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Abstract 

 

     Antioxidant effect of several pineal derived molecules has been well documented. 

Here, the protective effects of 5-methoxytryptophol (5-MTOH) and 5-methoxyindol-3-

acetic acid (5-MIAA) on hepatic cell membrane lipid peroxidation and cell membrane 

rigidity induced by FeCl3 plus ascorbic acid have been systemically investigated. The 

membrane fluidity was evaluated by fluorescence spectroscopy, malondialdehyde 

(MDA) and 4-hydroxyalkenals (4-HDA) concentrations and carbonyl groups of protein 

were measured as the parameters of lipid and protein damage, respectively. Results 

showed that oxidative stress increased membrane rigidity, MDA and 4-HDA concentra-

tions as well as carbonyl content in a concentration-dependent manner. 5-MTOH, but not 

5-MIAA, significantly attenuated these oxidative indecies. In absence of oxidative stress, 

none of these methoxyindoleamines modified the content of MDA, 4-HDA or carbonyl-

ation. However 5-MIAA at its highest concentration slightly modified membrane fluidity. 

The results suggest that structural modification of C3 in the methoxyindoleamine, that is, 

the carboxyl group replaced by hydroxyl group in this site could improve the ability of 5-

methoxyindoleamine derivatives to preserve membrane fluidity of cells which are under 

oxidative stress. 
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_____________________________________________________________________ 

 

1. NTRODUCTION 

 

     Melatonin, 5-methoxytryptophol (5-MTOH), and 5-methoxyindole-3-acetic acid (5-

MIAA) are produced in the pineal gland from the essential amino acid tryptophan. The 

pathway of these methoxyindoles takes place in the pineal gland and also in other sites 

including retina (1), iris (2), lacrimal gland (3), bone marrow (4), gastrointestinal (5-7), 

ovary (8), and immune system (9). Melatonin, an unique methoxyindole, is a well known 

modulator of circadian rhythms and seasonal reproduction in photoperiodic reproductive 

mammals. Nevertheless, it is also classified as a potent free radical scavenger to protect 
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nervous system from oxidative stress. It plays a pivotal role in protection of hydroxyl 

radical (•OH)-induced carcinogenesis and neurodegeneration (10, 11), and preserves nu-

cleic acids, lipids, proteins, and membrane fluidity disturbance caused by oxidative stress 

(12, 13). Antioxidant properties of melatonin are well documented in the in vivo and in 

vitro studies and several of its methoxyl metabolites including cyclic 3-hydroxylmelato-

nin, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methox-

ykynuramine (AMK) also are potent oxidative stress inhibitors like their parental mole-

cule, melatonin (14, 15). Thus, the antioxidant and free radical scavenging activity of 

additional two pineal gland derivatives, 5-MTOH and 5-MIAA, are investigated in the 

current study. These 5-methoxyindoleamines are the products of monoamine oxidase-B 

(MAO-B). Their antioxidative activities are examined for their protective effects on iso-

lated hepatic cell membrane prooxidation. The membrane oxidative damage is induced 

by the combines FeCl3 plus ascorbic acid (16-18). Exposure of membranes to this com-

bination leads to lipid and membranal protein oxidation. The peroxidation of lipids further 

impairs the function of proteins and finally jeopardizes the physicochemical properties of 

membranes, including its fluidity (19,20). 

     Similar to melatonin which was isolated from bovine pineal gland by Lerner et al. in 

1958 (21), several years later, the 5-MTOH and 5-MIAA were also found in pineal gland 

and their chemical structures were also characterized by researchers (22). Biosynthesis of 

5-MTOH and 5-MIAA can be catalyzed by several enzymes including monoamine oxi-

dase, alcohol dehydrogenase, and hydroxyindole-O-methyltransferase (HIOMT). Their 

precursors can be, serotonin or 5- methoxytryptamine, respectively (11,23) (Fig. 1). 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Illustrations of biosynthetic pathways of the HIOMT and MIAA as well as 

Fenton reaction and TMA-DPH location in membrane. 

