
Accepted Manuscript

Low-cost test measurement setup for real IoT BLE sensor device characteriza-
tion

David Perez-Diaz-de-Cerio, Ángela Hernández-Solana, Antonio Valdovinos,
Joan Olmos, Jose Luis Valenzuela

PII: S0263-2241(18)31138-2
DOI: https://doi.org/10.1016/j.measurement.2018.11.082
Reference: MEASUR 6125

To appear in: Measurement

Received Date: 10 July 2018
Revised Date: 23 November 2018
Accepted Date: 26 November 2018

Please cite this article as: D. Perez-Diaz-de-Cerio, A. Hernández-Solana, A. Valdovinos, J. Olmos, J.L. Valenzuela,
Low-cost test measurement setup for real IoT BLE sensor device characterization, Measurement (2018), doi: https://
doi.org/10.1016/j.measurement.2018.11.082

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/290001379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.measurement.2018.11.082
https://doi.org/10.1016/j.measurement.2018.11.082
https://doi.org/10.1016/j.measurement.2018.11.082

Low-cost test measurement setup for real IoT
BLE sensor device characterization

David Perez-Diaz-de-Cerio 1,*, Ángela Hernández-Solana 2, Antonio Valdovinos 2, Joan Olmos1 and

Jose Luis Valenzuela 1

1 Signal Theory and Communications Department, Universitat Politècnica de Catalunya, Esteve Terradas 7,
08860 Castelldefels, Spain; olmos@tsc.upc.edu (J.O.) valens@tsc.upc.edu (J.L.V.)
2 Aragon Institute for Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain;
anhersol@unizar.es (A.H.) toni@unizar.es (A.V.)
* Correspondence: dperez@tsc.upc.edu; Tel.: +34-93-413-7209

Abstract: The methodology presented in this paper aims to characterize impairments shown by real devices
which are usually neglected on standardized tests but that become very important in massive IoT scenarios.
For instance, we have measured that real BLE scanners are not able to scan continuously even though they
are configured to do so. Besides, we have also found and demonstrated that some manufacturers seem not
to apply any backoff mechanism although it is mandatory. These two unexpected behaviors have a
significant impact on the performance of massive wireless sensor networks based on BLE. So, it becomes
necessary to characterize these and other impairments.
The proposed tests are based on device current consumption measurements and their association with the
information obtained from upper layers.
We describe a new low-cost generic measurement setup and provide all the necessary data (configuration
parameters, scripts, etc.) for applying the proposed methodology. As an example, we use it to profile the
behavior of Bluetooth Low Energy devices. Furthermore, the proposed setup can also inspire researchers
to characterize other wireless technology devices, like Wi-Fi, Zigbee, LoRa, etc.

Keywords: IoT; sensor networks; current sensor; BLE; low-cost

I. Introduction

Internet of Things (IoT) has enabled the possibility of implantation of wireless industrial
systems for sensors, data and control applications. The Industrial Internet of Things (IIoT) will be
part of the next revolution of industry, which is usually referred to as Industry 4.0, and will rely on
the capacity of the manufacturing processes to implement real-time functionalities based on the
management and transmission of all relevant information in real-time. Bluetooth, LoRa, Zigbee,
IEEE 802.15.4, NB-IoT or IEEE 802.11ah have been proposed as a viable connectivity solution
for the IoT.

The device design and implementation for high-density wireless networks is a challenge that
should take into account several factors such as power consumption, latency, throughput,
interference, reliability, etc. It is important to accurately analyze and characterize the device real-
time behavior in a stressed and dense environment and apply the results to obtain precise
mathematical and simulation models. Methodologies usually include analytical modelling and
simulations [1] considering ideal device behavior based on the specification descriptions [2].
However, device hardware impairments have a huge impact on the system performance when
data is generated by hundreds or even thousands of devices. These real-world technological
limitations or practical implementations in the physical, MAC (Medium Access Control) or upper
control layers should be methodically measured with different test setups.

This paper has been motivated by the discovery of significant differences between the results
of ideal models and real measurements when analyzing the performance of massive IoT
deployments. These non-idealities are caused by limitations of real devices and depend on the
firmware and hardware implementation of the chipset manufacturers. We have demonstrated [3]
that these non-idealities can be neglected when just a few devices are present, but become very
noticeable in stressed scenarios.

mailto:anhersol@unizar.es
mailto:toni@unizar.es

The Bluetooth Test Specification includes the Test Suite Structure and Test Purpose to test
the Bluetooth RF layer, including Basic Rate, Enhanced Data Rate and Low Energy. The objective
of this Test Specification is to provide a basis for conformance tests for Bluetooth devices giving
a high probability of air interface inter-operability between Bluetooth devices of different
manufacturers [4]. These tests have been designed to comply with radio emission standards,
verify the system reliability and ensure interoperability between devices from different
manufacturers. For example:

 RF-PHY/TRM-LE/CA/BV-01-C: Output power

 RF-PHY/RCV-LE/CA/BV-01-C: Receiver sensitivity, uncoded data at 1 Mbit/s

 RF-PHY/RCV-LE/CA/BV-03-C: C/I and Receiver Selectivity Performance, uncoded
data at 1 Mbit/s

 RF-PHY/RCV-LE/CA/BV-07-C: PER Report Integrity, uncoded data at 1 Mbit/s

 However, these tests defined in the standard do not examine all the Bluetooth functionalities
and do not analyze the real behavior of Bluetooth devices when there are multiple transmitters
and receivers, like the delay required to switch between scanning frequencies and many other
non-idealities. In addition to the reception gaps related to the change of frequency, real operation
is usually affected by other periodic pauses scattered along the scanning intervals, blind gaps
after packet processing, etc. Also, the standard tests do not analyze whether the devices meet
specifications at MAC level or higher layer protocols such as HCI (Host Controller Interface).

On the other hand, several device manufacturers such as Texas Instruments [5,6], NXP
Semiconductors [7] or Silicon Labs [8] provide application notes describing the setup and
procedures to measure power consumption on some of their devices. In a similar way,
instrumentation device manufacturers, such as Keysight or Rohde & Schwarz, offer several
equipment [9] and applications [10] to test and measure power consumption of Bluetooth devices.

The research community shows also the interest on this subject by using different measuring
methods. For example, in [11] the authors compare the datasheet specifications of real devices
with measurements for the most important phases of the communications (start-up, advertising,
connection) using a the N6705B Agilent power analyzer. In [12], the sleep current consumption
of BLE (Bluetooth Low Energy), ANT and Zigbee devices is measured using a multimeter (Fluke
287) and the active state current using the Texas Instruments INA226 current measurement chip.
Authors in [13] use a power monitor to derive models of the basic energy consumption behavior
of BLE. Other studies [14–17] employ sniffers and network protocol analyzers like Wireshark [18]
to analyze the behavior and detect intrusions or other security issues.

