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Abstract Engineering is evolving in the same way than society is doing.
Nowadays, data is acquiring a prominence never imagined. In the past, in the
domain of materials, processes and structures, testing machines allowed extract
data that served in turn to calibrate state-of-the-art models. Some calibration
procedures were even integrated within these testing machines. Thus, once the
model had been calibrated, computer simulation takes place. However, data
can offer much more than a simple state-of-the-art model calibration, and not
only from its simple statistical analysis, but from the modeling and simulation
viewpoints. This gives rise to the the family of so-called twins: the virtual,
the digital and the hybrid twins. Moreover, as discussed in the present paper,
not only data serve to enrich physically-based models. These could allow us
to perform a tremendous leap forward, by replacing big-data-based habits by
the incipient smart-data paradigm.
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1 Introduction

As models involved in science and engineering become too complex, their an-
alytical solution is often compromised. On the other hand, computers are
able to perform very efficiently only elementary operations. Consequently, it
is necessary to transform complex mathematical objects (derivatives, ...) into
simpler objects, i.e., elementary operations. At the same time, it is necessary
to reduce the number of points and time instants at which the solution of the
model is evaluated, by replacing the continuum by a discrete system, treatable
by digital computers. Such a procedure is known as numerical simulation and
constitutes one of the three pillars of 20th century engineering—modeling and
experiments being the other two pillars—. This age has been coined as the
third paradigm of science [1].

In the previous (third) industrial revolution, “virtual twins” (emulating a
physical system by one, or more, mathematical models to describe its com-
plex behavior) were major protagonists1. Nowadays, numerical simulation is
present in most scientific fields and engineering domains, making accurate de-
signs and virtual evaluation of systems responses possible—drastically cutting
the number of experimental tests.

The usual numerical model in engineering practice (which we will denote
here as virtual twin) is something static. This kind of (finite element, finite vol-
ume, finite difference) models is nowadays ubiquitous in the design of complex
engineering systems and their components. We say that they are static because
they are not expected to be continuously fed by data so as to assimilate them.
This would be what is today understood as a Dynamic Data-Driven Appli-
cation System (DDDAS) [2]. The characteristic time of standard engineering
simulation strategies can not accommodate the stringent real-time constraints
posed by DDDAS, specially for control purposes. Real-time simulation for con-
trol is typically ensured by techniques based on the use of ad hoc—or black
box—models of the system (in the sense that they relate some inputs to some
outputs, encapsulated into a transfer function). This adapted representation
of the system allows proceeding in real-time. However, it becomes too coarse
when compared with rich, high fidelity simulations, such as the ones performed
using, for example, Finite Element techniques.

Although science was preeminently data-based at the early years (think of
Tycho Brahe, for instance), it was at the end of the 20th century that data
irrupted massively in most scientific fields, and in particular in the one we
are specially interested in: engineering. For many years data have been widely

1 There seems to be no consensus on the definition of the concepts of virtual, digital and
hybrid twins. In this paper we suggest one possible distinction, that seems feasible, attending
to their respective characteristics. It is not the sole possibility, of course, nor do we pretend
to create any controversy on it.
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incorporated to usual practice in many disciplines where models were more
scarce or less reliable—with respect to engineering sciences—. Thus, massive
data were classified, visualized (despite its frequent multi-dimensional nature),
curated, analyzed, ... thanks to the powerful techniques recently developed in
the wide areas of artificial intelligence and machine learning. When correla-
tions are removed from data, a certain simplicity emerges from the apparent
complexity, as proved by advanced nonlinear dimensionality reduction tech-
niques based on manifold learning. Moreover, a number of techniques were
proposed to establish the relations between outputs of interest and certain
inputs, assumed to be sufficient to explain and infer the outputs. These are
the so-called “model learners”, based on the use of linear and nonlinear re-
gressions, decision trees, random forests, neural networks—inevitably linked
to deep-learning techniques—, among many others.

The solution of physically-based models, very well established and largely
validated in the last century, was partially or totally replaced by these data-
based models, due to their computational complexity. This is especially true for
applications requiring real-time feedback. Thus, massively collected and ade-
quately curated data, as just discussed, provided interpretation keys to advise
on an imminent fortuitous event. This makes possible improved data-based
predictive maintenance, efficient inspection and control, ... that is, allows for
real-time decision making. The price to pay is an as rich as possible learn-
ing stage. This takes considerable time and efforts, as the establishment of
validated models took in the previous engineering revolution.

Important success was reported, many possibilities imagined, ... justifying
the exponential increase in popularity of these “digital twins”. There has been
a fast development of data-driven models for representing a system with all its
richness while ensuring real-time enquiries to its governing model. However,
replacing the rich history of engineering sciences (that proved their poten-
tial during more than a century with spectacular successes) led to feelings of
bitterness and of waste of acquired knowledge.

This new incipient engineering consists of “virtual twins”, that operate
offline in the design stage, and their digital counterparts, based on data, taking
over in online operations. However, the domain of applicability of the last, even
if they are superior in what concerns their rate of response, continues to be
narrower. A combination of both, the “virtual” and “digital” twins seems to
be the most appealing solution. However, prior to combining both, a major
difficulty must be solved: the real-time solution of physically-based models.

All the just introduced problems can not be overcome by simply employing
more powerful computers—in other words, by employing modern supercom-
puting facilities—. Even when this is a valuable route, it strongly limits the
accessibility to the appropriate simulation infrastructure. This is true also in
what concerns to its integration in deployed platforms. Recent history has
proved that this is a prohibitive factor for small and medium-sized companies.
An effort must be paid towards the to democratization of simulation.

Again, it was at the end of the past century and the beginning of the
21st century, that major scientific accomplishments in theoretical and applied
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mathematics, applied mechanics, and computer sciences contributed to new
modeling and simulation procedures. Model Order Reduction (MOR) tech-
niques were one of these major achievements [3]. These techniques do not
proceed by simplifying the model, models continue to be well established and
validated descriptions of the physics at hand. Instead, they rely on an adequate
approximation of the solution that allows simplifying the solution procedure
without any sacrifice on the model solution accuracy, in view of accommodat-
ing real-time constraints.

A feasible alternative within the MOR framework consists of extracting of-
fline the most significant modes involved in the model solution, and then pro-
jecting the solution of similar problems in that reduced space. Consequently,
a discrete problem of very small size must be solved at each iteration or time
step. Thus, MOR-based discretization techniques provide significant savings in
computing-time. Another MOR-based route consists of computing offline, us-
ing all the needed computational resources and computing time, a parametric
solution that contains the solution of all possible scenarios. This parametric
solution can then be online particularized to any scenario using deployed com-
putational facilities, including tablets or even smartphones. It allows then to
perform efficient simulation, optimization, inverse analysis, uncertainty prop-
agation and simulation-based control, all under real-time constraints. Such a
solution has been demonstrated on many applications where the Proper Gen-
eralized Decomposition (PGD) method is used [4] [5] [6] [7] [8] [9].

The next generation of twins was born, the so-called “hybrid twinTM”,
that combines physically-based models within a MOR framework (for accom-
modating real-time feedback) and data-science.

On one hand, real-time solution of physically-based models allows us to
assimilate data collected from physical sensors, to calibrate them. Therefore,
it also exhibits predictive capabilities to anticipate actions. Thus, simulation-
based control was made possible, and successfully implemented in many appli-
cations, often by using deployed computing devices (e.g., Programmable Logic
Controllers). Despite an initial euphoric and jubilant period in which high-
fidelity models were exploited in almost real-time by using standard comput-
ing platforms, unexpected difficulties appeared as soon as they were integrated
into data-driven application systems.