     A: Biosynthetic pathwys of methoxyindoleamines, 5-methoxyindol-3-acetic acid (5-

MIAA) and 5-methoxytriptophol (5-MTOH). MAO: Monoamine oxidase; HIOMT: Hy-

droxyindole-O-methyltransferase. B: Role of iron and ascorbic acid in the Fenton reac-

tion. H2O2: hydrogen peroxide; •OH: hydroxyl radical; Fe: iron. C: Location of TMA-

DPH among the bilayer phospholipids. TMA-DPH, (1-(4-Trimethylammoniumphenyl)-6-

Phenyl-1,3,5-Hexatriene p-Toluenesulfonate). 
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     In pineal gland, 5-MTOH (24-31) and 5-MIAA (32) show their highest concentration 

during daytime and low concentration at night, an opposite daily rhythm to melatonin. 5-

MTOH seems to have less activity than melatonin in reproductive physiology tested in 

several animal species including humans, however; it is involved in the modulation of 

some aspects of puberty and gonadal function (33, 34). In contrast to melatonin, 5-MTOH 

plasma levels have shown significant differences with age and sex. For example, its level 

increases in boys and reduces in girls after 8 years old. It can be used as a biomarker of 

the different chronobiology in the pubertal development in boys and girls (31). In addi-

tion, melatonin and 5-MTOH, produced an equipotent and dose-dependent effects to re-

duce blood pressure in rats when both are administered through the jugular vein of the 

animals, however; this is not the case in 5-MIAA (35). 

     Cell membrane requires an optimal fluidity state for its proper functionality. The mo-

lecular components of membrane including lipids and proteins are susceptible to struc-

tural and functional changes because they are subjected to the continuous free radical 

attack which leads to cell damage and aging (36). On the other hand, free radical attack 

causes the oxidation of amino acid residue functional groups, and cross-linking and oxi-

dation of the protein backbone, resulting in a modification of the structure, including the 

fragmentation of proteins (37). 

     L-ascorbic acid (vitamin C) is considered as antioxidant, but at high concentrations it 

also functions as prooxidant, especially in the presence of transition metals such as iron 

which acts as a reducing agent (Fig. 1) to facilitate the generation of free radicals by the 

Fenton reaction (11, 38-41). This combination is frequently used as in vitro free radical 

generator to study the deleterious effects of ferrous iron exposure on the hepatocyte cell 

membrane. 

     Because of biological membranes are composed by lipids and proteins, the antioxidant 

properties of 5-MTOH and 5-MIAA against oxidative damage of lipids (lipid peroxida-

tion) and proteins (carbonylation) are evaluated in isolated cell membranes of hepatocytes 

of rat. The Fenton reaction system of 0.1 mM FeCl3 plus 0.1 mM ascorbic acid was used 

to generate free radicals and this method is widely accepted to induce oxidative stress 

(42,43). Levels of malondialdehyde (MDA), 4-hidroxyalkenals (4-HDA), and carbonyl-

ation of the proteins were measured as an index of oxidative damage to lipids and pro-

teins, respectively; and the membrane fluidity, as a functional index of cell membrane 

damage, was also evaluated. 

 

2. MATERIALS AND METHODS 

 

2.1. Chemicals. 

 

     All chemicals and reagents used were of the purest available quality obtained from 

comercial sources. 5-MTOH, 5-MIAA, FeCl3, ascorbic acid, ethylenediaminetetraacetic 

acid disodium (EDTA-Na2), Tris(hydroxymethyl)aminomethane (TRIS), and 4-(2- hy-

droxyethyl)piperazine-1-ethanesulfonic acid (HEPES), were purchased from Sigma-Al-

drich (Madrid-Spain). 1-(4-Trimethylammoniumphenyl)-6-phenyl-1,3,5 hexatriene-p-

toluene-sulfonate (TMA-DPH) was obtained from Molecular Probes (Eugene, OR). Lipid 

peroxidation was measured with the LPO assay Bioxytech LPO-586 assay kit (Portland, 

OR). TMA-DPH was diluted in tetrahydrofuran (THF) and water. THF concentration in 

the incubation volume was 0.4%. 5-MTOH, FeCl3, and ascorbic acid were diluted in Tris-

HCl 50 mM (pH 7.4). 5-MIAA was diluted in methanol and incubation buffer (2% vol-

ume/volume). Other reagents were dissolved in incubation buffer. All solutions were pre-

pared fresh just prior to use. 
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2.2. Animals and isolation of cell membranes. 

