and 13447-13459 has been identified (Schon et al. 1989; Samuels et al. 

2004). Approximately 60% of mtDNA deletions are flanked by direct repeat sequences 

(class I deletions), 30% are flanked by imperfect repeats (class II deletions) and 10% 
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have no flanking repeats (class III repeats) (Mita et al. 1990; Johns et al. 1989; Samuels 

et al. 2004).  

Whole sequences have not been reported for this mitochondrial disease that may 

give us a clue to explain the mechanisms of KSS origin. Consequently, to contribute to 

the knowledge of mtDNA regulation and the cause of the disease (Carelli and Chan 

2014; Latorre-Pellicer et al. 2016; Kang et al. 2016), the complete mtDNA sequences of 

3 patients were obtained and analyzed. Our results showed the size of the large-scale 

deletions, heteroplasmic percentage, haplotype/haplogroup identification and the 

phylogenetic analysis compared with other representative haplogroups. It is important to 

notice that for first time in this area of research, a systematic analysis of mtDNA 

variants in the whole mtDNA genome of patients with KSS was developed. It is 

expected that this analysis will help to understand the mtDNA variants relationships 

with KSS.  

2. Materials and Methods 

2.1 Clinical information 

Molecular analyses of three unrelated patients with clinical information and the 

diagnosis of KSS are included in this study. The first patient was a 10-year-old girl 

previously reported by our group (Montiel-Sosa et al. 2013). To complete the analysis 

of this patient (KSS-1P), the full sequence was obtained. Unfortunately, this patient 

deceased in 2013. Furthermore, the mtDNA sequence of her mother was also obtained 

and analyzed. The second patient (KSS-2P) was a 19-year-old presenting with diplopia, 

progressive external ophthalmoplegia, palpebral bilateral ptosis and sporadic muscle 

cramps. The third patient (KSS-3P) was 18 years old and had had progressive bilateral 

ptosis palpebral since he was 8 years old, ophthalmoplegia, hearing loss, intolerance of 
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exercise, occasional occipital cephalic pain, weight loss, and decreased visual acuity 

since he was 11 years old; he also has a cardiac pacemaker because he suffers from an 

auricular-ventricular blockade. This study was performed according to an Institutional 

Review Board protocol for research on human subjects at Centro Médico Nacional 

Siglo XXI, IMSS. 

2.2 mtDNA analysis 

After receiving informed consent from the parents, total genomic DNA was extracted 

from 50 mg of frozen biopsied skeletal muscle from each patient using a DNeasy Blood 

and Tissue kit and Handbook (Qiagen, Hilden, Germany). 

2.3 Detection and mapping of mtDNA deletions 

Long-range PCR for mtDNA was performed on the muscle sample using the GeneAmp 

XL PCR kit (PerKin-Elmer, Boston, MA) according to previously described protocols 

(Yakes and VanHouten 1997; Santos et al. 2002). The PCR amplification was 

performed using the long-range PCR enzyme mix (Takara, Shiga, Japan) with the 

“Forward” and “Reverse” primers (Supplementary Table 1). The conditions for PCR 

were an initial denaturation at 95°C for 2 min, followed by 9 cycles of 30 s at 92°C, and 

10 min at 68°C; 19 cycles of 92°C for 40 s, 68°C for 12 min, 72°C for 10 min and 95°C 

for 2 min; an additional 9 cycles of 30 s at 92°C and 10 min at 68°C; and then 19 cycles 

at 92°C for 40 s and 68°C for 12 min; and finally an extension at 72°C for 10 min. 

Products were separated and visualized by electrophoresis on a 0.8% agarose gel with 

ethidium bromide.  

Total genomic DNA (5 g) was digested with the restriction endonuclease Pvu II, 

which cleaves human mtDNA at a single position (nucleotide 2652). The digested DNA 
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was electrophoresed on a 0.7% agarose gel and transferred to nylon membranes. The 

nylon membranes were hybridized with the 16S region of a human mtDNA probe 

labelled with the non-radioactive precursor digoxogenin-UTP (Dig-High Prime, Roche 

catalogue #1585606) by PCR amplification following the manufacturer’s protocol. 