Significant deviations between the predicted and observed responses have
been detected, nevertheless, by following this approach. The origin of these
deviations between predictions and measurements can be attributed to inac-
curacy in the employed models, in parameters or in their time evolution. These
often continue to be crude descriptions of the actual systems. Attacking this
ignorance can done by developing on-the-fly data-driven models that could
eventually correct this deviation between data and model predictions.

Indeed, a DDDAS consists of three main ingredients: (i) a simulation core
able to solve complex mathematical problems representing physical models
under real-time constraints [10]; (ii) advanced strategies able to proceed with
data-assimilation, data-curation and data-driven modeling; and (iii) a mecha-
nism to online adapt the model to evolving environments (control). The Hybrid
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TwinTM[11] embraces these three functionalities into a new paradigm within
simulation-based engineering sciences (SBES).

2 From Virtual to Hybrid Twins

A given physical system is characterized by a number of continuous or discrete
variables. In general, to manipulate these variables in a computer, continuous
variables are discretized, i.e., more than looking for those variable at any point,
it is assumed that variables at any point can be expressed from the ones
existing in some particular locations (the nodes, if we employ the finite element
terminology) by using adequate interpolations.

In what follows the discrete form of the variables defining the system state
at time t is denoted by X(t). As just indicated, they could include, depend-
ing on the considered physics, nodal temperatures, velocities, displacements,
stresses, etc.

The system evolution is described by its state X(t), evolving from its initial
state at the initial time t = t0 = 0, denoted by X0. Numerical models based
on well established physics allow making this prediction of the system state at
time t from the knowledge of it at the initial time t0, by integrating its rate of
change (coming from the physical laws adequately discretized) given by Ẋ(τ)
at τ ∈ (0, t].

This contribution will be expressed by Ẋ(t;µ) = A(X, t;µ)—we emphasize
its parametric form—, where µ represents the set of involved parameters that
should be identified offline or online.

Remark 1. In the previous expression the semicolon (·; ·) makes a distinction
between the coordinates before the semicolon—in this case, time—and the
model parameters after it—here, µ.

Thus, if we assume a model to accurately represent the subjacent physics
involved in the system, predictions are easily performed by integrating A(X, t;µ).
Here, if real-time feedbacks are needed, standard integration (based on the use
of well experienced numerical techniques like finite elements, finite differences,
finite volumes, spectral methods, meshless (or meshfree) techniques, ...) of the
dynamical system expressed by A(X, t;µ), turns out to be unsatisfactory. As
previously discussed, the employ of model reduction techniques opened new
routes in this sense. In particular, the Proper Generalized Decomposition—
PGD—precomputes (offline) the parametric solution, thus making possible to
accommodate real-time constraints.

When model calibration is performed online, model parameters µ are cal-
culated by enforcing that the associated model prediction fits as much as pos-
sible to the experimental measurements, at least at the measurement points.
In the context of process or system control, external actions can be applied to
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drive the model towards the given target. Thus, the state rate of change (if we
neglect noise for the moment) is composed by two terms,

Ẋ(t;µ) = A(X, t;µ) + C(t), (1)

that expresses the physical and forced (external goal-oriented actions) contri-
butions, A and C, respectively.

Remark 2. In general, control actions, here represented by the term C could
depend on measures and/or on the inferred model parameters, but here, and
without loss of generality, we only indicate explicitly its dependence on time.

2.1 Model updating

When models represent the associated physics poorly, a non negligible devia-
tion between their predictions and the actual evolution of the system, acquired
from collected data, is expected. This deviation is expected to be biased, be-
cause it represents the modeler’s ignorance on the subjacent physics. The un-
biased deviation contribution is associated to modeling or measurement noise
and is easily addressed by using adequate filters. However, biased deviations
express hidden physics and required a particular treatment, that is, their online
modeling by assimilating collected data.

Indeed, the deviation (gap between the model prediction X(t;µ) and mea-
surements Xexp(t)) when considering the optimal choice of the model param-
eters µ, and, more precisely its time derivative, should be used for the online
construction (under the already mentioned severe real-time constraints) of the
so-called data-based correction model. This correction, also referred as devia-
tion model, is here denoted by B(X, t). Even if, in what follows, the presence
of unbiased noise is ignored, its inclusion is straightforward.

Thus, the fundamental equation governing a hybrid twins writes

Ẋ(t;µ) = A(X, t;µ) + B(X, t) + C(t) + R(t), (2)

expressing that the rate of change of the system state at time t contains four
main contributions:

1. the model contribution, whose rate of change related to the model param-
eters µ reads A(X, t;µ). MOR is crucial at this point to ensure real-time
feedback;

2. a data-based model B(X, t) describing the gap between prediction and
measurement;

3. external actions C(t) introduced into the system dynamics in order to drive
the model solution towards the desired target. It also includes any other
kind of decision based on the collected and analyzed data;

4. the unbiased noise R(t), that has been traditionally addressed using appro-
priate filters [12]. This terms also includes external actions for which there
is no possible prediction. Typically, human intervention on the system.
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Here we have omitted a very important distinction, the necessity of col-
lecting appropriate data with different aims: (i) to calibrate the considered
physically-based model, assumed to represent the first-order contribution to
predictions and for explicative purposes; (ii) to construct on-the-fly the data-
driven model update; and (iii) for decision-making proposes (control) by using
data-analytics on the collected data.

It is also worth noting that the better locations and frequency of acquisition
for collecting data could differ, given the volume of data to treat and data-
assimilation rate, depending on the purpose: calibration, modeling and control.
In the present framework, the model could help to infer the smartest data to
acquire, and when and where they should be collected. Thus, Big Data could
be replaced by Smart Data in the framework of a new multi-scale data sci-
ence and theory of information, bridging the gap between data (microscopic),
information (mesoscopic) and knowledge (macroscopic).

The construction of the data-based model deserves some additional com-
ments:

1. Deviations inform us about the model possibly becoming inaccurate. In
our approach, model updating is based on the deviation model, and then,
it is added to the first-order model when it exists. Other authors suggested
to update the model itself. Thus for example in [13], the authors proceed
by perturbing in a random way the discrete matrix A, that results in Ã,
within a stochastic framework.

2. In some cases the first order, physically-based model, A, does not exist,
or simply it is ignored as was the case in most digital twins, motivated by
difficulties related to its real-time solution, to its accuracy, etc ... In that
case, the model consists of a unique contribution, the data-based model [14]
[15]. In this case, when constructed from scratch, many data are required
to reach a sufficient accuracy. However, when the data-driven model is
only expected to fill the gap between the first-order model predictions and
the measurements, the higher is the model accuracy, the smaller the data-
driven contribution, implying that the required volume of data significantly
decreases. It is worth mentioning that collecting data and processing them
is expensive, and could compromise the real-time constraints.