 

     The animal handling procedures were strictly accordance with the recommendations 

of the European Economic Community Committee (86/609/CEE) for the care and use of 

laboratory animals. 20 Sprague-Dawley male rats, weighing 210–225 g were purchased 

from Harlan-Ibérica S.A. (Barcelona-Spain) and acclimated (light:dark cycle: 12:12, 

room temperature 22±2°C) for two weeks before being sacrificed. Rats were anesthetized 

with thiopental (50 mg/kg) and subjected to intracardiac perfussion with cold saline so-

lution (0.9% NaCl). The livers were quickly removed, washed in saline and homogenized 

1:10 weight/volume in 140 mM KCl/20 mM HEPES buffer (pH 7.4) using a motor-driven 

Teflon homogenizer. Membranes were isolated following the protocol described by Mil-

lán-Plano et al. (43), briefly, the resulting suspension was centrifuged at 1,000×g for 10 

min at 4°C to remove the nuclei and cellular debris. The supernatant was centrifuged at 

50,000×g for 20 min at 4°C and the resulting pellet was resuspended in the buffer and 

centrifuged at 10,000×g for 10 min at 4°C. The supernatant and buffy-coat were removed, 

homogenized and then recentrifuged at 50,000×g for 20 min at 4°C. The final pellet was 

washed and resuspended 1:1 w/v, and frozen at −80°C until assay. 

 

2.3.Oxidative Model and Peroxidation of membranes. 

 

     The induction of oxidative stress to cell membranes was performed by using a free 

radical generator system based on the models proposed by Wong et al. (44) and Sahu & 

Washington (40), that is, the combination of Fe+3 plus ascorbic acid in which Fe+3 is re-

duced to Fe+2 by ascorbic acid to generate •OH via Fenton reaction. The concentrations 

of FeCl3 and ascorbic acid are 0.1 mM, respectively. At the end, the reaction was stopped 

by adding 2 mM EDTA into the mixture. 

     First, the kinetics with time reagarding the membrane fluidity, MDA, 4-HDA, and 

protein carbonylation with/without Fe+3 plus ascorbic were established. The hepatocyte 

membrane was incubated in Tris-HCl 50 mM (pH=7.4) buffer at a constant temperature 

of 37°C. The samples were collected and measured at the time periods of 0, 10, 20, 30, 

60 and 120 min, respectively. The suitable incubation time was selected at 120 min based 

on the study of the kinetics. Then, the subsequent set of experiments were conducted to 

incubate 0.5 mg/mL membrane protein in Tris-HCl 50 mM (pH=7.4) buffer in a water 

bath with shaking at 37°C for 120 min with or without 0.1 mM FeCl3, 0.1 mM ascorbic 

acid, respectively and in the absence or presence of the 5-MTOH or 5-MIAA (0.1, 0.3, 

1.0, 3.0 and 5.0 mM, respectively). Membrane fluidity, MDA+4-HDA, and carbonyl 

groups were measured immediately after thes incubations. 

 

2.4.Analytical membrane fluidity, MDA+4-HDA and carbonyl group content. 

 

     Fluidity of the hepatic cell membranes was monitored according to the method of Yu 

et al. (20), based on incorporation of a marker, TMA-DPH, into the bilayer as a fluores-

cent probe (Fig.1). 0.5 mg protein/mL of hepatic cell membranes were re-suspended in 

Tris 50 mM (3 mL final volume) with TMA-DPH (66.7 nM). After mixing vigorously, 

the membrane suspensions were incubated at 37°C for 30 min. Fluorescence measure-

ments were carried out in a Perkin-Elmer LS-55 Luminescence Spectrometer, equipped 

with a circulatory water bath to maintain a temperature of 22±0.1°C. Excitation and emis-

sion wavelengths of 360 nm and 430 nm were used, respectively. The emission intensity 
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of vertically polarized light was detected by an analyzer oriented parallel (IVV) or perpen-

dicular (IVH) to the excitation plane. A correction factor for the optical system, G, was 

used. Polarization (P) was calculated according to the equation (a): 

P =
IVV  −  GIVH

IVV  +  GIVH
 

     Since an inverse relationship exists between membrane fluidity and polarization 

(13,19,20,45,46); membrane fluidity was expressed as 1/P and it was calculated from 

triplicate determinations. Protein concentrations were determined employing the method 

of Bradford (47) using bovine serum albumin as standard.  

     Measurements of MDA+4-HDA concentrations were used as an index of lipid perox-

idation of the hepatic cell membranes (48,49). Levels of these products were measured 

using the Bioxytech LPO-586 kit following the instructions of the manufacturer. In this 

assay, MDA+4-HDA react with 1-methyl-2-phenylindole yielding a chromophore with a 

peak of maximum absorbance at 586 nm; 1,1,3,3 Tetramethoxypropane was used as 

standard. Results are expressed as nmol MDA+4-HDA per mg of membrane protein. 