Labelling efficiency was tested using the control labelling kit Dig-labelled control DNA 

from Roche. The deleted mtDNA was mapped by long-range PCR of the whole mtDNA 

genome (Tengan and Moraes 1996), which allowed us to determine both the best 

primers to use to amplify the sequence that contained the deleted region and the exact 

limits of this deletion by sequencing. The measurement of the percentage of deletion 

was calculated from the signal intensities of the deletion mutant and the full-length 

molecules using densitometry (Edris et al. 1994).  

After identifying mtDNA deletions in the sample of each patient, the 

amplification of fragments around nucleotides 8470 to 13447 of 7158 bp size was 

examined using the primers L7148(nt.7148) and L14268(nt.14268) to determine if the 

genome of both patients contained the common deletion. Next, the whole mtDNA in 

two fragments was amplified using two pairs of primers, L644/H8982 and L8789/H877 

(Supplementary Table 1), which provided two overlapping fragments of 8381 and 8703 

bp, respectively. This strategy also permitted an approximation of both the localization 

and, by sequencing, the exact sites of the deletion.  

2.4 Sequencing of whole mtDNA  

The whole mtDNA of all samples was amplified and sequenced by using 24 pairs of 

primers previously described (Rieder et al. 1998), with the following PCR conditions: 3 

min at 95°C for an initial denaturation and 35 cycles of 95°C for 30 s, 60°C for 45 s, 

72°C for 55 s, and a final extension at 72°C for 5 min. The 24 overlapping fragments 

were visualized by electrophoresis on a 0.7% agarose gel and purified with ExoSap-IT 
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before the sequencing reaction with the BigDye Terminator v3.1 Cycle Sequencing 

Ready Reaction kit, following the manufacturer´s instructions (Applied Biosystems). 

The products of this reaction were purified and analyzed on an Applied Biosystems 

3730 DNA Analyzer (Applied Biosystems, Foster City, CA, USA). Comprehensive 

contig assembly and sequence alignment was performed using the Sequencher Software 

version 4.1 (Gene Codes Corporation, New York City), and SNPs relative to the revised 

Cambridge Reference Sequence (rCRS) were scored and confirmed by manual checking 

of electropherograms. 

2.5 Mutation impact analysis 

The impact of the non-synonym mutations was assessed by using the predictors 

MitImpact 2.9 (Castellana et al. 2015; http://mitimpact.css-mendel.it/), Polymorphism 

Phenotyping (PolyPhen v2; Adzhubei et al. 2010), and MutationAssessor (Reva et al. 

2011). MitImpact provided a view of the pre-computed pathogenicity score of the 

amino acid change as a pathogenic predictor; PolyPhen predicted the potential impact of 

the amino acid substitution in the protein structure and function by using physical and 

comparative considerations; and MutationAssessor predicted the functional effect due to 

amino acid substitution in the protein based on evolutionary conservation. 

2.6 Phylogenetic analysis 

Sequences of the patients of this study were aligned with 51 and 84 representative 

Amerindian and Asian mtDNA complete sequences of haplogroups B (KSS-P2) and C 

(KSS-P1 and KSS-P3), respectively, using the Clustal W program (Thompson et al. 

1994). The phylogenetic tree was then constructed using maximum likelihood 

reconstruction, the Neighbor Joining algorithm (Nei et al. 1985), and the HKY85 

nucleotide substitution model (Hasegawa et al. 1985). The TN93RV algorithm included 
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in the Hypothesis Testing using Phylogenies software package was used to obtain the 

genetic distance with gamma correction 1 (Tamura and Nei, 1993) (HyPhy, Pond et al. 

2005). Finally, a bootstrap of 1000 repetitions was performed. 

3. Results 

3.1 Clinical features of patients 

Kearns-Sayre Syndrome is a mitochondriopathy with an onset of symptoms before 20 

years of age. Accordingly, the three unrelated patients reported here presented with 

palpebral bilateral ptosis, progressive external ophthalmoplegia and cardiomyopathy. In 

addition, patient KSS-P2 had sporadic muscle cramps, and patient KSS-P3 suffered 

from left hearing decreases, fatigue on exercise, occasional occipital headaches, weight 

loss and progressive decreases in visual acuity. 

3.2 Identification of mtDNA deletion  

To identify the size and location of the deletions in the mitochondrial genome of KSS, 

long PCR amplification, southern blot assays (Figure 1A) and sequencing (Figure 1B-

D) were performed. The large-scale deletion of 7629 bp from nucleotides 7437 to 15065 

of the mtDNA (Figure 1B) of KSS-P1 was reported previously (Montiel-Sosa et al. 