The aim and novelty of this paper is to propose a new series of functional and parametric test
setups addressed to enhance and extend the current tests. The main goal is to measure with
accuracy the real behavior of IoT devices, whether they transmit, receive or remain idle. The
Bluetooth standard defines the state machine diagram of BLE devices when they are in scanning
mode and receiving advertisement broadcast frames. The ideal state diagrams for the passive
and active scanning modes we will analyze are represented in Figure 1 and Figure 2, respectively.
However, after analyzing a wide number of BLE chipset manufacturers, we have verified that the
implemented state diagram significantly differs from the ideal operation. As an example, the real
behavior of the most common of those chipsets during the scanning state is depicted in Figure 3
and Figure 4. It is important to notice that the measured state diagram reveals additional unideal
states that modify the behavior of the devices.

The measured state diagrams reveal idle gaps associated with processes such as frequency
change, erroneous demodulation, frame processing, etc. The tests defined in this paper,
combined with upper layer interaction, allow to determine these unideal reception states. For
example, when there are multiple devices transmitting simultaneously and there are frame
collisions, errors, capture effect, etc. The proposed design is composed by a synchronized
measurement system of current consumption, a HCI command controller and a protocol analyzer.

In previous works, see [3,19], we have also followed these procedures to characterize and
analyze BLE devices.

Although we use BLE as an example for the target of the measurements, the methodology
employed can be used with other technologies in a similar way as we did for analyzing Wi-Fi
devices in [20].

Figure 1. Ideal non-connectable advertisement reception state machine diagram

Figure 2. Ideal scannable advertisement reception state machine diagram

Scan 38

Scan 39

Scan 37

Rx
ADV_NONCONN

TadvIND-Tsync

Rx Sync
Tsync

YES
Sync
OK?

CRC
OK?

Start
Detect?

YESYES

NO NO

HCI LE Advertising Report Event
(Type ADV_NONCONN_IND)

Advertising
event

NO

Scan 38

Scan 39

Scan 37

Rx
ADV_SCAN_IND

TadvIND-Tsync

Rx Sync
Tsync

TIFS

Tx
SCAN_REQ

TscanREQ

TIFS

Rx
SCAN_RSP

TscanRSP-Tsync

YES

Signal
detected?

Sync
OK?

CRC
OK?

CRC
OK?

Rx Sync
Tsync

Sync
OK?

Start
Detect?

YESYES

NO NO

NONONO

YESYES

YES

HCI LE AdvertisingReport Event
(Type ADV_SCAN_IND)

HCI LE Advertising Report Event
(Type SCAN_RSP)

Advertising
event

NO

SCAN_RSP

Backoff

Count=1?

NO

YES

Figure 3. Real non-connectable advertisement reception state machine diagram

Figure 4. Real scannable advertisement reception state machine diagram

The paper is structured as follows. In first place, a generic measurement setup with the description
of the needed components for all the tests is presented. Then, for each specific test, we indicate
which sections (subsets) of the generic setup are necessary. As we have stated before, we focus
our measurements on a BLE sensor network. So, we include a brief summary of the basic BLE
concepts needed for a better understanding of the devices under test. The specific equipment
variations employed for the characterization of BLE devices are also introduced in this section.
Following, we describe in detail each one of the tests: objective, setup, configuration scripts, etc.
and we present the obtained results. Finally, we include a conclusion section to summarize the
most important topics discussed.

Scan 38

Scan 39

Scan 37

Rx

ADV_NONCONN
TadvIND-Tsync

Rx Sync
Tsync

YES
Sync
OK?

CRC
OK?

Start
Detect?

YESYES

NO NO

HCI LE Advertising Report Event
(Type ADV_NONCONN_IND)

Advertising
event

NO

ErrDecoding
Gap

Decoding/
Blind
Gap

TfqChgGap

TfqChgGap

TfqChgGap

TinterFqChgGap

TinterFqChgGap

TinterFqChgGap

Scan 38

Scan 39

Scan 37

TfqChgGap

TfqChgGap

Rx
ADV_SCAN_IND

TadvIND-Tsync

Rx Sync
Tsync

TIFS

Tx
SCAN_REQ

TscanREQ

TIFS

Rx
SCAN_RSP

TscanRSP-Tsync

YES

Signal
detected?

Sync
OK?

CRC
OK?

CRC
OK?

Rx Sync
Tsync

Sync
OK?

Start
Detect?

NO

Delayed
Scheduled

Gap?

Gap 2

YESYES

Gap 1

TfqChgGap

NO NO

NONONO

YESYESYES

NO

YES

tDecodingGap= terrDecodingGap=TblindTime

Gap 1 = tDecodingGap

Gap 2 = max(tDecodingGap, TfqChgGap)
Advertising

event

SCAN_RSP

HCI LE Advertising Report Event
(Type ADV_SCAN_IND)

HCI LE Advertising Report Event
(Type SCAN_RSP)

II. Measurement setup

The aim of the proposed measurement setup is to determine the behavior of wireless devices
by observing, in a combined way, the actual state at RF level along with the behavior of upper
layers (e.g., considering MAC retransmissions, or whether a frame has been correctly received
by upper protocol layers). This is achieved by combining measurements of instantaneous power
consumption of the transmitting and receiving wireless devices under test (DUTs) with network
packet analysis obtained at the receiver side. It should be stressed that the proposed setup and
methodology is not limited to a specific type of devices, but can be applied to a wide range of
wireless standards, such as 802.11, Bluetooth, BLE, 802.15.4, etc.

A. GENERIC MEASUREMENT SETUP

A schematic representation of the setup topology is shown in Figure 5. The key components
of this setup are:

i) The wireless device (DUT) configured for the intended test.
ii) A signal generator or a set of wireless devices configured as signal generators.
iii) An RF shield box for the DUT placement, aiming to isolate it from external sources

of interference.
iv) RF connectors, antennae for the DUT, a circulator and an attenuator to model the

different test cases.
v) A set of current sensors, providing a voltage output that is proportional to the current

consumption of the transmitting and receiving DUT.
vi) A digital oscilloscope, to measure the voltage signal and register the obtained

samples.
vii) A power supply, to power the DUT and the current sensors.
viii) A laptop with a packet network analyzer tool, to capture and analyze the packets of

the receiving DUT.

Figure 5. Generic setup topology scheme

B. BLUETOOTH LOW ENERGY FUNDAMENTALS

Since version 4.0 the Bluetooth standard includes a low energy mode. This mode is ideal for IoT
applications. One of the main differences between this mode and the classic Bluetooth is the use
of advertising events previous to the establishment of a connection or just to transmit short
amounts of data.