     Carbonyl group content, as index of oxidative protein damage, were measured using 

the reaction with 2,4-dinitrophenylhydrazine (DNPH), yielding a stable complex accord-

ing to the method described by Levine et al. with slight modifications (50-52). Briefly, 

the membranes of hepatocytes were added into Tris-HCl 50 mM buffer with DNPH 10 

mM, and the mixture was incubated at 37 °C for 1 h. Aliquots of 50% ice-cold trichloro-

acetic acid was added to the mixture. The samples were placed on ice for 10 min, and 

centrifugated at 3,000 × g for 10 min, the pellets obtained were washed three times with 

ethanol/ethyl acetate (1:1, volume/volume). The final pellets were dissolved in 6 M guan-

idine and incubated at 37°C for 15 min. After centrifugation at 12,000 × g for 10 min, the 

absorbance of the supernatants was measured spectrophotometrically at 375 nm in the 

ultraviolet spectrum. Guanidine solution was used as a blank. Protein carbonyl groups 

were estimated by using the molar absorption coefficient of DNPH (ε=22.000 M−1 

cm−1), and its concentration was expressed as nmol carbonyl groups/mg protein. 

 

2.5. Statistical analysis 

 

    Results were expressed as arithmetic means ± standard error of at least five independ-

ent experiments. Statistical analysis was performed via ANOVA and comparisons of the 

means of two groups were performed using a Student’s t-test. Differences were accepted 

as being statistically significant when p < 0.05. 

 

3. RESULTS 

 

3.1. The kinetics of hepatocytic membranes oxidation with time. 

 

     Incubation of hepatocytic membranes in the absence of iron and ascorbic acid (control) 

did not modify any of the parameters including membrane fluidity, MDA + 4-HDA, and 

protein carbonylation. However, the addition of FeCl3 and ascorbic acid significantly de-

creased membrane fluidity and increased the other two indicators of oxidative damage in 

a time-dependent manner (Fig. 2). The results showed that membrane fluidity decreased, 

and lipid peroxidation and protein carbonylation increased in a progressive manner during 

the 120 min of the incubation period.  Statistically significant differences between control 

and treated groups wrer detected at the 20, 30, 60 and 120 minutes of time points, respec-

tively. According to these results, an incubation time of 120 min was selected for the 

following experiments. 
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Fig.  2: The kinetics of oxidative alterations with time on hepatocytic membrane. 

     A: Kinetics of membrane fluidity; B: lipid peroxidation C: formation of carbonyl moi-

eties.  Οpen cycle: control; solid cycle: with FeCl3 0.1 mM and ascorbic acid 0.1 mM. 

Results are given as means ± standard errors (N = 5). * p ≤ 0.05 vs. time 0. MDA, 

malondialdehyde; 4-HDA, 4-hydroxyalkenals. 

 

3.2.Effects of 5-MTOH on oxidative membrane injury. 

 

     5-MTOH reduced the membrane rigidity induced by oxidative stress in a dose-depend-

ent manner at all concentrations evaluated. The maximum efficiency was observed at its 

concentration of 1 mM. The lipid and protein oxidative damages induced by FeCl3 and 

ascorbic were significantly inhibited by 5-MTOH at all concentrations studied. The min-

imal effective concentration of 5-MTOH that significantly reduced oxidative damage was 

0.1 mM (p ≤ 0.05) (Fig. 3). The required concentrations preventing oxidative damage to 

lipids and proteins by 50%, (IC50) were 0.62 mM and 0.63 mM, respectively. For the 

membrane fluidity stabilization, it was difficult to calculate IC50 of 5-MTOH since its 

protective capacity on this index against oxidative damage was decrease when its con-

centration was >1 mM. Data are illustrated in Fig 3. 

 
 

Figure 3. Effects of 5-MTOH on hepatocytic membrane oxidative damage. 

     ▲: cell membrane rigidity; ●: lipid peroxidation and ■: formation of protein car-

bonyl. The concentrations are expressed as the decimal logarithm of its molar concen-

tration. Results are given as means ± standard errors (N = 5). * p ≤ 0.05 compared to 

peroxidized membranes. MDA, malondialdehyde; 4-HDA, 4-hydroxyalkenals. 
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3.3.Effects of 5-MIAA on oxidative membrane injury. 