2013). Sequence analysis showed that the mother and her daughter had the same full 

sequence; however, the patient's mother did not show the large-scale deletion. 

The amplification of the whole mtDNA of KSS-P2 and KSS-P3 by long-range 

PCR and southern blot analysis showed two bands of approximately 16.5 and 11.2 Kb, 

indicating the presence of a heteroplasmic deletion of approximately 5 Kb in each 

patient (Figure 1A). Then, to determine if the patients displayed a common large-scale 

deletion, the mtDNA was amplified using the primers displayed in Supplementary 
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Table 1. KSS-P2 showed a deletion between nucleotides 7148 and 14268 because the 

amplicon obtained was 2100 bp instead of 7158 bp. Digestion of this fragment with 

Hinc II restriction endonuclease displayed the expected two bands of 630 and 709 bp, 

indicating that enzyme cuts at nucleotides positions 7857 and 13638 were present. 

Primers from nucleotide 8150 to 13650 were used to obtain an expected amplicon of 

5500 bp; however, we obtained a fragment of 500 bp. The sequence of this fragment 

revealed that the deletion starts at nucleotide position 8469 and ends at 13446, 

indicating a deletion of 4977 bp. KSS-P2 contained a large-scale deletion flanked by a 

perfect direct repeated of 13 bp, which was reported previously as flanking the common 

deletion (Samuels et al. 2004). The genes deleted in KSS-P2 are ATPase 6 and 8, COIII, 

tRNAG, ND3, tRNAR, ND4, tRNAH, tRNAS, tRNAL and part of ND5 (Figure 1C). 

The mtDNA of KSS-P3 was amplified using two pairs of primers L644/H8982 

and L8789/H877 (Supplementary Table 1) to obtain two overlapping fragments of 8381 

and 8703 bp, respectively. The fragments obtained were 8381 bp and 3100 bp, which 

correspond to a large-scale deletion of 5387 nucleotides. To map the location of this 

deletion, the 3100 bp was digested with the restriction enzymes as follows: Pst I, Apa I, 

Hinc II, Xba I, Bam HI, and Xho I, with the restriction sites at positions determined by 

NEBcutter V2.0 (Vincze et al. 2003, http://nc2.neb.com/NEBcutter2/) in a fragment 

from nucleotides 7148-877. Pst I, Apa I, Xba I, and Hinc II cut at nucleotide sites 9024, 

9269, 10256, 10016, 16458, indicating the absence of the restriction sites at positions 

12409, 13262, 13637, 14,259, and 14956 and, therefore, the lack of a region that 

contains these sites. To continue mapping the deletion, a region between nt 9989 and 

15978 was amplified, obtaining an amplicon of 600 bp that was sequenced, which 

established that the deletion involved nucleotides 10371 to 15758. This result indicated 

a deletion of 5387 bp (Figure 1D). The sequence of KSS-P3 had no flanking repeated 
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bases. The genes deleted in KSS-P3 were tRNAR, ND4, tRNAH, tRNAS, tRNAL, ND5, 

ND6 and part of cyt b (Figure 1D). 

Quantification of heteroplasmic mtDNA deletions using densitometry was 84%, 

40%, and 60% for KSS-P1 (Montiel-Sosa et al. 2013), KSS-P2, and KSS-P3, 

respectively.  

3.3 Analysis of whole genome sequence 

To search for common variants relevant to the pathology and identification of 

haplogroups, whole mitochondrial genome sequencing of KSS-P1, KSS-P2, and KSS-

P3 was determined, and the GenBank numbers are MG652750, MG652752 and 

MG652751, respectively. Table 1 shows all of the polymorphisms identified in the three 

sequences of the patients. Sequences of KSS-P1, KSS-P2, and KSS-P3 displayed 28 

synonym variants (Table 2) and a total of 7 non-synonym changes for each one (Table 

3). Among these, m.6340CT has been associated with cancer (Scott et al., 2012); 

m.7444GA has been reported to be associated with Leber's hereditary optic neuropathy 

(LHON; Yuan et al. 2005) and sensorineural hearing loss (SNHL; Yang et al. 2016); 

and m.10398AG has been related to Parkinson's disease (PD; Otaegui et al. 2004), 

altered mitochondrial matrix pH (Kazuno et al. 2006), metabolic syndrome (Juo et al. 