Within an advertising event the transmitter, known as advertiser, is able to transmit a frame over
up to three different frequencies (channels 37, 38 and 39). The amount of data of these frames is
limited, reaching a maximum of 31 bytes. This limit has been extended to 256 bytes in version 5
of the standard. After a fixed period (advertisement interval) and a random delay ranging from 0
ms to 10 ms (to avoid collisions) a new advertising event is generated.

The receiver is known as scanner. The scanner listens for a period of time named Scan_Window
on one of the three advertising channels waiting for an advertisement. After a Scan_Interval it
switches to the next advertising channel and listens again during a Scan_Window and so on.

1

KEYSIGHT InfiniiVision 1 GHz 5 GSa/s

2 3 4

R e f

M ath

Digi tal

Se rial

Qu ick
Actio nUti l i ty

To u ch

C le ar
Disp lay

An alyze Acq u ire Disp lay P rin t
Save
R e cal l

M e as

C u rso rs

Zo n e
M o d e
C o upl ing

Fo rce
Trigge rTrigge r

321 Lab e l He lp 4

Au to
Scale

De fau lt
Se tu p

Si n gle
R u n

Sto p

Wave
Ge n 1

Wave
Ge n 2

Ho riz

Se arch

Navigate

Trigger Measure

Vertical

Tools

FileWaveform

Run ControlHorizontal

Device
Under
Test

Current

Sensor

BLE
Tx

Current

Sensor

USB

RF

RF

ETHERNET

BLE
Tx

Current

Sensor

RF

RF Shield box

BLE
Tx

50 Ω
Load

Current

Sensor

RF
Circulator

RF Programmable
Attenuator Antenna

4.500 V 1.00 mA
4.500 V 1.00 mA
0.000 V 0.00 mA
0.000 V 0.00 mA A

B

C

Digital
Oscilloscope

Signal Generator

Laptop

Figure 6. Passive and active scanning modes

Additionally, the scanner can perform an active or passive scanning (see Figure 6). When using
the active scanning the scanner sends automatically a new frame (scan request) after 150 s of
receiving a valid advertisement frame. Once this request is received by the advertiser it answers
with a scan response frame to provide additional data. In passive scanning the scanner never
requests additional data. However, to be able to send a scan request, in addition to the scanner
being in active mode the advertisement received should belong to a specific type. The standard
specifies different types of advertising events. In this paper we will focus on just two of them: non-
connectable advertising events (ADV_NONCONN_IND) and scannable advertising events
(ADV_SCAN_IND). The second one allows the exchange of scan request and scan response
frames (named SCAN_RSP and SCAN_REQ) while the first one does not.

Another aspect to take into account when using active scanning is that two scanners may receive
at the same time an advertisement and so both of them will transmit simultaneously a scan
request, thus producing a collision. The standard requires that a backoff algorithm must be
implemented, but the actual implementation depends on the manufacturers because the standard
just proposes an example algorithm and leaves it open.

The algorithm proposed in the standard defines two parameters: backoffCount and upperLimit.
Initially, these two values are set to one. Then, on every received advertisement which is liable to
be followed by a SCAN_REQ, the backoffCount is decremented by one until it reaches zero. Only
when the backoffCount is zero the scanner transmits the SCAN_REQ. If this request is not
answered, or the SCAN_RSP is not received from the advertiser, it is considered a failure. On
every two consecutive failures, the upperLimit is doubled (until it reaches a maximum of 256) and
on every two consecutive successes the upperLimit is halved (until it reaches one). After any
success or failure, the scanner sets the backoffCount to a new pseudo-random integer between
one and upperLimit (inclusive).

C. MEASUREMENT SETUP FOR BLE DEVICE CHARACTERIZATION

Next, we will describe the specific setup implemented in our laboratory for Bluetooth devices,
serving as a proof of concept of the proposed methodology and used to acquire the results
presented in this paper.

Advertiser

Passive
Scanner

Scan_Window Channel 37

Scan_Interval

Scan_Window Channel 38 Scan_Window Channel 39

Scan_Interval

Ch
37

Ch
38

Ch
39

Advertiser

Active
Scanner

Scan_Window Channel 37

Scan_Interval

Scan_Window Channel 38 Scan_Window Channel 39

Scan_Interval

HCI
Event

Ch
37

Ch
38

Ch
39

Ch
37

HCI
Event

Ch
38

Advertising Event Interval

Advertising Event Interval

ADV_SCAN_IND SCAN_RSP SCAN_REQ

ADV_NONCONN_IND

Scanning

Ch
37

Ch
39

Ch
38

Ch
37

Ch
39

Ch
38

Ch
37

Ch
38

HCI
Event

HCI
Event

HCI
Event

HCI
Event

In this particular setup we have considered BLE USB dongle devices, from different
manufacturers, controlled by a laptop through the BlueZ protocol stack for Linux.

The current consumption of BLE devices is completely different depending on the state of the
device: idle, scanning, or transmitting. So we use these differences to infer the behavior of the
devices by analyzing their consumption.

All devices have been placed inside a Rohde and Schwarz RF shield-box to limit external
interference. A set of Texas Instruments current sensing boards [21] have been employed to
measure the current consumption of the transmitting and receiving BLE devices. The sensing
boards require a 5 V supply and can accurately detect a load current between 0 and 1 A. Their
design is based on an OPA320 amplifier with a rail-to-rail input/output and a relative low offset
voltage. The voltage output of this design is proportional to the measured current with a sensitivity
of 5V/1A. The OPA320 model has a unity-gain bandwidth of 20 MHz. A power supply, operating
in the range of 0-30V with a maximum current of 2.5 A, has been employed to power the wireless
devices and the current sensors.

The measured voltage signal from the current sensors has been fed to a Keysight Mixed Signal
Oscilloscope model MSOX4104A4. The oscilloscope has a 1GHz bandwidth and a resolution of
5 GSample/s, enabling the sampling of the measured signal with high accuracy. Furthermore, the
oscilloscope offers several triggering options (by pulse width, voltage level, signal form, etc.), thus
enabling the synchronization between the voltage sampling and the frame capturing process.

Finally, a laptop operating under Linux and equipped with the Wireshark network protocol
analyzer and the BlueZ kernel modules, libraries and utilities, has been employed. The laptop is
connected to the DUT for the purposes of: 1) Controlling the BLE USB dongle configuration and
2) Monitoring the received frames with Wireshark. For this connection, a modified USB cable has
been prepared to enable the transmission and reception of data between the DUT and the laptop
without interfering the measurements of the current sensors (see Figure 7).