3. The recent exponential growing of machine learning techniques (data-mining,
deep-learning, manifold learning, linear and nonlinear regression techniques
... to cite but a few) makes it possible to construct on-the-fly such a data-
based deviation model;

4. Another possibility consists of expressing the deviation within a para-
metric form within the PGD framework. To that end, a sparse-PGD is
constructed—here viewed as an advanced powerful nonlinear regression
technique [16]—, operating on the deviations. These deviations are the
difference between the physically-based prediction and the measurements.
The main advantage of this procedure is that the parametric expression
of the deviation can be added to the expression of the model based on
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the known physics, A, that was already expressed using the same format
(parametric PGD separated representation).
Thus, the resulting solution contains some modes coming from the dis-
cretization of the equations representing the known physics, while the re-
maining ones are associated to the detected deviations. In any case, both
together represent the actual system that contains hidden physical mecha-
nisms, more complex that the ones retained in the first-order model, prag-
matically captured even when ignoring its real nature.
If the real solution evolves in a manifold, its projection on the manifold
defined by the physical model, A, allows computing the best choice for
the involved parameters, i.e., µ (calibration). The orthogonal complement
represents the deviation model. All of them, the real, the physical and the
deviation models can be cast into a parametric PGD separated represen-
tation form.

Remark 3. In the previous expression, Eq. (2), the data-based contribution
B(X, t) justifies the “hybrid” appellation, because the model is composed of
two contributions, one coming from well established and validated physics, the
other based on data. This double nature makes the difference between usual
digital twins and their hybrid counterparts.

Remark 4. When enriching a dynamical system with a data-based contribution,
before reaching a sufficient accuracy, a stable system can become unstable,
thus compromising long-time predictions. In this case the control term could
encompass a numerical stabilization to ensure that the enriched dynamical
systems remains stable.

Remark 5. Deep learning, based on the use of deep neural networks, allows
impressive accomplishments. However, it generates nowadays a certain frus-
tration in a scientific community that for centuries tried to explain reality
through models. That aim is almost lost when using deep learning. Even if
many efforts are being paid with the purpose of explaining these machine
learning techniques, today their impressive performance is not fully under-
stood. However, within the hybrid twin rationale, things become less uncom-
fortable, since these techniques, whose predictions are difficult to explain, are
being used to model a physics that escapes to our understanding, what we
have called ignorance.

2.2 Illustrating Hybrid Twin features

Hereafter, the construction and functioning of a simple hybrid twin of resin
transfer moulding (RTM) processes is presented. For the sake of simplicity,
realistic complexity has been sacrificed in favor of description simplicity. The
problem consists in filling a square mould from its central point. An imper-
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Fig. 1 Square mould filled with an isotropic reinforcement and containing an impermeable
square insert (black small square).

meable square insert is placed in the right-upper zone in order to break the
solution symmetry. The experimental device is depicted in Fig. 1.

In what follows, the construction and the use of the two first contribu-
tions of the hybrid twin—the physical (A) and the data-based (B) models—is
described through four steps:

– First, the parametric solution of the flow problem related to the mould
filling process—where the chosen parameter is the preform permeability
κ—is carried out by coupling the commercial software PAM-RTM (ESI
Group, France) and the PGD constructor. In particular, we use a non-
intrusive formulation based on the sparse subspace learning (which we will
refer to as SSL-PGD in what follows) or its sparse counterpart S-PGD
(both reviewed in Section 3). Thus, every field (pressure, velocity, filling
factor, ...) will be accessible in a parametric way, that is, for any possible
value of the permeability κ. Here, without loss of generality, it is assumed to
be constant and isotropic in the whole preform. As soon as the parametric
solution has been computed offline, it can be particularized online almost
in real-time. Fig. 2 depicts the flow front at different instants and for three
different permeabilities.

– Second, the permeability is identified by comparing the actual flow front—
recorded by a camera—with the ones obtained by using different permeabil-
ities. The reinforcement permeability is identified as the one that, inserted
into the parametric model, allows the best fit between the predicted flow
front position and the recorded one at different filling times. Once perme-
ability has been determined, the simulated filling process agrees in minute
to the one experimentally observed, as revealed by Fig. 3.

– Permeability is thus identified at the beginning of the filling procedure.
However, the system ignores that the permeability in the neighborhood of
the mould wall is lower than the just identified one. If this is the case, the
model represented by A(t;κ) will significantly deviate from the measure-
ments when the flow reaches the regions of reduced permeability. Fig. 4
compares the simulation with the experimental recording of the modified
permeability case. Note how, at the beginning, the simulation is in perfect
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Fig. 2 Particularizing the PGD-based mould filling solution for three different permeabili-
ties (low at the left, intermediate at the center and high at the right) at three different time
steps (from top to bottom).

Fig. 3 Identifying the fibrous medium permeability and comparing predicted (right) and
measured flow front (left) at two different time steps (top and bottom).
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Fig. 4 Introducing a permeability reduction in the mould wall neighborhood in absence of
data-based deviation model.

Fig. 5 Introducing a permeability reduction in the mould wall neighborhood while activat-
ing the data-based deviation model correction.

agreement with the recording. But as soon as the flow front reaches the
region with modified, lower permeability, important errors are noticed.

– Finally, by using dictionary learning or by constructing a PGD form of
the correction, the deviation can be perfectly represented by the data-
based contribution B(X, t), as illustrated in Fig. 5. This ensures the model
predictability all along the filling process.
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Through this simple example we would like to highlight how a hybrid twin
is able to detect discrepancies with respect to the built-in model, and to correct
them on the fly. Let us review the main difficulties associated to the practical
implementation of this concept.

2.3 Implied methodological needs.

As previously discussed the most complete member of the twin family involves
many different methodologies that are revisited in the present paper, in par-
ticular:

1. Real-time simulation based on Model Order Reduction;
2. Real-time calibration;
3. Real-time data-assimilation and data completion;
4. Real-time data-analytics;
5. Real-time data-driven modeling.

The previous requirements will be addressed in the next section by using
advanced model order reduction techniques for solving state-of-the-art physi-
cal models under stringent real-time constraints. Then, in Section 4 different
methodologies based on data-science will be described for addressing data-
driven modeling.

3 Methods based on Model Order Reduction with special emphasis
on the Proper Generalized Decomposition

When looking for an approximation of the solution u(x, t) of a given PDE,
here assumed scalar and linear without loss of generality, the standard finite
element method considers the approximation

u(x, t) =
N∑
i=1

Ui(t)Ni(x), (3)

where Ui denotes the value of the unknown field at node i and Ni(x) repre-
sents the its associated shape function. Here, N refers to the number of nodes
considered to approximate the field in the domain Ω where the physical prob-
lem is defined. This approximation results in an algebraic problem of size N

in the linear case, or the solution of many of them in the general transient
and nonlinear cases. In order to alleviate the computational cost, model order
reduction techniques have been proposed and are nowadays intensively used.

When considering POD-based model order reduction [3], a learning stage
allows extracting the significant modes φi(x) that best approximate the solu-
tion. Very often a reduced number of modes R (R� N) suffices to approximate
the solution of problems similar to the one that served to extract the modes
at the learning stage. In other words, while finite element shape functions are
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general and can be employed in virtually any problem, the reduced-order basis
are specific for the problem at hand and similar ones, but precisely because of
this, they are much less numerous, thus minimizing the final number of degrees
of freedom.

Thus, by projecting the solution u(x, t) onto the reduced basis composed
by {φ1(x), · · · , φR(x)}, according to

u(x, t) ≈
R∑
i=1

ξi(t)φi(x), (4)

the resulting problem will now require the solution of a linear system of equa-
tions of size R, instead of size N, which is the actual size of the finite element
solution. This often implies impressive savings in computing time. Address-
ing nonlinear models requires the use of specific strategies to ensure solution
efficiency [17] [18].