2010) and has been considered a risk factor for breast cancer (Bai et al. 2007). 

3.4 Haplogroup identification  

Haplogroups of the KSS patients were determined to define whether they have any 

relevance to this disease because mitochondrial haplogroups have been reported to be 

associated with other diseases such as Alzheimer and breast cancer, (Santoro et al. 

2010; Ma et al. 2018 respectively), or influence the mitochondrial function (Kenney et 

al. 2014). Consequently, haplogroups for each patient were identified according to 
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Achilli et al. 2008, Derenko et al. 2010, Kumar et al. 2011, Rieux et al. 2014 and 

MitoMaster (Brandon et al. 2009; http://www.mitomap.org). The KSS patient 1 and her 

mother were haplogroup C1b14, KSS-P2 was haplogroup B2 and patient KSS-P3 was 

haplogroup C1d. Variants m.3552TA, m11914GA and m.16327CT specific for 

haplogroup C were common in KSS-P1 and KSS-P3. Polymorphisms m.493AG, 

m.5894AG, m.10397AG and m.16181AG were specific for C1b14 (Table 1) and 

exclusively found in KSS-P1 and her mother; and m.194CT, m.6340CT, 

m.9545AG, m.13263AG, m.16051AG and m.16325TC variants (Table 1) were 

specific for haplogroup C1d, as observed in KSS-P3. The haplogroup B2 of KSS-P2 

was defined by the presence of variants m.827AG, m.3547AG, m.4820GA, 

m.4977TC, m.6473CT, m.9950TC, m.11177CT, m.13590GA, m.15535CT, 

m.16217TC, and the deletion of 9 bp at nucleotide positions 8281-8289 (Table 1). 

3.5 Phylogenetic analysis 

The phylogenetic tree of the KSS patients was constructed directly from the entire 

mtDNA sequences and representative sequences obtained from GenBank to understand 

the genetic ancestry through the direct maternal line. Figures 2-3 show the phylogenetic 

tree of the 3 mtDNA sequences from the KSS patients (deposited in GenBank under 

Accession No. MG652750 - MG652752). According to the analysis of variants obtained 

by MitoMaster (Brandon et al. 2009; Lott et al. 2013) and previous haplogroup 

classifications (Kumar et al. 2011), the mtDNA phylogenetic trees of KSS-P1, KSS-P3 

and KSS-P2 displayed haplogroups C1b14, C1d (Figure 2)  and B2 (Figure 3), 

respectively. 
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4. Discussion 

An in depth genetic characterization of whole mtDNA genome was carried out 

in this research, which will help to understand pathogenic mechanisms of mtDNA 

diseases like KSS. Previous research have shown that a better understanding of the  

location, length and percentage of a single mtDNA deletion explains mitochondrial 

syndromes (López-Gallardo et al. 2009; Grady et al. 2014; Mancuso et al. 2015; Rocha 

et al. 2018). The effect of mtDNA population genetic variation might be very important 

in patients with single mtDNA deletions. Because, it is well known that mtDNA genetic 

background can affect mitochondrial gene expression, disease susceptibility and 

severity of disease-causing mtDNA mutations (Wallace. 2015; Cohen et al. 2016; Wei 

et al. 2017). Thus, these findings will support future meta-analyses in order to refine the 

association between single mtDNA deletions and mitochondrial syndromes. 

Mitochondrial diseases have been continuously studied because of their 

complicated diagnosis and treatment. Kearns Sayre Syndrome is associated with large-

scale mtDNA deletions that differ among patients. It is important to extend the sequence 

analysis beyond the large-scale deletion and the flanking regions to find and establish 

haplogroup-related and mitochondrial pathogenic variants. Recently, Latorre-Pellicer et 

al. (2016) used conplastic animals to reveal that mitochondrial variations have an 

important influence on the physiology, phenotype and longevity of organisms, 

suggesting that the same effect occurs in humans.  

Importantly, it also has been demonstrated by using cybrid cells that mtDNA 

haplogroup J has increased transcription and replication and, as a result, there are more 

mtDNA molecules in haplogroup J than there are in haplogroup H (Suissa et al. 2009). 

Therefore, mitochondrial haplogroups of patients with mitochondrial disorders could be 

very relevant. Consequently, it is very important to determine the mtDNA haplogroups 
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when treating mitochondrial diseases, e.g., with mitochondrial replacement therapy in 

human oocytes (Latorre-Pellicer et al. 2016).   