Figure 7. Detail of the modified USB cable

Current sensor

Modified USB cable

BLE USB dongle

III. Tests and results

By adequately adjusting the generic setup we are able to perform the following battery of tests:

A. Characterization of the receiver in scanning mode
B. Characterization of the receiver during frame reception
C. Characterization of the behavior in presence of frame collisions
D. Backoff implementation test

These tests allow us to derive the real behavior diagrams included in Figure 3 and Figure 4 for
scanning devices of any manufacturer. For each test we provide a summary with the test
description, settings, list of necessary equipment, the setup scheme, and the configuration scripts.
Finally, we analyze the obtained results.

A. Characterization of the receiver in scanning mode

The aim of this test is to determine the real scanning timing performance of the DUT when specific
Scan_Window and Scan_Interval values are configured. In this mode the scanner device listens
for advertising messages during an interval called Scan_Window and every Scan_Interval the
device changes its scanning frequency to the next advertising channel. If both values are equal,
the device is supposed to be scanning continuously. In this case, the ideal behavior is as depicted
in Figure 1 and Figure 2. However, in practice, the device performance does not correspond to
this assumption.

To characterize this behavior, just the section A of the generic setup scheme (Figure 5) is used.
The computer and the DUT are connected via a USB cable. Although the DUT is powered through
the USB cable, the power supply unit is still necessary for powering the current sensor.

The Bluetooth specifications define a HCI command that allows to configure the Scan_Window

and Scan_Interval parameters. This command is accessible through the “hcitool” executable,
which is part of the BlueZ Linux package. We use it, in combination with the “hciconfig” command,
to configure the different devices present in the scenario by means of bash configuration scripts.
To fully understand these scripts it is necessary to know that these commands implement part of
the standard host controller interface (HCI) layer defined and detailed in the Bluetooth
specifications [22]. The HCI layer carries commands and events, between the host and the
Bluetooth hardware, which are composed of two main parts: the operation code and the
parameters. The operation code is composed of two fields: OpCode Group Field (OGF) and
OpCode Command Field (OCF).

For this scenario we only require one scanning device. We achieve the required configuration by
running the bash script of Figure 8. The script first disables the Inquire and Page Scan. Next, the
LE (Low Energy) Scan is first disabled and then configured and enabled with the following
parameters: type (active/passive), scan interval, scan window, own address type and filtering
policy. Notice that multiple byte parameters must be passed to the “hcitool” command starting by
the less significant byte. For example, the LE_Scan_Interval (duration of the scan interval in slots)
value is 0x0320 (800d), which corresponds to 800*625s=500ms, but the bytes must be given as
20 03.

Figure 8. Passive mode and continuous scanning configuration script

Figure 9 shows the measured device current after the execution of the script. The marker on the
left side is the ground reference. From these measurements we can determine the real behavior
of the BLE device. In this case, when the current consumption is high the device is in the scanning
process, waiting for the reception of BLE frames. When the consumption is under this level the
receiver is disabled. This fact can be confirmed by setting a Scan_Window different to the
Scan_Interval parameter and comparing the results.

Additionally, we can observe in Figure 9 that every 500ms (the preconfigured Scan_Interval) there
is a noticeable drop in the current consumption. We have empirically tested that if a frame is
received in this precise moment it is not detected. Therefore, it can be inferred that these drops
correspond to the deactivation of the RF stage. It is important to remark that even when the device
is configured to be in continuous scan (Scan_Window=Scan_Interval), in practice the device is
not scanning 100% of the time. We presume that this behavior is due to hardware limitations,
which require a readjustment period when changing the scanning frequency and thus blocking
the detection of new frames. Figure 10 shows a detailed zoom where the duration of this “blind
time” can be measured. On the other hand, we have also checked that the duration of this gap
depends on the specific values of the Scan_Window and Scan_Interval parameters.

#!/bin/bash

Disable classic Inquiry Scan and Page Scan

 sudo hciconfig -a hci0 noscan

Disable BLE scan with HCI_LE_Set_Scan_Enable command

OGF=0x08 OCF=0x000C

LE_Scan_Enable=0x00, Filter_Duplicates=0x00

 sudo hcitool -i hci0 cmd 0x08 0x000C 00 00

LE Scan parameters configuration with HCI_LE_Set_Scan_Parameters

Command: OGF=0x08 OCF=0x000B

LE_Scan_Type=0x00, LE_Scan_Interval= 20 03

LE_Scan_Window=20 03, Own_Address_Type=0x00

Scanning_Filter_Policy=0x00

 sudo hcitool -i hci0 cmd 0x08 0x000B 00 20 03 20 03 00 00

#Enable BLE scanning with HCI_LE_Set_Scan_Enable command

OGF=0x08 OCF=0x000C

LE_Scan_Enable=0x01, Filter_Duplicates=0x00

 sudo hcitool -i hci0 cmd 0x08 0x000C 01 00

Figure 9. First device: current consumption pattern of one scanner in a scenario without advertisers

Figure 10. First device: Detailed zoom of a scanning blind time

In Figure 11 and Figure 12 the behavior of a different, but identically configured, chipset is
depicted. It can be observed that there is also a drop in the consumption every 500 ms. However,
this device presents many other additional “blind times” that we associate to unknown processes

Scan interval

Blind times

Scanning

V
o

lt
ag

e
(2

0
 m

V
/d

iv
)

Blind time

Scanning Scanning

V
o

lt
ag

e
(2

0
 m

V
/d

iv
)

caused by the manufacturer’s implementation and programming of the firmware. The duration of
the first gap can be measured in the zoomed version of the figure depicted in Figure 12.
Nevertheless, the duration of all these “blind times” in this case does not depend on the configured
Scan_Window and Scan_Interval parameters.

Figure 11. Second device: current consumption pattern of one scanner in a scenario without advertisers

Figure 12. Second device: Detailed zoom of a scanning blind time

Blind times

Scan_Interval

Scanning
V

o
lt

ag
e

(5
0

 m
V

/d
iv

)

Scanning Scanning

Blind
time

Blind times Blind times

V
o

lt
ag

e
(5

0
 m

V
/d

iv
)

Summarizing, real BLE scanners cannot scan continuously and present blind times. Some
devices present only these scanning gaps when they change their scan frequency. The duration
of these gaps is variable and depends on the selected values of Scan_Window and Scan_Interval.
Other devices also present these frequency change gaps (depicted in black) but they also
introduce other periodic blind times (depicted in red) associated with unknown processes of the
manufacturer firmware implementation [3,19].