 

     5-MIAA appeared no significant effects on the formation of MDA, 4-HDA and protein 

carbonylation induced by oxidative stress at the concentrations tested. The only observed 

effect of 5-MIAA was that it slightly increased the fluidity of the membrane at its highest 

concentration (5 mM); however, this increase exhibited statistical significance compared 

to the control group. 

     5-MIAA, at its high concentrations (3-5 mM), slightly reduced the protein oxidation 

but without significant difference compared to the control. It had no protective effect on 

lipid peroxidation induced by iron in its highest concentrations tested.  Therefore, its IC50 

could not be established in none of these parameters studied (Figure 4). 

 
Figure 4. Effects of 5-MIAA on hepatocytic membrane oxidative damage. 

     ▲: Cell membrane rigidity; ●: lipid peroxidation and ■: formation of protein car-

bonyl. The concentrations are expressed as the decimal logarithm of its molar concen-

tration. Results are given as means ± standard errors (N = 5). * p ≤ 0.05 compared to 

peroxidized membranes. MDA, malondialdehyde; 4-HDA, 4-hydroxyalkenals. 

 

4. DISCUSSION 

 

     In the current study, the iron and ascorbic acid (0.1 mM, respectively) were used to 

induce the in vitro oxidative membrane damage which was also reported by others (40, 

53). This model is based on that high level of ascorbic acid reduces ferric iron to the ferrus 

iron which can further reduce the H2O2 to form hydroxyl radical by the Fenton reaction 

(36). This model is widely accepted to incude oxidative stress in different experimental 

conditions (16, 17, 42, 43, 54). Lipid peroxidation is well known to decrease membrane 

fluidity in cell membranes (13, 19, 20, 54-56). The oxidative injury of the molecular com-

ponents of cell membranes includes the loss of polyunsaturated fatty acids (57), the for-

mation of cross-linking of lipid–lipid and lipid–protein moieties (57-59), production of 

MDA, 4-HDA and carbonyls group, protein fragmentation and aggregation, protein per-

oxide formation, and enzyme inactivation (60), and thus causes structural changes that 

modify the fluidity of the membrane. All of these are the basic mechanisms for membrane 

rigidity (13). 

     Optimal biological membrane fluidity is crucial for cell functions; even slight change 

of the membrane fluidy will cause aberrant function and pathology (44). Currently, there 

is a substantial interest in the identification of molecules that reduce membran rigidity 

and facilitate the membrane stability to resist oxidative stress. In previous studies, it has 
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been demonstrated that melatonin, a main pineal indoleamine, exhibits cellular protection 

and antioxidant activity (61). In addition, its structurally related molecules, including 5-

MTOH, also stabilize cell membranes due to their powerful free radical scavenging ac-

tivity and thus, prevents membrane lipid peroxidation (13, 19). 

     5-MIAA and 5-MTOH, both generated on the MAO pathway, are synthesized maily 

in pineal gland in the light phase because serotonin, its precursor, has highest concentra-

tions during the day in the pineal gland. This rhythm is opposite to melatonin’s rhythm in 

pineal gland (25, 28). The role of 5-MIAA in oxidative stress is not fully investigated yet. 

In the present study, 5-MIAA has failed to prevent the formation of MDA + 4-HDA, or 

oxidation of proteins induced by the combination of iron and ascorbic acid. In its highest 

concentrations (3 and 5 mM), it showed only a weak protective effect on the rigidity of 

hepatocytic membranes oxidative stress. These results suggest that 5-MIAA possesses 

little or no antioxidant activity to protect cell membranes. Our results were consistant 

with Wang et al. who reported that this molecule was unable to prevent the oxidation of 

low density lipoprotein serum using MDA formation as a biomarker (62). Its high con-

centration on membrane fluidity may be independent from an antioxidant activity. Ng et 

al., also observed that several pineal indoles except 5-MIAA inhibit erythrocytic hemol-

ysis and lipid peroxidation in brain homogenates and liver membranes and these mole-

cules all potently suppressed superoxide radical formation (63). It is suggested that free 

radicals promote different pineal indoles to responses in different extents, probably de-

pending on the structure of pineal indoles. It is known that the antioxidative effects of 

phenolic molecules are related to the number of hydroxyl groups and the conjugated sys-

tem of these molecules (64). It has been also described the variable rates of reaction of 

this indoleamines with •OH and ROO• when the pH of the incubation medium was mark-

edly acid (65). Wang et al. and our work were conducted at physiological pH. However, 

a recent publication showed that this indoleamine acted as an antioxidant against Fe3+ 

induced oxidative stress on synaptosomal membranes isolated from the rat brain (18). 