Whole mtDNA sequences in patients displayed twelve non-synonym changes 

(Table 3); among them, m.8584GA, m.8701AG, and m.14318TC were shared 

between KSS-P1 and KSS-P3, and m.8860AG, m.14766CT, and m.15326AG were 

shared among the 3 patients. All of these non-synonyms changes were previously 

reported in MITOMAP (http://www.mitomap.org). Some of these variants have been 

associated with other disease conditions (Rollins et al. 2009; Ebner et al. 2011; Bai et 

al.2007; Tommasi et al. 2014; Rad et al. 2016; Venkatesan et al.2014; Wallace. 2015) 

such as a) m.6340CT and m.7444GA variants in CO1 gene identified in the KSS-P3 

and KSS-P2 patients respectively, which were previously detected in patients that 

suffered prostate cancer (Petros et al. 2005; Scott et al. 2012), Leber's hereditary optic 

neuropathy (LHON), or sensorineural hearing loss (SNHL) (Zhu et al. 2006; Yang et al. 

2016); b) m.827A>G variant located at the A-site of the mitochondrial 12S rRNA gene 

identified in KSS-P2 patient, these were previously associated with non-syndromic and 

aminoglycoside-induced hearing loss (Li et al. 2004; Xing et al. 2006), a sign in KSS 

patients, probably due to alteration of the rRNA structure leading to mitochondrial 

dysfunction (Chaig et al. 2008; Xing et al. 2006; Nivoloni et al. 2010; Barbarino et al. 

2016); and c) m.10398AG variant within the ND3 gene identified in KSS-P1 and 

KSS-P3 has been identified as a risk factor with the metabolic syndrome (Juo et al. 

2010), and it is considered a predictor for T2D, which is present in some of the KSS 

patients (Ho et al. 2014). In addition, since 153A>G and 152T>C variants are located 

close to the replication site in KSS-P1 and KSS-P3 respectively, it would be important 

to study their function in cybrids, since it has been reported that m.150C>T variant 
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close to the replication site changes the replication site in the mtDNA (Chen et al. 

2012). 

Kazuno et al. (2006, 2008) found in cybrid cell lines that mitochondrial 

metabolism can be altered by m.8701G/10398G variants identified in the mtDNA 

deleted region of KSS-P1 and KSS-P3 patients, which has been reported to play a role 

in the pathophysiology of complex diseases by affecting mitochondrial matrix pH and 

intracellular calcium dynamics. Cybrids with 10398G and 8701G variants did not 

respond to treatment with valproate to stabilize calcium levels; contrary cybrids with 

10398A and 8701A variants responded to the treatment (Kazuno et al. 2008). These 

differences are important since the KSS-P2 patient had 8701A/10398A variants, which 

make the patient susceptible to some kind of medical treatments and KSS-P1 and KSS-

P3 patients containing m.8701G/10398G variants will be resistant to the treatment of 

some compounds. Some KSS patients may present cyclic vomiting syndrome (Boles et 

al. 2007), previously associated with the variant m.16519T (Venkatesan et al.2014; 

Boles et al. 2010) identified in KSS-P1 and KSS-P2. Accordingly, the treatment for 

these patients usually include mitochondrial supplements like co-enzyme Q10, 

riboflavin and L-carnitine (Boles et al. 2007). These findings highlight the importance 

of mitochondrial genetic background that also may influence the patient response to 

medical treatments. 

Haplogroup identification was also developed because variants in the whole 

mtDNA genome primarily define haplogroup, which has been found to be associated 

with certain human diseases (Wu et al, 2018). KSS-P1 and her mother belonged to the 

C1b14 haplogroup (Figure 2), which is uncommon, and there are only thre sequences 

reported in the database of mtDNA sequences (GenBank). One of them pertained to a 

Zapotec individual (GenBank number: KJ923846), and the other was from a Mexican 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
15 

American individual (GenBank number: HQ012208) (Gómez-Carballa et al. 2015, 

Kumar et al. 2011). There is also one sequence with the C1b14 haplogroup from the 

1000 genomes project (NA19773). Furthermore, there is a partial sequence reported in a 

pre-Hispanic Mayan individual that belongs to the C1b14 haplogroup (Ochoa-Lugo et 

al. 2016). This haplogroup was confirmed by the phylogenetic analysis displayed in 