B. Characterization of the receiver during frame reception

The next test determines the receiver timing performance of the DUT when it receives a BLE
frame. The results are obtained by jointly analyzing the transmitter (signal generator) and receiver
(DUT) current measurements and the time synchronized information obtained from Wireshark.
The scanner is configured in passive mode and continuous scanning, i.e., Scan_Window equal
to Scan_Interval. A couple of BLE devices or a signal generator are configured to transmit non-
connectable advertising frames. If the device transmits at high power level, an attenuator could
be inserted between the antenna and the DUT to protect it.

From the general setup depicted in Figure 5, we use the sections marked as A and B. In this case
the DUT is the scanner and we include two transmitters. All three devices are controlled and
powered via USB and monitored using current sensors. Again, we use a power supply unit for
powering the current sensors.

In this scenario the DUT is configured using the script of Figure 8 while the other two devices are
configured using the script of Figure 13, which configures one BLE device as an advertiser.

Figure 13. BLE advertiser configuration script

#!/bin/bash

Disable classic Inquiry Scan and Page Scan

 sudo hciconfig -a hci1 noscan

#Transmitter device(ADV_NONCONN_IND)

#Disable Advertising transmission

OGF=0x08 OCF=0x000A

Advertising_Enable: 0x00

 sudo hcitool -i hci1 cmd 0x08 0x000A 0x00

LE Advertising parameters configuration with HCI_LE_Set_

Advertising_Parameters command

OGF=0x08 OCF=0x0006

Adv_Interval_Min= Adv_Interval_Max 0x00A0 Adv_Type=0x03

Own_Address_Type= 0x00 Peer_Address_Type= 0x00,

Peer_Address= 00:00:00:00:00:00, Advertising_Channel_Map=0x07,

Advertising_Filter_Policy= 00

 sudo hcitool -i hci1 cmd 0x08 0x0006 A0 00 A0 00 03 00 00 00 00

00 00 00 00 07 00

Set Advertising Data with HCI_LE_Set_Advertising_Data Command.

OGF=0x08 OCF=0x0008

Advertising_Data_Length=1F (376 microseconds frame)

Data (length + Data AD type + 26 bytes). 1B 09 73 74 6F 70 73 73

73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 74 6F 70

Flags field 3 bytes (length + flag AD type + 1 byte) 02 01 08

 sudo hcitool -i hci1 cmd 0x08 0x0008 1F 1B 09 73 74 6F 70 73 73

73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 74 6F 70 02 01 08

Enable Advertising transmission

OGF=0x08 OCF=0x000A

Advertising_Enable: 0x01

sudo hcitool -i hci1 cmd 0x08 0x000A 0x01

In this script, after disabling the Inquire and Page scan, the advertising transmission is also
deactivated. This allows to configure the advertising parameters such as (more information in [22]
Vol 2. Part E- 7.8.5):

- Minimum advertising interval and maximum advertising interval (0x00A0): both equal in
order to fix the advertising interval to a unique value and, at the same time, to the
minimum advertising interval allowed by the standard for this advertising type (100 ms).

- Advertising type (0x03): Non-connectable undirected advertisement.
- Peer address type (0x00) and peer address (00:00:00:00:00:00): to select a public device

address type and its value.
- Advertising channel map (0x07): to use the three available advertising channels.
- Advertising filtering policy (0x00): no filters applied.

Once the advertising parameters are configured, the advertisement data to be transmitted are
defined. In this case we decided to fill the frame to the maximum allowed capacity by transmitting
a 26-bytes device name and a “flags” field to enable the reading by a smartphone application
(nRF-connect by Nordic semiconductors). Finally, the transmission is enabled again.

Figure 14 and Figure 15 show the results after the execution of the configuration scripts. In this
case the scenario consisted on one scanner (pink line) and two advertisers (blue and red lines).
The “ground” markers on the left of the figure refer to the ground reference level for each
oscilloscope channel. Figure 14 represents the transmission of a full advertisement event
composed of three frames, transmitted in channels 37, 38 and 39, for each of the advertisers. As
can be observed, when the transmission of the first frame of the blue transmitter is finished, the
scanner decrements its consumption. At this precise moment, the protocol analyzer captures a
message with the contents of the transmitted frame. Then the scanner returns to the original
consumption level after which there is a new transmission event by the red advertiser. Again, after
the end of the frame, a reduction of the consumption shows up in the scanner and the
corresponding frame is received at the protocol analyzer. So, we can conclude that the scanner
is tuned to channel 37. The figure also shows that, for this manufacturer, the duration of the gap
after the reception of a frame is variable.

Figure 15 confirms that this type of gaps are in fact “blind times”, i.e. time periods where, if a
frame is transmitted, it is not actually received by the scanner. In this example the scanner is
tuned to channel 38 (the drop of consumption comes after the second frame of the blue
advertiser). It can be seen that, during this gap, there is a new frame transmission on channel 38
made by the red advertiser. However this frame does not show up in the protocol analyzer. So
we can conclude that it has not be detected and this gap is, in fact, another “blind time”.

Figure 14. First device: decoding gaps

Figure 15. First device: example of frame losses caused by the decoding gaps

37 38 39

37 38 39

Decoding
gap

Decoding
gap

Advertiser 1

Advertiser 2

DUT Scanner Ch37

ADV

ADV

ADV ADV

ADV ADV

Decoded frames

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

37 38 39

37 38 39

Lost frame

Advertiser 1

Advertiser 2

DUT Scanner Ch38

Decoding
gap

ADV ADV ADV

ADV ADV ADV

Decoded frame

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

The following pictures depict the same scenario but with a scanner of a different manufacturer. It
can be observed (Figure 16) that the gaps after the reception of a frame are also present.
However, in this case their duration is constant and considerably shorter (194 s). Figure 17 also
confirms that the decoding gaps produce a blind time during which any received frame is not
processed.

Figure 16. Second device: shorter and constant decoding gaps

Figure 17. Second device: Blind time produced by the decoding gap

Decoding gap Decoding gap

37 38 39

37 38 39

Advertiser 1

Advertiser 2

DUT Scanner Ch37

Decoded frames

ADV ADV ADV

ADV ADV ADV

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

37 38 39

Lost frame

Decoding gap

3837 39
Advertiser 1

Advertiser 2

DUT Scanner Ch38

ADV ADV ADV

ADV ADV ADV

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

In this case we have found that the scanners present additional blind times whenever they receive
a frame. Depending on the manufacturer implementation these gaps are variable or fixed. They
may also be different when the received frame is demodulated correctly or not. More details can
be found in [3,19].

C. Characterization of the behavior in presence of frame collisions

The next two tests evaluate the receiver timing performance of the DUT when it receives two
overlapped Bluetooth frames. We analyze together the data obtained from Wireshark and the
measurements from the current sensors. We will consider two cases: when the scanner is in
passive mode (non-connectable mode) and also when it requests additional data (scannable
mode).