Eqs. (3) or (4) involve a finite sum of products composed by time-dependent
coefficients multiplied by space functions. These space function are well-known
finite element shape functions when no prior knowledge about the structure
of the problem exists. Or can be substituted by a series of modes extracted by
applying POD, if solutions of similar problems are available (i.e., snapshots of
similar systems). A generalization of this procedure consists in assuming that
space functions are also unknown. This makes it necessary to compute both
time and space functions, on the fly [19]. Thus, the resulting approximation
reads

u(x, t) ≈
M∑
i=1

Ti(t)Xi(x). (5)

Since the pairs of space and time functions in Eq. (5) are unknown, their
determination will define a nonlinear problem. Obviously, it will require some
form of linearization. This linearization procedure has been studied in some
of the author’s former works, such as, for instance [7] or [8] and the references
therein.

The final approximation, Eq. (5), will require the solution of about M prob-
lems, with M� N and M ∼ R. Usually the actual number will be slightly bigger
than that. This is due to the nonlinearity induced by separated representa-
tions but also to the structure itself of the separated constructor. To compute
the space functions Xi(x) will require, at each iteration, to solve problems
involving the spatial coordinates (in general three-dimensional, whose associ-
ated discrete systems are of size N) and also some M one-dimensional problems
to calculate the time functions Ti(t). The CPU cost of the solution of 1D
problems is negligible, if compared to the solution of 3D problems. Thus, the
resulting computational complexity reduces drastically, and will scale roughly
with M instead of P (P being the number of time-steps employed in the time
domain discretization).

Degenerate geometries (beams, plates, shells, layered domains such as com-
posite materials) are specially well suited for a space domain separation [20]
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[21] [22] [23]. If the domain Ω can be decomposed as Ω = Ωx ×Ωy ×Ωz, the
solution u(x, y, z) could be approximated in turn by a separated representation
of the type

u(x, y, z) ≈
M∑
i=1

Xi(x)Yi(y)Zi(z), (6)

which is specially advantageous, since it gives rise to a sequence of one-
dimensional problems instead of the typical three-dimensional complexity. For
some geometries, like plates or shells, in-plane/out-of-plane this separated rep-
resentation becomes specially interesting,

u(x, y, z) ≈
M∑
i=1

Xi(x, y)Zi(z), (7)

where the obtained complexity of the problem is roughly the typical of a two-
dimensional problem, i.e., the calculation of in-plane functions Xi(x, y).

A very interesting case is that of space-time-parameter separated represen-
tations. In this framework a so-called computational vademecum (also known
as abacus, virtual charts, nomograms, ...) can be developed so as to provide a
sort of computational response surface for the problem at hand, but without
the need for a complex sampling in high dimensional domains. It has been
successfully employed in problems like simulation, optimization, inverse anal-
ysis, uncertainty propagation and simulation-based control, to cite a few. Once
constructed off-line, this sort of response surface provides results under very
stringent real-time constraints—in the order of milliseconds—by just invoking
this response surface instead of simulating the whole problem [5] [24].

Thus, when the unknown field is a function of space, time and a number
of parameters µ1, . . . , µQ, the subsequent separated representation could be
established as

u(x, t, µ1, . . . , µQ) ≈
M∑
i=1

Xi(x)Ti(t)

Q∏
j=1

M j
i (µj). (8)

The use of a separated representation allows circumventing the combinato-
rial explosion. The solution of a sequence of low-dimensional problems allows
calculating the parametric solution that can be viewed as a chart, abacus or
vademecum—or, simply, as a high-dimensional response surface—, to be used
online in a variety of applications.

3.1 The standard, intrusive, PGD constructor

For the sake of completeness, we start addressing the original, intrusive, version
of the PGD-based parametric solver [7] before considering its non-intrusive
counterparts, that will be discussed in the following sections. For that purpose,
we consider the parametric heat transfer equation

∂u

∂t
− k∆u− f = 0, (9)
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with homogeneous initial and boundary conditions. Here, (x, t, k) ∈ Ωx×Ωt×
Ωk. A completely new approach to the problem arises by simply considering
the conductivity k as a new coordinate, which will be defined within some
interval of interest Ωk.

This new approach, instead of sampling the solution space for given values
of the conductivity, consist in solving a new, more general problem. This new
problem will be obtained after extending the weighted residual form related
to Eq. (9),∫

Ω×Ωt×Ωk

u∗
(
∂u

∂t
− k∆u− f

)
dx dt dk = 0. (10)

If we look for a PGD approximation to the solution, it will look like

u(x, t, k) ≈
M∑
i=1

Xi(x)Ti(t)Ki(k).

In other words, at iteration n < M the solution un(x, t, k) will be approximated
by

un(x, t, k) =
n∑
i=1

Xi(x)Ti(t)Ki(k),

so that an improvement of this approximation, un+1(x, t, k), will be

un+1(x, t, k) = un(x, t, k) +Xn+1(x)Tn+1(t)Kn+1(k). (11)

The test function u? for this extended weak form, Eq. (10), will therefore be
given by

u?(x, t, k) = X?(x)Tn+1(t)Kn+1(k) +Xn+1(x)T ?(t)Kn+1(k)

+Xn+1(x)Tn+1(t)K?(k). (12)

As usual, trial and test functions, Eqs. (11) and (12) respectively, are sub-
stituted into the weak form, Eq. (10). After an appropriate linearization, finite
element approximations to functionsXn+1(x), Tn+1(t) andKn+1(k) are found.
The simplest linearization strategy is the alternated directions, fixed point al-
gorithm. It proceeds through the following steps (the interested reader can
refer to [7] for more details, or to [8] for a thorough description of a Matlab
code):

– Arbitrarily initialize at the first iteration T 0
n+1(t) and K0

n+1(k).

– With T p−1n+1 (t) and Kp−1
n+1 given at the previous, p−1, iteration of the non lin-

ear solver, all the integrals in Ωt×Ωk are computed, leading to a boundary
value problem for Xp

n+1(x).

– With Xp
n+1(x) just computed and Kp−1

n+1 given at the previous iteration of
the nonlinear solver, all the integrals in Ωx ×Ωk are computed, leading to
an one-dimensional initial value problem for T pn+1(t).

– With Xp
n+1(x) and T pn+1 just updated, all the integrals in Ωx × Ωt are

performed, leading to an algebraic problem for Kp
n+1(k).
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3.2 Non-intrusive PGD constructors

To circumvent the intrusivity of standard PGD algorithms so as to be able to
construct parametric solutions by using commercial simulation softwares, two
efficient procedures have been proposed that showed promise in a variety of
case studies:

3.2.1 Sparse Subspace Learning—SSL.

We consider the general case in which a transient parametric solution is
searched. For the sake of notational simplicity, we assume that only one pa-
rameter is involved in the model, µ ∈ [µmin, µmax]. The generalization to sev-
eral, potentially many parameters is straightforward. The parametric solution
u(x, t, µ) is searched in the separated form

u(x, t, µ) ≈
M∑
i=1

Xi(x, t)Mi(µ),

to circumvent the curse of dimensionality when the number of parameters
increases. In this expression both functions involved in the finite sum repre-
sentation, Xi(x, t) and Mi(µ), are a priori unknown.