Figure 2. Haplogroups C1b, C1c and C1d are of Beringian origin, as are the 

haplogroups A2, B2 and D1 (Achilli et al. 2008). The estimated age of the C1b14 on the 

American continent is approximately 15 ky (Gómez-Carballa et al. 2015). Moreover, 

one infant burial (USR1) from a common interment at the Upward Sun River Site in 

central Alaska dating to ~11,500 cal B.P. was determined to possess variants that define 

mitochondrial lineage C1b (Tackney et al. 2015). The presence of the C1b14 

haplogroup in a Mayan ancient individual clearly shows that this haplogroup was 

present in Mexican pre-Hispanic populations, and it has been maintained in 

contemporary Mexican populations such as the Zapotec, although in very low 

frequencies suggesting that this haplogroup has not been expanded in contemporary 

populations successfully. 

The KSS-P3 displayed haplogroup C1d (Figure2), which is a founding Native 

American lineage that is defined by transitions at nucleotides 194 and 16051 and 

entered the continent from Beringia at the end of the Last Glacial Maximum (18.7±1.4 

kya) (Achilli et al. 2008; Perego et al. 2010). The C1d haplogroup is distributed along 

the American continent (Perego et al. 2010) and has been identified in a Mexican 

mestizo population with a frequency of 18.8% in a cohort of 270 individuals 

(Guardado-Estrada et al. 2009). KSS-P3 sequence was grouped with sequences from 

Mexican individuals living in USA (Figure 2).  
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Finally, KSS-P2 belongs to haplogroup B2 of a Native American ancient 

haplogroup, with coalescence time estimated at 19 ky (Achilli et al. 2008). This lineage 

was also identified in one infant burial (USR2) from a common interment at the Upward 

Sun River Site in central Alaska dating to ~11,500 cal B.P. (Tackney et al. 2015). In 

addition, this haplogroup has been associated with a risk of cervical cancer in a Mexican 

mestizo population (Guardado et al. 2012), but it is not associated with prostate cancer 

in Colombian patients (Cano et al. 2014). There is also one MELAS case of a Mexican 

patient reported with haplogroup B2c (Delgado-Sanchez et al. 2007).  

The MXKSS-P2 sequence is more closely related to the sequences with 

haplogroups B2u and B2k, with very low frequency in Mexican American individual 

residents of the USA (Figure 3). The B2o1 haplogroup is also in the same branch and 

corresponds to sequences from Bolivian and Colombian individuals. The MXKSS-P2 

sequence is more closely associated with haplogroup B2u and is a rare haplogroup in 

Mexico because no identical sequences have been reported in the mitochondrial 

databases.  

The haplogroup of patients with mitochondrial diseases in Mexicans has rarely 

been reported in Mexican populations. Therefore, it is recommended to sequence and 

determine both the haplogroup and haplotype to establish their importance for 

pathology and to trace the migration and evolution of populations. Two of the KSS 

patients reported in this study belong to haplogroup C, and one belongs to haplogroup 

B; the latter has been associated with susceptibility to diseases such as hearing loss 

(Ying et al. 2015), Alzheimer’s disease (Bi et al. 2015), high-altitude pulmonary edema 

(Luo et al. 2012) and T2D (Liou et al.2012). 
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5. Conclusions  

Our results support the importance of performing full sequencing of mitochondrial 

genomes of patients with multisystem disorders to discover new variants and their 

functional impact as part of complex protein suppliers of ATP by the phosphorylation 

system. Furthermore, the three patients have different classes, positions, lengths and 

grades of heteroplasmy of the large-scale deletion, suggesting that size and 

heteroplasmy are related to the grade of this pathology. We can also suggest that when a 

family has any family history of mitochondrial disease, it is important to perform full 

mtDNA sequencing to diagnose any mutation associated with the disease and suggest 

an effective treatment or a preventative strategy with a mitochondrial replacement 

procedure. 
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Figure Legends 

Figure 1. Characterization of the mtDNA deletion. (A) Southern blot analysis of 

mtDNA from KSS-P2 and KSS-

Hind III; lines 2 and 5 display the long range PCR from KSS-P2 and KSS-P3 showing 

the 16.5 kb bands with no deletion and the DNA containing the large deletions of 

approximately 11.2 kb for KSS-P2 and KSS-P3, respectively; line 4 corresponds to a 

control mtDNA with no deletion; sequence across the mtDNA deletions breakpoint 

showing the site of the flanking sequence in (B) KSS-P1 reported previously (Montiel et 

al. 2013) and (C and D) KSS-P2 and KSS-P3, respectively. 