C.1.- Non-connectable advertising frames collisions

In this case the scanner device just listens for advertising messages continuously (Scan_Window
= Scan_Interval). Two Bluetooth devices or signal generators are configured to transmit non-
connectable advertising frames. Thus, only the A and B sections of the generic measurement
setup (Figure 5) are needed. Again, if the advertisers transmit at high power levels, an attenuator
may be inserted to avoid the saturation of the DUT. The configuration scripts are the same of the
previous section. The scanner follows the script of Figure 8 and the advertisers the script of Figure
13. However, in this case the oscilloscope trigger is specifically configured to detect overlapped
frames. Figure 18 and Figure 19 depict the obtained results.

First of all, in some cases a collision between two frames could imply that the two frames are
unsuccessfully received, but it is also possible that one of them could be demodulated (capture
effect). In this case, and due to the sequential nature of the receiver, only the first detected frame
would be received successfully if the signal-to-interference-plus-noise ratio (SINR) is good
enough to avoid reception errors.

Figure 18 and Figure 19 show the cases where the frame cannot be correctly demodulated. In
both cases the DUT starts the demodulation of the first incoming frame and, during the process,
another frame on the same frequency arrives. As the receiver is working on a previous
demodulation process, the second frame is lost. Additionally, the part of the first frame that
collides with the second presents errors, so the first frame is not reported either.

In Figure 18, it can be observed that the device introduces a “blind time” similar to the one
introduced for a successful reception. Nevertheless, for the other DUT (Figure 19), the blind time
is shorter (144 s) than the one corresponding to a successful reception (194 s).

Figure 18. First device: two frames collide, the first is demodulated erroneously the second is lost. The
scanner shows a new gap.

Figure 19. Second device: erroneous and lost frame due to a collision and its corresponding blind time.

Lost frame

Erroneous
frame

37 38 39

37 38 39

Advertiser 1

Advertiser 2

DUT Scanner Ch39

Error
decoding gap

collision

ADV ADV ADV

ADV ADV ADV

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

Lost
frame

Erroneous
frame

37 38 39

37 38 39

Advertiser 1

Advertiser 2

DUT Scanner Ch38

Error
decoding gap

ADV ADV ADV

collision

ADV ADV ADV

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

C.2.- Scannable advertising frames collision

In this second test the scenario is practically the same. However, the scanner is configured in
active mode and the advertisers use scannable advertisement events. In order to enable the
active scanning, the LE_Scan_Type parameter of the scanner configuration script (Figure 8)
should be set to 0x01. The rest is kept unmodified. However, for the advertisers it is necessary to
configure the contents of the SCAN_RSP frame and modify the advertisement type. The new
script is shown in Figure 20.

Figure 20. Scannable advertisement configuration script

#!/bin/bash

Disable classic Inquiry Scan and Page Scan

 sudo hciconfig -a hci1 noscan

 sudo hciconfig -a hci2 noscan

#Transmitter device (ADV_SCAN_IND)

#Disable Advertising transmission

OGF=0x08 OCF=0x000A

Advertising_Enable: 0x00

 sudo hcitool -i hci1 cmd 0x08 0x000A 0x00

LE Advertising parameters configuration with HCI_LE_Set_

Advertising_Parameters command

OGF=0x08 OCF=0x0006

Adv_Interval_Min=A0 00 Adv_Interval_Max A0 00 Adv_Type=02

Own_Address_Type= 00 Peer_Address_Type= 00,

Peer_Address 00 00 00 00 00 00, Advertising_Channel_Map= 07,

Advertising_Filter_Policy= 00

 sudo hcitool -i hci1 cmd 0x08 0x0006 A0 00 A0 00 02 00 00 00 00

00 00 00 00 07 00

Set Advertising Data with HCI_LE_Set_Advertising_Data Command.

OGF=0x08 OCF=0x0008

Advertising_Data_Length=1F (376 microseconds frame)

Data (length + Data AD type + 26 bytes). 1B 09 73 74 6F 70 73 73

73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 74 6F 70

Flags field 3 bytes (length + flag AD type + 1 byte) 02 01 08

 sudo hcitool -i hci1 cmd 0x08 0x0008 1F 1B 09 73 74 6F 70 73 73

73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 74 6F 70 02 01 08

Set Advertising scan response Data with

HCI_LE_Set_Scan_Response_Data Command.

OGF=0x08 OCF=0x0009

Advertising_Data_Length=1F (376 microseconds frame)

Data (length + Data AD type + 26 bytes). 1B 09 73 74 6F 70 73 73

73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 74 6F 70

Flags field 3 bytes (length + flag AD type + 1 byte) 02 01 08

 sudo hcitool -i hci1 cmd 0x08 0x0008 1F 1B 09 73 74 6F 70 73 73

73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 74 6F 70 02 01 08

Enable Advertising transmission

OGF=0x08 OCF=0x000A

Advertising_Enable: 01

 sudo hcitool -i hci1 cmd 0x08 0x000A 0x01

Figure 21 exemplifies the case where the advertisement and response of both transmitters are
successfully received. In this instance the scanner is tuned to channel 38. This figure
demonstrates that the receiver detects the advertisement which arrives in the first place (blue).
After the TIFS=150 s required by the Bluetooth specifications, it transmits a request (pink). Then,
the advertiser answers with a response which is successfully decoded by the scanner. The
protocol analyzer records both frames: the advertisement and the response. Later, the procedure
is repeated with the red advertiser.

Figure 21. Successful exchange of advertisement-request-response frames

In Figure 22, however, the advertisement of the first transmitter (blue) is not detected, as the DUT
is in a blind time when the frame starts. Although there is no collision in this case, strictly speaking,
Wireshark only reports the first advertisement and response frames.

37 38 3938

37 38 3938

TIFS

Advertiser 1

Advertiser 2

DUT Scanner Ch38

38 38

TIFS

Decoding gapDecoding gap

ADV RSP ADVADV

TIFS

TIFS

ADV RSP ADVADV

REQ REQ

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

Figure 22. Advertiser 1 (channel 37) arrives during a blind time and it is lost

The next case (Figure 23) is also similar, the difference is that the response is not detected
because it is overlapped with another advertisement and the SINR is not enough to avoid
reception errors. In this case the protocol analyzer only shows up the content of the
advertisement, but not the content of the response.