SSL consists first in choosing a hierarchical basis of the parametric domain
[25]. The associated collocation points (the Gauss-Lobatto-Chebyshev) and
the associated functions will be noted by: (µji , ξ

j
i (µ)), where indexes i and j

refer to the i-point at the j-level.
At the first level, j = 0, there are only to points, µ0

1 and µ0
2, that cor-

respond to the minimum and maximum value of the parameters that define
the parametric domain, i.e. µ0

1 = µmin and µ0
2 = µmax (Ωµ = [µmin, µmax]). If

we assume that a direct solver is available, i.e., a computer software able to
compute the transient solution as soon as the value of the parameter has been
specified, these solutions read

u01(x, t) = u(x, t, µ = µ0
1),

and

u02(x, t) = u(x, t, µ = µ0
2),

respectively.
Thus, the solution at level j = 0 could be approximated from

u0(x, t, µ) = u01(x, t)ξ01(µ) + u02(x, t)ξ02(µ),

that in fact consists of a standard linear approximation since at the first level,
j = 0, the two approximation functions read

ξ01(µ) = 1− µ− µ0
1

µ0
2 − µ0

1

,
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and

ξ01(µ) =
µ− µ0

1

µ0
2 − µ0

1

,

respectively.
At level j = 1 there is only one point located just in the middle of the

parametric domain, i.e. µ1
1 = 0.5(µmin + µmax), being its associated interpo-

lation function ξ11(µ). It defines a parabola that takes a unit value at µ = µ1
1

and vanishes at the other collocation points of level j = 0, µ0
1 and µ0

2 in this
case. The associated solution reads

u11(x, t) = u(x, t, µ = µ1
1).

This solution contains a part already explained by the just computed approx-
imation at the previous level, j = 0, expressed by

u0(x, t, µ1
1) = u01(x, t)ξ01(µ1

1) + u02(x, t)ξ02(µ1
1).

Thus, we can define the so-called surplus as

ũ11(x, t) = u11(x, t)− u0(x, t, µ1
1),

from which the approximation at level j = 1 reads

u1(x, t, µ) = u0(x, t, µ) + ũ11(x, t)ξ11(µ). (13)

The process continues by adding surpluses when going-up with the hier-
archical approximation level. An important aspect is that the norm of the
surplus can be used as a local error indicator, and then when adding a level
does not contribute sufficiently, the sampling process can stop.

The computed solution, as noticed in Eq. (13), ensures a separated repre-
sentation. However, it could contain too many terms. In that circumstances a
post-compression takes place by looking for a more compact separated repre-
sentation, that will be described later.

When the model involves more parameters, e.g., µ and η, the hierarchical
2D basis, defined in the parametric space (µ, η) is composed by the cartesian
product of the collocations points and the tensor product of the approximation
bases ξ0i (µ) and ϕ0

j (η).
Thus, the first level j = 0, is composed by the four points:

(µ0
1, η

0
1), (µ0

2, η
0
1), (µ0

2, η
0
2), (µ0

1, η
0
2),

with the associated interpolation functions

ξ01(µ)ϕ0
1(ϕ), ξ02(µ)ϕ0

1(η), ξ02(µ)ϕ0
2(η), ξ01(µ)ϕ0

2(η).

When moving to the next level, j = 1, the collocation points and approxi-
mation functions result from the combination of the zero-level of one parameter
and the first level of the second one, i.e., the points are now: (µ0

1, η
1
1), (µ0

2, η
1
1)

and (µ1
1, η

0
1), (µ1

1, η
0
2). In what concerns the interpolation functions they result

from the product of the zero level in one coordinate and the level one in the
other. It is worth noting that the point (µ1

1, η
1
1) and its associated interpolation

function is in fact a term of level j = 2.
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3.2.2 PGD-based regression (rPGD) and sparse PGD (sPGD)

The main drawbacks of the technique just presented are from one side, the
difficulty to address the case of multiple parameters and, from the other, the
necessity of expressing the parametric space as a hyper-hexaedron.

An alternative procedure consists in defining a sparse approximation in
high dimensional settings [16]. For the ease of exposition and, above all, rep-
resentation, but without loss of generality, let us begin by assuming that the
unknown objective function f(x, y) lives in R2 and that it is to be recovered
from sparse data. For that purpose we consider the Galerkin projection∫

Ω

w(x, y) (u(x, y)− f(x, y)) dxdy = 0, (14)

where Ω ⊂ R2 and w∗(x, y) ∈ C0(Ω) is an arbitrary test function.

Following the Proper Generalized Decomposition (PGD) rationale, the
next step is to express the approximated function uM(x, y) ≈ u(x, y) in the
separated form and look for the enriched approximation un(x, y) assuming
known un−1(x, y),

un(x, y) = un−1(x, y) +Xn(x)Yn(y). (15)

with

un−1(x, y) =

n−1∑
k=1

Xk(x)Yk(y).

It is worth noting that the product of the test function w(x, y) times the
objective function f(x, y) is only evaluated at few locations (the ones corre-
sponding to the available sampled data). Since information is just known at
these P sampling points (xi, yi), i = 1, . . . , P , it seems reasonable to express
the test function not in a finite element context, but to express it as a set of
Dirac delta functions collocated at the sampling points,

w(x, y) = u∗(x, y)

P∑
i=1

δ(xi, yi)

= (X∗(x)Yn(y) +Xn(x)Y ∗(y))

P∑
i=1

δ(xi, yi). (16)

In the expressions above nothing has been specified about the basis in
which each one of the one-dimensional modes was expressed. An appealing
choice ensuring accuracy and avoiding spurious oscillations consists of using
interpolants based on Kriging techniques.

The just described procedure defines a powerful nonlinear regression called
rPGD. Following our recent works on multi-local-PGD representations [26],
local approximations ensuring continuity could be defined.
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The rPGD-based regression technique could be applied to interpolate fields
obtained through commercial software, allowing a drastic reduction of the sam-
pling size, with respect to the SSL technique. When applied for that purpose
it is called sPGD (for sparse PGD).

If we consider a set of S points in the parametric space, here assumed
one-dimensional for the sake of simplicity , i.e. µj , and the solution calculated
at those points: uj(x, t) = u(x, t, µj), the parametric solution u(x, t, µ, η) ex-
pressed by

u(x, t, µ) =
M∑
i=1

Xi(x)Ti(t)Mi(µ),

is constructed by employing the same procedure that in the regression case
described above.

3.3 Miscellaneous

3.3.1 Compressing the resulting separated representations

The main drawback of the non-intrusive separated representation constructor
with respect to the intrusive one, is that the former produces too many terms
in the finite sum, that is, too many modes, much more than those needed to
approximate the solution at the same accuracy.

Imagine for a while that the SSL (or the sPGD) procedure leads to the
M-term representation

u(x, y) =

M∑
i=1

Xi(x)Yi(y),

for a given residual. Assume that this residual is known to accept a more
compact representation, i.e., one with a smaller number of modes M̃, with
M̃ < M. In this case, PGD can be efficiently used for post-compression [7],
by simply to applying the PGD approximation algorithm to any non-optimal
PGD solution, f(x, y), in the form

f(x, y) =

M∑
i=1

Xi(x)Yi(y),

and then looking for a new separated expression of u(x, y) according to∫
Ω

u∗(u(x, y)− f(x, y))dxdy = 0,

where u(x, y) is searched in the separated form

u(x, y) =
M̃∑
i=1

Xc
i (x)Y ci (y).