The inconsistence may be related to the different methods used and the different mem-

brane models. It requires futher investigation.  

     In the absence of FeCl3 and ascorbic acid, the formation of MDA + 4-HDA or car-

bonylation of proteins are very limited, and only the highest concentration of 5-MIAA (5 

mM) slightly increased the hepatic membrane fluidity. This fact suggests that the increase 

in membrane fluidity may be due to a direct interaction of 5-MIAA with the phospholipids 

of the lipid bilayer and changes the dynamics of membrane. It should be noted that several 

other well-known molecules that act as antioxidants, such as tocopherols (66) and tamox-

ifen (67), also modify membrane fluidity in the absence of oxidative stress. 

     In contrast, under current experimental condition, the hydroxylated form of methoxy-

indoles, 5-MTOH, showed a remarkable antioxidant effect on lipids and proteins in a 

concentration-dependent manner in all concentrations tested. A significant protective ef-

fect of this indoleamine on isolated cell membranes from rat liver was observed at con-

centrations of 0.1-1 mM including to reduce the membrane rigidity in the presence of iron 

and ascorbic acid. Nevertheless, there were some publications to report this methoxyin-

doleamine to reduce free radical-mediated damage and its role as a scavenger against the 

highly reactive •OH (42, 45). Our data are in agreement with previous reports in which 

5-MTOH acts as an antioxidant. Its rates of reaction with •OH and ROO• in the 2,2'-

azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) model were 0.20 x 109 and 

0.45 x 109 mol·l-1·s-1, respectively (65). 5-MTOH also inhibited lipid peroxidation caused 

by iron and ascorbic acid in rat brain, liver and kidney homogenates, and hemolysis of rat 

erythrocytes (67). It detoxified H2O2 in rat brain homogenates (68) and suppressed oxi-

dative damage of lipid and proteins in rat brain synaptosomal membranes treated with 
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iron (18), and also, protected microsomal liver membranes from damage by free radicals 

(19). 

     While ample evidence shows protective effects of melatonin in vitro and in vivo 

against free radical damage in a wide range of experimental models (8, 9). Ng et al. re-

ported that 5-MTOH had higher antioxidative activity than that of melatonin (63). Results 

from our study show that 5-MTOH is a more potent antioxidant than 5-MIAA. This rein-

forces the important role of pineal gland derived methoxyindoles in protecting the bio-

logical membranes from oxidative damage. 5-MTOH only acts on the membrane which 

was under the oxidative stress. For example, in the absence of iron, it did not produce 

significant modifications on membrane fluidity or lipids and proteins. These results are 

similar to those reported by us on hepatic microsomes MDA + 4-HDA concentrations, 

and differ slightly in the assessment of the membrane fluidity in microsomes, where it 

decreased by exposure to 5-MTOH at the concentrations greater than 0.3 mM (20). Col-

lectively, that 5-MTOH stabilizes hepatocytic membranes and prevents the rigidity in-

duced by model-oxidative is related to its free radical scavenging activity (20). Since al-

teration of membrane fluidity modifies celular function, a main physiological function of 

5-MTOH could be the stabilization of the membrane fluidity which is related to its ability 

to reduce lipid peroxidation and protein oxidation. This is important because during ag-

ing, membrane fluidity decreases as a consequence of lipid peroxidation (20). 

     5-MTOH differs from 5-MIAA in the substitution of a carboxyl acid by an alcoholic 

hydroxyl group in carbon attached to position 3 of the indole ring. This could mean that 

loss of acidity and incorporation of hydroxyl group would improve antioxidant behavior 

of the molecule, suggesting that protective effect of 5-MTOH is related to its electron 

donation or reductive capacity. Thus, a free radical scavenging mechanism is responsible 

for its stabilizing effect on hepatic cell membranes. Nevertheless, the mechanisms by 

which 5-MTOH modifies lipid dynamics in biological membranes are poorly understood. 

Finally, our results provide new information related to functional role of 5-MTOH dev-

eried from pineal gland. It appears that 5-MTOH positively contributes to the overall an-

tioxidant action of pineal gland. Studies should be warranted to further understand the 

molecular mechanism of antioxidant activity of this and other pineal derivatives. 
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