 

Figure 2. Molecular phylogenetic analysis by the maximum likelihood method of 

haplogroup C. The evolutionary history was inferred by using the maximum likelihood 

method based on the Hasegawa-Kishino-Yano model (Hasegawa et al. 1985). The tree 
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with the highest log likelihood (-24486.9906) is shown and Akaike’s informative 

criterion (49750.9). The percentage of trees in which the associated taxa clustered 

together is shown next to the branches. Initial tree(s) for the heuristic search were 

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using the maximum composite likelihood (MCL) 

approach, and then selecting the topology with the superior log likelihood value. A 

discrete gamma distribution was used to model evolutionary rate differences among 

sites (3 categories (+G, parameter = 0.0500)). The rate variation model allowed for 

Tamura and Nei. The tree is drawn to scale, with branch lengths measured in the 

number of substitutions per site. The analysis involved 76 nucleotide sequences (Supp. 

Table 2). All positions containing gaps and missing data were eliminated. There were a 

total of 16,560 positions in the final dataset. The bootstrap = 1000. Sequences in bold 

are from the KSS patients, and the ancient sequences are labeled with an asterisk (*).  

 

Figure 3. Molecular phylogenetic analysis by the maximum likelihood method of 

haplogroup B. The evolutionary history was inferred by using the maximum likelihood 

method based on the Hasegawa-Kishino-Yano model (Hasegawa et al. 1985). The tree 

with the highest log likelihood (-24486.9906) is shown with Akaike’s informative 

criterion (49750.9). The percentage of trees in which the associated taxa clustered 

together is shown next to the branches. Initial tree(s) for the heuristic search were 

obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of 

pairwise distances estimated using the maximum composite likelihood (MCL) 

approach, and then selecting the topology with the superior log likelihood value. A 

discrete gamma distribution was used to model evolutionary rate differences among 

sites (3 categories (+G, parameter = 0.0500)). The rate variation model allowed for 
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Tamura and Nei (Tamura and Nei. 1993). The tree is drawn to scale, with branch 

lengths measured in the number of substitutions per site. The analysis involved 76 

nucleotide sequences (Supp. Table 2). All positions containing gaps and missing data 

were eliminated. There were a total of 16,560 positions in the final dataset. The 

bootstrap = 1000. Sequences in bold are from the KSS patients, and the ancient 

sequences are labeled with an asterisk. 
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Table 1. Mitochondrial genetic variants of KSS patients. 

 

 

 

 

 

 

 
Variants from nucleotides 10,000 and below, variants from nucleotides 10,000 to 16,569. Variants related to haplogroup designation are 
shown in bold. *Patient KSS-P2 with haplogroup B also has a 9 bp deletion from nucleotides 8281 to 8289. 
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Table 2. Synonym variants identified in the KSS patients and the mother of KSS-1P. Analysis was performed by MitoMaster. 
Nuleotide 

position 

KSS 

patient* 

Locus Mutation 

type 

Amino acid Codon 

position 

GB 

frequency % 

T3552A 1, 3 MT-ND1 transversion Ala82 Third  3.24 

G3915A 2 MT-ND1 Transition  Gly203 Third 1.34 

A4715G 1, 3 MT-ND2 Transition  Gly82 Third 3.92 

A4769G 1, 2, 3 MT-ND2 Transition  Met100 Third 97.26 

A5894G 1 MT-NC5 Transition  Non-coding - 0.35 

C7028T 1, 2, 3 MT-COI Transition  Ala375 Third  78.89 

C7196A 1, 3 MT-COI Transversion Leu431 Third 3.83 

T7885C 2 MT-COII Transition  Ile100 Third 0.03 

T9540C 1, 3 MT- 

COIII 

Transition  Leu112 First 32.92 

A9545G 1, 3 MT- 

COIII 

Transition  Gly113 Third  4.00 
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T9950C 2 MT-