Here, the super-index •c refers to the compressed separated representation.
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3.3.2 Quantities of interest and their sensitivities

We consider the generic problem

L(u(x, t,µ)) = 0,

with L(·) a linear or nonlinear differential operator, acting on a parametric
field. In our case this field will be denoted by u(x, t,µ), where µ is the vector of
model parameters µ1, . . . , µQ. By using the standard PGD, or its nonintrusive
counterparts, we are able to write the parametric solution in the separated
form

u(x, t, µ1, · · · , µQ) ≈
M∑
i=1

Xi(x)Ti(t)M
1
i (µ1) · · ·MP

i (µQ),

or in its equivalent tensor form

U ≈
M∑
i=1

Xi ⊗Ti ⊗M1
i ⊗ · · · ⊗MQ

i ,

with U the multi-tensor whose entry k, l,m1, . . . ,mQ contains the value of the
field u at point, time and parameters referred by these indexes, i.e.,
u(xk, tl, µ1m1

, · · · , µQmQ
). Obviously, in any other point that does not coincide

with a node of the mesh of space (xk), time (tl) or parameters (µ1m1
, · · · ), the

solution is computed by interpolation.
We assume now that we are not directly interested in the field involved

in the physical model u(x, t,µ) itself, but in another output field of interest
O, that, for the sake of simplicity, is assumed scalar and depending on every
model coordinate (x, t, µ1, · · · , µQ). Assume that it could be derived from the
former according to

O(x, t,µ) = G(u(x, t,µ)).

Thus, we can compute the output at the collocation points when using the
SSL technique or in the points of a sparse sampling (e.g., carried out by using
the Latin Hyper-Cube method) so as to define, or better, learn, the model

O(x, t,µ) ≈
O∑
i=1

Mi(x)Ti(t)M1
i (µ1) · · ·MQ

i (µQ).

Remark 6:

– This separated representation can be easily obtained by using the SSL or
the sPGD previously presented.

– The model O(x, t,µ) can be also constructed by making use of machine
learning techniques, from the known output in a large enough number of
points.
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The sensitivity of the output to a given parameter, in the expression below
to µ1 reads [27]

∂O(x, t,µ)

∂µ1
≈

O∑
i=1

Mi(x)Ti(t)
∂M1

i (µ1)

∂µ1
M2

i (µ2) · · ·MQ
i (µQ).

3.3.3 Uncertainty propagation

We recall here the model of the quantity of interest

O(x, t,µ) ≈
O∑
i=1

Mi(x)Ti(t)M1
i (µ1) · · ·MQ

i (µQ).

If parameters are totally uncorrelated, the probability distribution of all them
becomes independent, so that the probability density function can be expressed
as

Ξ(µ1, · · · , µQ) = ξ1(µ1) · · · ξQ(µQ).

When correlations cannot be totally avoided, we can express the joint proba-
bility density Ξ(µ1, · · · , µQ) in a separated form (by invoking the SSL or the
sPGD):

Ξ(µ1, · · · , µQ) ≈
R∑
i=1

F1
i (µ1) · · · FQ

i (µQ).

With both the output and joint probability density expressed in a separated
form, the calculation of the different statistical moments becomes straightfor-
ward. Thus, the first moment, the average field results in

O(x, t) =

∫
Ω1×···×ΩQ

O(x, t, µ1, · · · , µP) Ξ(µ1, · · · , µQ) dµ1 · · · dµQ,

where Ωk denotes the domain of parameter µk. The separated representation
is a key point for the efficient evaluation of this multidimensional integral, that
becomes a series of one dimensional integrals. The calculation of higher order
statistical moments (variance, ...) proceeds in a similar manner.

Remark 7:

– Monte-Carlo strategies can be also used in a very efficient way since the
solution is available for any parameter choice.

– The knowledge of the parameter distribution can be used in a parametric
stochastic setting [28].

– When addressing stochastic fields, appropriate spatial parametrization can
be introduced based for example on the Karhunen-Loève expansions or the
use of polynomial chaos.

– Parametric solutions are also very valuable when addressing Bayesian in-
ference, for example.
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Fig. 6 Stamping processes immersive virtual reality platform by ESI.

3.3.4 Data-assimilation and advanced virtual and augmented reality

Data assimilation is the process by which experimental measurements are in-
corporated into the modeling process of a given system. Data assimilation
becomes a key player in dynamic data-driven application systems (DDDAS),
as well as for mixed or augmented reality applications, for instance.

Both applications need real-time feedbacks. Depending on the latency of
the particular system, these can oscillate from a few seconds to some mil-
liseconds, for instance, if haptic (tactile) feedback is sought. To achieve these
impressive feedback rates, the model and its solution play a fundamental role.
If, as is nearly always the case, non-linear problems are considered, such feed-
back rate restrictions can only be achieved by employing some for of model
order reduction. In our previous works we have employed PGD strategies.

If we assume that the vademecum (PGD) solution of the parametric prob-
lem is available, given a set of measurements, the precise value of every pa-
rameter can be identified in almost real time by using inverse methodologies,
e.g., Kalman filters [12], Tikhonov regularization [29], gradient methods [10]
[30] [31], or Bayesian inference [32], to cite but a few.

The use of parametric solutions for immersive virtual reality purposes has
been successfully accomplished [33]. Two examples developed by ESI on crash
and stamping are sketched in Fig. 6. More spectacularly, a combined strategy
integrating parametric solutions, computer vision and inverse analysis allowed
unique performances in both feedback rates and realism in augmented real-
ity applications [34]. The same techniques are now being employed for using
simulated reality for intelligence augmentation.

4 Methods based in Data-Science

As widely discussed in Section 1, engineering is evolving in the same way than
society. However, data could offer much more than a simple state-of-the-art
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model calibration, and not only from a simple statistical analysis, but from
the artificial intelligence perspective:

– Data can be used to produce data-based models, by relating the selected
outputs of interest to uncorrelated inputs.

– Data can be used to create data-based models to enrich state-of-the-art
models based on well-established physics (first principle or largely accepted
phenomenological constitutive equations). Thus, the data contribution is
expected to compensate (in a pragmatic way) the modeler ignorance, or
the excessive system complexity impossible to capture for some reason.

– Data can be used to classify behaviors, tendencies, features. Special at-
tention must be paid to the considered metrics and induced invariance
(Euclidean, fuzzy, topological persistence, ...)

– Data can offer the possibility to extract patterns with high information
contents. This is crucial in predictive maintenance, inspection, supervision,
control, etc.

– Multi-dimensional data can be visualized (using a particular manifold re-
duced representation) in order to extract hidden relations.

– By extracting the existing correlations and then by removing them, data re-
sults in valuable, sufficient and explicative information. Models constructed
from information more than from the raw data, result in knowledge, key
for real-time decision making purposes.

– The smart-data paradigm should replace the—in many cases irrational—big
data-based habits and procedures. First-order physics and their associated
models could inform on the most pertinent data to be collected, the places
and time instants to perform that measurements, and the most adequate
observation scale(s). This is extremely important because data is expensive
to collect and also expensive to treat.

– After data collection, it must be assimilated into models using adequate
procedures. Sometimes, missing data must be completed (data-completion)
to offer a global map or to infer measures in regions/places where measures
cannot be directly performed.

– Data filtering (models are excellent filters, but when proceeding directly
from data, noise is a real inevitable issue), the exclusion of outliers (even
if sometimes outliers are crucial, since they are related to fortuity defects),
become compulsory.

– Data must be compressed, mainly if it is involved in streaming procedures.
This implies the use of specific technologies (tensor formats, compressed
sensing, gappy ROMs, ...)

– Data “V’s” (variability, veracity, volume, value, ...) must be addressed from
a computational perspective.