Figure 23. Collision of an incoming advertisement with a previous response frame

37 37 3938

37 38 39

Lost frame

Advertiser 1

Advertiser 2

DUT Scanner Ch37

37

Decoding gap

ADV RSP ADV

REQ

ADV

TIFS

TIFS

ADV ADV ADV

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

Blind time

37 37 3938

37 38 39

Advertiser 1

Advertiser 2

DUT Scanner Ch37

37

Error
decoding gap

TIFS

collision

Lost
frame

Erroneous frame

ADV ADV ADV

ADV RSP ADV ADV

REQ

TIFS

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

The following case (Figure 24) reproduces the simultaneous reception of two advertisements.
The scanner demodulates successfully one of them (red) with the corresponding Wireshark report
and then the DUT transmits a request that is detected by both advertisers. Advertiser 2 answers
with a response, while Advertiser 1 ends its operation because the request frame does not contain
its address.

Figure 24. Collision between two advertisements

In Figure 25 there is a simultaneous transmission of an advertisement and a response frame. The
DUT demodulates the first incoming advertisement and makes a request. Next, the blue
transmitter answers with a response, but it is overlapped with an advertisement with better
channel conditions. The DUT demodulates the advertisement and transmits another request
whose response, in this case, is successfully received. In this scenario, the protocol analyzer
reports only an advertisement from the blue transmitter and both an advertisement and a
response from the red transmitter.

37 38 39

37 38 39 39

Rejected frame (MAC Layer)

Accepted frame (MAC Layer)

HCI report: Decoded
frame from Advertiser 2

Blind time

Advertiser 1

Advertiser 2

DUT Scanner Ch39

39

Decoding gapTIFS

TIFS

TIFS

ADV RSPADVADV

ADVADVADV

REQ

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

Figure 25. Collision between an advertisement and a response frame

Figure 26 shows a collision between an advertisement and a request frame. In this case, the
advertiser does not generate the response because it is not aware of the request. Wireshark
reports only an advertisement in this occasion.

Figure 26. Collision between an advertisement and a request frame

37 37 38 39

37 37 38 39

Advertiser 1

Advertiser 2

DUT Scanner Ch37

37

HCI report: Decoded
frame from Advertiser 1 HCI report: Decoded

frame from Advertiser 2
HCI report: Decoded

frame from Advertiser 2
37

Collision
ADV Captured

TIFS

TIFS

TIFS

ADV RSP ADVADV

ADV RSP ADVADV

REQ REQ

Erroneous frame

V
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

37 38 39

37 38 39

REQ not detected

Advertiser 1

Advertiser 2

DUT Scanner Ch37

37

HCI report: Decoded
frame from Advertiser 1

Collision

REQ

ADV ADV ADV

ADV ADV ADV

TIFS

TIFSV
o

lt
ag

e
(1

0
0

 m
V

/d
iv

)

In summary, these tests allow us to determine the precise duration of the processing gaps
considering different frame overlapping cases. The specific values are manufacturer dependent.
With the information provided by the protocol analyzer we can also deduce which frames are
going to be discarded under certain conditions.

D. Backoff implementation test

This last test determines the receiver behavior of the DUT when the backoff mechanism should
be activated. To evaluate this scenario only one advertiser and a scanner are necessary, but it is
necessary to control the reception of request frames. Thus, from the general setup of Figure 5,
we use sections A and C. The RF output of the transmitter is connected to the first port of the
circulator. The second port is connected to a variable attenuator and its output goes to an
antenna. A 50 matching load is placed on the third port of the circulator. The idea beyond this
is that the transmitted frames (advertisements) reach the antenna and are successfully received
by the scanner, but the requests generated by the DUT never arrive to the advertiser. In this way
the advertiser does not generate the response. The scanner interprets that a collision happened
and initiates its backoff mechanism.

The configuration scripts of the advertiser and the scanner follow the configuration explained on
the previous section (C.2.Scannable advertising frames collision). That is, continuous active
scanning and scannable advertisements.

Figure 27 shows how we force the activation of the backoff mechanism. It can be seen that after
the reception of the advertisement the DUT sends a request, but the advertiser never detects it
because it has been redirected to the 50 load by the circulator.

Figure 27. Forced suppression of the request frame

37 38 39

Not detected
Advertiser 1

DUT Scanner Ch37

37HCI report :
ADV decoded frame

REQ

TIFSTIFS

ADV ADV ADV

V
o

lt
ag

e
(5

0
 m

V
/d

iv
)

After having activated the backoff procedure of the DUT during a fixed period of time we remove
the circulator and allow the normal transmission/reception of requests. Thus, if the device
implements the backoff algorithm proposed by the standard (see section II.B) the upperLimit
would be high enough to apply the backoff to the next successfully received advertisement
frames. In Figure 28 we can observe how the scanner applies the backoff procedure. After the
correct demodulation of an advertisement with its corresponding Wireshark report, the DUT does
not generate the expected request.

Figure 28. Backoff activated: successfully reported advertisement and request frame not sent

However, we have found that some manufacturers do not implement neither this nor any other
kind of backoff procedure, so that after restoring the normal transmission/reception of request
frames the DUT always transmits a request frame, as can be seen in Figure 29. This behavior
does not fulfill the specification requirements, which stablish that the scanner should run a backoff
procedure that allows to share the medium responsibly.

37 38 39

Gap: active backoff

Advertiser 1

DUT Scanner Ch38

HCI report :
ADV decoded frame

ADV ADVADV

V
o

lt
ag

e
(5

0
 m

V
/d

iv
)

Figure 29. Anomaly: Backoff procedure not implemented

IV. Conclusions

In this paper we have defined several tests that allow us to characterize the real time behavior
of BLE devices. These tests ease measuring impairments that are usually not considered but
become very important in dense IoT wireless scenarios. By associating the current consumption
variations and the upper layer information provided by a protocol analyzer we can infer and
quantify with precision the unexpected performance shown by real devices.

To reflect the use of the methods described in the paper we have analyzed, just as an example,
some of the impairments present in real Bluetooth Low Energy devices. That is, we have applied
this methodology to profile the behavior of BLE scanners. We have measured that real BLE
scanners cannot scan continuously and present blind times. These blind times appear under
different circumstances associated with different processes of the scanner: frequency changes,
frame decoding and other internal processes. Their duration is variable. It depends on the
configuration parameters, if the frame decoding is successful or not and, of course, the device
firmware. So by means of the proposed tests, we have detailed with accuracy the duration and
appearance patterns of these gaps for several devices from different chipset manufacturers and
situations.

Lastly, we have also checked the receiver behavior of the devices under test when the backoff
mechanism should be activated. Even though it is mandatory, we have found out that some
chipsets do not implement any backoff mechanism.