COIII 

Transition  Val248 Third 2.86 

A10397G 1 MT-ND3 Transition Trp113 Third 0.93 

C10400T 1, 3 MT-ND3 Transition Thr114 Third 20.42 

G10646A 3 MT-

ND4L 

Transition Val59 Third 0.33 

T10873C 1, 3 MT-ND4 Transition  Pro38 Third 32.88 

G11719A 1, 2, 3 MT-ND4 Transition Gly320 Third 75.36 

G11914A 1, 3 MT-ND4 Transition  Thr385 Third 11.02 

G12007A 2 MT-ND4 Transition  Trp416 Third 6.48 

A12172G 3 MT-TH Transition  tRNA p38 Anticodon 

loop 

0.78 

C12705T 1, 3 MT-ND5 Transition Ile123  Third 41.74 

T13174C 2 MT-ND5 Transition  Leu280 First 0.08 

A13263G 1, 3 MT-ND5 Transition  Gln309 Third 3.47 
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G13590A 2 MT-ND5 Transition  Leu418 Third 5.39 

T14783C 1, 3 MT-CYB Transition Leu13 First 20.29 

G15043A 1, 3 MT-CYB Transition Gly99 Third 22.77 

G15301A 1, 3 MT-CYB Transition Leu185 Third 27.55 

A15487T 1, 3 MT-CYB Transversion Pro247 Third 3.85 

C15535T 2 MT-CYB Transition  Asn263 Third 2.01 

*KSS patient 1, 2, and 3 represent patient KSS-P1, KSS-P2, and KSS-P3 respectively. KSS-P1M has the same synonyms variants as KSS-P1. 
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Nucleotid

e position 

KSS 

Patient 

Locus Amino acid PolyPhe

n 

Mutation 

Assessor 

Impact 

Codon 

positio

n 

GB 

frequency 

(%) 

Disease reported Reference 

A3547G 2 MT-ND1 I81V Benign Low First 1.44   

C6340T 3 MT-CO1 T146I Benign Medium Second  0.16 Prostate cancer  Scott et al., 2012 

G7269A 2 MT-CO1 V456M Benign Neutral First 0.16   

G7444A 2 MT-CO1 TERM514K - - Second  0.37 LHON, SNHL, 

DEAF 

Gorman et al. 

2016 

G8584A 1 and 3 MT-

ATP6 

A20T Benign Neutral First  4.64   

A8701G 1 and 3 MT-

ATP6 

T59A Benign Neutral First  32.82   

A8860G 1, 2 and 

3 

MT-

ATP6 

T112A Benign Medium First 98.34   

A10398G 1 MT-ND3 T114A Benign Neutral First 43.68 PD, longevity, Otaegui et al. 
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Table 3. Analysis of nonsynonymous variants identified in the KSS patients and the mother of patient 1 by PolyPhen and MutationAssessor 

programs. Predicting functional effect analysis in MitImpact 2.9 in the 4 whole sequences of this study by PolyPhen and MutationAssessor for 

pathogenicity predictions. 

PD: Parkinson's disease. 

altered 

mitochondrial pH, 

metabolic 

syndrome, breast 

cancer risk 

2004; Dato et al. 

2004; Kazuno et 

al. 2006; Juo et al. 

2010; Bai et al. 

2007 respectively 

C11177T 2 MT-ND4 P140S Benign Medium First 1.44   

T14318C 1 and 3 MT-ND6 N119S Benign Neutral Second 3.27   

C14766T 1, 2 and 

3 

MT-

CYB 

T7I Benign NA Second 75.1 5   

A15326G 1, 2 and 

3 

MT-

CYB 

T194A Benign Neutral First 98.29   
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Abbreviation List 

ATP: Adenosine triphosphate 

KSS: Kearns Sayre syndrome 

mtDNA: mitochondrial DNA 

MELAS: Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes syndrome  

MERRF: Myoclonic epilepsy with ragged red fibers 

NARP: Neurogenic muscle weakness, ataxia and retinitis pigmentosa 

LHON: Leber hereditary optic neuropathy  

CPEO: Chronic progressive external ophthalmoplegia 

KSS-1P: First patient  

KSS-2P: Second patient  

KSS-3P: Third patient  

bp: base pair 

nt: nucleotide 

SNP: Single nucleotide polymorphism 
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rCRS: Revised Cambridge Reference Sequence 

PD: Parkinson's disease 
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Research Highlights: 

1. Mitochondrial DNA genome of Kearns Sayre Syndrome patients displayed haplogroups with low frequency in contemporary populations. 

2. Two patients contained deletions reported previously and one patient showed a novel deletion not reported previously. 

3. Mitochondrial DNA polymorphism were displayed in other diseases.  
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