– The statistical nature of data represents an added difficulty, since uncer-
tainty must be quantified and its propagation evaluated for addressing
reliability.

– And many other known and still unknown possibilities. The domains is
expanding exponentially.
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From the above list, it seems clear that the use of data, nowadays and,
more importantly, in the future, drastically differs from the use of it in the
past. It seems clear that two competences / expertises must be considered
independently (but without a total dissociation, since both should continue
interacting intimately): data-collection and data-analysis.

Even if as just mentioned both should intimately interact, the intrinsic
nature, tools, procedures, ... of each become more and more different to the
other, and consequently they require different approaches. The former will be
centered in measurements, the second on data, both with their own science
and technological contents and specificities.

4.1 Extracting embedded manifolds: Manifold leaning based in linear and
nonlinear dimensionality reduction.

Very often, our system evolves on manifolds of reduced dimension (d) embed-
ded into the high-dimensional phase space RD in which the problems is defined.
This is the so-called slow manifold. By extracting these manifolds, the com-
putational complexity of discretization techniques reduces significantly. This
fact is at the roots of model order reduction techniques. Proper Orthogonal
Decomposition or Reduced Bases techniques extract first this manifold and
then proceed to solve problems by exploiting the low dimensionality of this
manifold (d � D). On the contrary, PGD constructs the manifold and its
approximation at the same time.

In the same way, in the case of a parametric model, dimensionality re-
duction allows to extract the number of informative, uncorrelated parame-
ters (that depends linearly or nonlinearly on the original model parameters).
This way of doing things becomes extremely useful when solving a parametric
problem, since the lower is the number of significant parameters, the simpler
becomes its parametric solution, its offline construction, and its online manip-
ulation.

It is well known that the human brain consumes only 4 watts of power
to perform some tasks for which today’s computers will require the power of
several nuclear power plants. Therefore, our usual way of doing simulation,
despite the impressive progress in our computers and algorithms, must be
definitively suboptimal. In everyday life, we distinguish and recognize, almost
instantaneously, a tree or a human being, even those that we never met before.
This means that, despite the diversity and apparent complexity, few param-
eters should suffice to accomplish the task of classifying. In other words, if
recognizing something will depend on thousands of parameters, the human
being will have to spend hours performing the task. In that case, his or her
survival will be compromised. Since we have survived all along the long history
of evolution, it is because, without any doubt, in general the answer lies only
in few almost uncorrelated data. Big data is accompanied most of the time
by small information. The apparent diversity is hidden in the small scales,
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but the largest scales suffice for having a useful image of the nature and our
environment, and then to make adequate decisions nearly in real-time.

The big challenge is how to remove these intricate correlations and how
to express reality in this new resulting frame? How to discover the frame in
which complexity disappears in favor of simplicity? How to visualize reality in
that new frame? in which coordinate axes? what is the physical meaning of
these new axes?

Accumulated learning, starting from our infancy, provided us the capacity
of pattern recognition in its more general sense. To adapt ourselves faster,
learning should be sped up by replacing the human brain by powerful com-
puters based on electrons, very soon in quantum effects, that proceed much
faster [35]. One second of a standard laptop calculation is equivalent to the
calculations that a human brain could perform during a long life devoted to
the same task. Today some routine calculations, e.g., crash test simulations,
require tens of millions of computing hours, equivalent to thousands of years
on a single core computer. These unimaginable calculations can be performed
in only few days by using high-performance computing platforms, making use
of thousands of cores working in parallel.

The only need to this end is adequate (robust and efficient) algorithms to
recognize and extract simplicity from the apparent complexity so as to proceed
from it. Manifold learning techniques, few of them summarized in what follows,
is a valuable route. Imagine for a while that we are interested in solving the
mechanical problem related to liver deformation in biomechanics. The main
issue, is that each patient has its own liver whose shape (anatomy) defining
the domain Ω in which the mechanical problem must be solved, is “similar”
qualitatively but “different” quantitatively to any other liver. Thus, one is
tempted to introduce parameters defining the liver shape as model parameters
and then compute the mechanical problem solution for any choice of these
parameters. But, how many geometrical parameters define a liver? Each one of
us could propose a different number related to different geometrical features,
probably many tens, even hundreds. In [36] it was proved, using nonlinear
dimensionality reduction and, more concretely, manifold learning techniques,
that few almost uncorrelated parameters (2 to 4) largely suffices to represent
accurately any human liver. Thus, in [37] parametric models  la PGD were
developed and successfully used.

For the sake of completeness, even if many papers and books deeply ad-
dress the foundations and applications of these techniques, in what follows
some popular linear and nonlinear dimensionality reduction techniques, widely
employed in our works, are summarized.

4.1.1 Principal Component Analysis and its locally linearly counterpart

Let us consider a vector y ∈ RD containing some experimental results. These
results are often referred to as snapshots of the system. If they are obtained
by numerical simulation, they consist of nodal values of the essential variable
along time. Therefore, these variables will be somehow correlated and, notably,
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there will be a linear transformation W defining the vector ξ ∈ Rd, with
d < D, which contains the still unknown latent variables, such that

y = Wξ. (17)

The transformation matrix W , D×d, satisfies the orthogonality condition
W TW = Id, where Id represents the d × d-identity matrix (WW T is not
necessarily ID). This transformation is the key ingredient of the principal
component analysis (PCA) [38].

Assume that there exist M different snapshots y1, . . . ,yM , which we store
in the columns of a D ×M matrix Y . The associated d×M reduced matrix
Ξ contains the associated vectors ξi, i = 1, . . . ,M .

PCA works usually with centered variables. In other words,{∑M
i=1 yi = 0∑M
i=1 ξi = 0

.

Otherwise, observed variables must be centered by removing the expectation
of E{y} to each observation yi, i = 1, . . . ,M . This is done by subtracting the
sample mean, given the fact that the expectation is not known, in general.

What is remarkable about PCA is its ability to calculate both d—the
dimensionality of the embedding space—and the associated transformation
matrix, W . PCA proceeds by guaranteeing maximal preserved variance and
decorrelation in the latent variable set ξ. The latent variables in ξ will there-
fore be uncorrelated, thus constituting a basis. In other words, the covariance
matrix of ξ,

Cξξ = E{ΞΞT },
will be diagonal.

Observed variables will most likely be correlated. PCA will then extract
the d uncorrelated latent variables by resorting to

Cyy = E{Y Y T } = E{WΞΞTW T } = WE{ΞΞT }W T = WCξξW
T .

Pre- and post-multiplying by W T and W , respectively, and making use of the
fact that W TW = I, gives us

Cξξ = W TCyyW . (18)

The covariance matrix Cyy can then be factorized by applying the singular
value decomposition,

Cyy = V ΛV T , (19)

with V containing the orthonormal eigenvectors and Λ the diagonal matrix
containing the eigenvalues, sorted in descending order.

Substituting Eq. (19) into Eq. (18), we arrive at

Cξξ = W TV ΛV TW .

This equality holds when the d columns of W are taken collinear with d
columns of V .
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Fig. 7 Geometrical interpretation of PCA

We then conserve those eigenvectors associated with the d nonzero eigen-
values,

W = V ID×d,

which gives

Cξξ = Id×DΛID×d.

We therefore conclude that the eigenvalues in Λ represent the variance of
the latent variables (diagonal entries of Cξξ).