A main advantage of the proposed method is that it is low-cost. Besides the usual laboratory
equipment (digital oscilloscopes and power sources) it only requires simple current sensors, and
small modifications of the powering cables. An RF shield box would also be desirable if the
measuring environment is not enough isolated. On the other hand, although along the paper we
have used these tests to measure typical BLE impairments, the methodology could be easily
applicable to other technologies like Wi-Fi, Zigbee, LoRa, etc.

37 38 3937

37

Advertiser 1

DUT Scanner Ch37

HCI report :
ADV decoded frame

HCI report :
RSP decoded frame

TIFSTIFS

RSP ADVADV ADV

TIFSTIFS

REQ

V
o

lt
ag

e
(5

0
 m

V
/d

iv
)

V. Bibliography

[1] S. Shabdanov, P. Mitran, C. Rosenberg, Cross-layer optimization using advanced
physical layer techniques in wireless mesh networks, IEEE Trans. Wirel. Commun.
(2012). doi:10.1109/TWC.2012.070212.111859.

[2] C. Jung, K. Kim, J. Seo, B.N. Silva, K. Han, Topology Configuration and Multihop
Routing Protocol for Bluetooth Low Energy Networks, IEEE Access. (2017).
doi:10.1109/ACCESS.2017.2707556.

[3] D. Perez Diaz de Cerio, A. Hernandez, J.L. Valenzuela, A. Valdovinos, Analytical and
experimental performance evaluation of BLE neighbor discovery process including non-
idealities of real chipsets, Sensors (Switzerland). (2017). doi:10.3390/s17030499.

[4] BTI, RF PHY - Bluetooth® Test Specification RF-PHY.TS.5.0.1, (2017) 95.

[5] S. Kamath, J.L. Keywords, Measuring Bluetooth® Low Energy Power Consumption,
(n.d.). http://www.ti.com/lit/an/swra347a/swra347a.pdf (accessed December 11, 2017).

[6] J. Lindh, C. Lee, M. Hernes, Measuring Bluetooth Low Energy Power Consumption,
(2015). www.ti.com/ble-power-calculator. (accessed December 11, 2017).

[7] NXP Semiconductors, MKW40Z Power Consumption Analysis, (n.d.).
https://www.nxp.com/docs/en/application-note/AN5272.pdf (accessed December 11,
2017).

[8] Silicon Labs, AN969: Measuring Power Consumption of Blue Gecko Bluetooth ® Smart
Devices, (n.d.). https://www.silabs.com/documents/public/application-notes/an969-
measuring-power-consumption.pdf (accessed December 11, 2017).

[9] Rohde & Schwarz, Wireless Device Testers by Rohde & Schwarz | Rohde & Schwarz,
(n.d.). https://www.rohde-schwarz.com/us/products/test-measurement/wireless-
communications-testers-systems/wireless-communication-testers-systems/wireless-
device-testers_86475.html (accessed December 11, 2017).

[10] Keysight Technologies, N9081A Bluetooth® Measurement Application | Keysight
(formerly Agilent’s Electronic Measurement), (n.d.). https://www.keysight.com/en/pd-
1867595-pn-N9081A/bluetooth-measurement-application?nid=-
32129.955967&cc=ES&lc=eng (accessed December 11, 2017).

[11] J. Bernegger, M. Meli, Comparing the energy requirements of current bluetooth smart
solutions, in: InES Inst. Embed. Syst. Nuremb. Embed. World Conf., Nuremberg, 2014.
https://pd.zhaw.ch/publikation/upload/207967.pdf (accessed December 11, 2017).

[12] A. Dementyev, S. Hodges, S. Taylor, J. Smith, Power consumption analysis of Bluetooth
Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario, in: 2013 IEEE Int.
Wirel. Symp., IEEE, 2013: pp. 1–4. doi:10.1109/IEEE-IWS.2013.6616827.

[13] M. Siekkinen, M. Hiienkari, J.K. Nurminen, J. Nieminen, How low energy is bluetooth low
energy? Comparative measurements with ZigBee/802.15.4, in: 2012 IEEE Wirel.
Commun. Netw. Conf. Work., IEEE, 2012: pp. 232–237.
doi:10.1109/WCNCW.2012.6215496.

[14] G.M. Al-Saadoon, B. Manama, Applying Packet Analysis as New Approach for
Discovering Bluetooth Intrusion, in: Proc. 2011 ICICS Conf., 2011.

[15] W.K. Zegeye, Exploiting Bluetooth Low Energy Pairing Vulnerability in Telemedicine, in:
Int. Telemetering Conf. Proc., 2015: p. Volume 51.

[16] S. Siby, R.R. Maiti, N.O. Tippenhauer, IoTScanner: Detecting and Classifying Privacy
Threats in IoT Neighborhoods, (n.d.). https://arxiv.org/pdf/1701.05007.pdf (accessed
December 12, 2017).

[17] W.B. Pöttner, L. Wolf, IEEE 802.15.4 packet analysis with Wireshark and off-the-shelf
hardware, in: Proc. Seventh Int. Conf. Networked Sens. Syst., Kassel, Germany, 2010.

[18] G. Combs, Wireshark, (n.d.). www.wireshark.org.

[19] Á. Hernández-Solana, D. Perez-Diaz-de-Cerio, A. Valdovinos, J.L. Valenzuela, Proposal
and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0,
Sensors. 17 (2017) 1988. doi:10.3390/s17091988.

[20] D. Pérez Díaz de Cerio, M. González Rodríguez, J.L. Valenzuela González, J.M.
González Arbesú, Trimming the power consumption of domestic Wi-Fi networks: how
much power does your router need?, Proc. Jt. Newcom. Work. Wirel. Commun. (JNCW
2015), Barcelona, Spain, Oct. 14-15, 2015. (1000) 1–5.
https://upcommons.upc.edu/handle/2117/83076 (accessed June 14, 2018).

[21] M. Mock, 0-1A, Single-Supply, Low-Side Current Sensing Solution. Texas Instruments.,
(2013). http://www.ti.com/lit/ug/tidu040b/tidu040b.pdf (accessed August 22, 2017).

[22] Bluetooth SIG, Bluetooth Core Specification 5.0, (n.d.).
https://www.bluetooth.com/specifications/adopted-specifications (accessed August 15,
2017).

Acknowledgments: This work has been supported in part by the MINECO/ERDF under the projects

TEC2014-58341-C4-2-R, TEC2014-60258-C2-2-R and RTI2018-099880-B-C32 and Gobierno de

Aragón/FEDER (Research Group T31_17R)

HIGHLIGHTS:

• A low-cost generic measurement setup applied to test BLE procedures and devices.

• New test setups to enhance and measure the real behavior of IoT devices.

• Experimental characterization combining current measurement and upper layer response.

• Hardware design and software configuration of the proposed measurement system.