Noise may often corrupt experimental observations. If this is the case, every
eigenvalue of Cξξ is strictly positive, and the choice of the d most represen-
tative columns in V becomes intricate. For that to be useful, latent variables
must have variances larger than noise. In that case, it is enough to choose the
eigenvectors associated with the d largest eigenvalues.

There is a clear geometrical interpretation of all this: the columns of V
indicate the vectors in RD that span the subspace of latent variables. In Fig. 7
this fact can be observed. In the left figure a set of points in R2 is represented.
Notice however that these points show some pattern, as they are ordered along
a diagonal line, that constitutes the already mentioned slow manifold. PCA is
able to find an alternative representation, by expressing these points in a new
coordinate system, defined by V (axes in red). In this new coordinate system,
all these points lie clearly in a one-dimensional space.

PCA has been re-discovered several times in recent times, under different
names, in different scientific specialities. It relies, nevertheless, in the basic
assumption of linear dependency expressed by Eq. (17) between observed and
latent variables. This is precisely one of its most relevant limitations, that
lead recently to a growing interest on the so-called non-linear dimensionality
reduction (NLDR) techniques.

Latent variables move frequently around a so-called slow manifold. If this
manifold is not flat, as is frequently the case, the projection in Eq. (17) will sim-
ply not exist. Examples of this situation include, for instance, non-linear, large
strain solid dynamics. NLDR methods are of course more general than linear
ones, allowing for richer relationships between latent variables and the exper-
imental ones. This is shown in Fig. 8, where the reader can notice how no ro-
tation will give us the desired one-dimensional embedding of Fig. 7. PCA does
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Fig. 8 PCA limits in presence of strongly-nonlinear manifolds

Fig. 9 Sketch of local-PCA

not see this situation, and perceives points as pertaining to a two-dimensional
manifold, even if they pertain to a spiral-like curve, which is in fact a one-
dimensional manifold.

Local-PCA (`-PCA) constitutes an alternative to standard PCA. It simply
consists of PCA applied locally, i.e., to each data point and its closest neigh-
bors, see Fig. 9 [39]. This gives rise to additional difficulties, such as finding
the way to align the different basis for every patch in the data [40].

`-PCA has another appealing property: if all the dimensions are kept, that
is d = D, `-PCA allows aligning locally the reduced manifold with the trans-
formed coordinates, but since no coordinate axis is removed, points out of the
reduced manifold can be placed and transported to the initial space by using
the inverse mapping.
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4.1.2 Multidimensional scaling

PCA works with the covariance matrix of the experimental results, Y Y T .
However, multidimensional scaling, MDS, (like k-PCA, which will be described
hereafter) works with the the Gram matrix containing scalar products, i.e.,
S = Y TY [38].

Multidimensional scaling methods construct a configuration of points in a
target metric space from information about point distances. MDS preserves
pairwise scalar products instead of pairwise distances. They are nevertheless
closely related:

S = Y TY = ΞTW TWΞ = ΞTΞ.

Computing the eigenvalues of S, we arrive at

S = UΛUT =
(
UΛ1/2

)(
Λ1/2UT

)
=
(
Λ1/2UT

)T (
Λ1/2UT

)
,

which in turn gives
Ξ = Id×MΛ

1/2UT .

Proving the equivalence between MDS and PCA is therefore straightforward
[38].

4.1.3 Kernel Principal Component Analysis

The origin of kernel Principal Component Analysis, k-PCA methods is very
appealing for its intuitiveness. It adds, however, some technical difficulties that
will be described next. In fact, it is easy to understand that data not linearly
separable in D dimensions, could be linearly separated if previously projected
to a space in Q > D dimensions [38]. It may appear surprising that k-PCA
projects the data to a higher dimensional space, in an attempt to linearize the
underlying manifold M. Therefore, a mapping

φ : M⊂ RD → RQ, y → z = φ(y),

is constructed, where Q may be an arbitrary number of dimensions. The true
advantage comes, however, from the fact that it is not necessary to write down
the analytical expression of the mapping φ.

The symmetric matrix Φ = ZTZ has to be decomposed in eigenvalues and
eigenvectors. Previously, the mapped data zi involved in Φ must be centered.
Since the mapping is unknown, this centering process may seem difficult. How-
ever, centering can be done in an implicit way. The interested reader should
consider to consult classical references in the field such as [41] [42].

The eigenvector decomposition can now be performed on the doubly-centered
matrix,

Φ = UΛUT ,

giving rise to
Ξ = Id×MΛ

1/2UT .



30 Francisco Chinesta et al.

The mapping φ could provoke scalar products to become prohibitive, given
the fact that the vectors will now be expressed in a space of a high num-
ber of dimensions, Q. To avoid this high-dimensional multiplication and even
the search for φ, a kernel function κ is employed that, based upon Mercer’s
theorem—also knwon as the kernel trick—, directly gives the value of the
scalar product κ(yi,yj) = zi · zj . Mercer’s theorem states that if κ(u,v) is
continuous, symmetric and positive definite, then it defines an inner-product
in the mapped space.

Many different kernels exist that fulfill Mercer’s condition, such as, for
instance:

– Polynomial kernels: κ(u,v) = (u · v + 1)p, with p an arbitrary integer;

– Gaussian kernels: κ(u,v) = exp
(
−‖u−v‖

2

2σ2

)
for a real σ;

– Sigmoid kernels: κ(u,v) = tanh(u · v + b) for a real b.

No practical tip can be offered to choose any particular mapping φ. The
goal is simply to linearize the manifold to be embedded. If this goal is met, then
the application of PCA will suffice to unveil the nonlinear principal components
of the data set, that now lives in a flat space.

4.1.4 Locally Linear Embedding

From the set of points yi ∈ RD, i = 1, . . . ,M , Locally Linear Embedding,
LLE, methods proceed in two steps [43]:

1. Interpolate each point yi, i = 1, . . . ,M linearly by choosing a number K
of its nearest neighbors. Note that this interpolation is local (is performed
only among its nearest neighbors) and linear. One of the most cited limi-
tations of LLE is precisely to have to choose K. In principle, it should be
greater that the expected dimension d of the embedding manifold, while
the neighbors should be close enough so as to ensure the validity of lin-
ear approximation. In sum, we exploit the classical definition of what a
manifold is: a geometric structure homeomorphic to a plane in the neigh-
borhood of each point. Choosing a small number of neighbors K and a
large sampling M provides almost always a satisfactory reconstruction.
This linear reconstruction of each data point yi can be expressed as:

yi =
∑
j∈Si

Wijyj ,

with Wij the sought weights and Si the set of the K-nearest neighbors of
yi.
The set of weights that best approximates the manifold structure of the
data will be obtained by minimizing the functional

F(W ) =
M∑
i=1

∥∥∥∥∥∥yi −
M∑
j=1

Wijyj

∥∥∥∥∥∥
2

,

where Wij is zero if yj is not one of the K-nearest neighbors of yi.
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2. Every linear patch around yi, ∀i, is mapped onto a lower dimensional
embedding space of dimension d� D. The key ingredient of LLE methods
is to assume that the same weights will hold in the new, low-dimensional
embedding space. If the weights remain, the problem reduces now to find
the particular coordinates of each point yi in the embedding space, ξi ∈ Rd
that make it possible to maintain the value of the weights.
This is achieved by defining a second functional G, as a function of the
sought coordinates, ξ1, . . . , ξM

G(ξ1, . . . , ξM ) =
M∑
i=1

∥∥∥∥∥∥ξi −
M∑
j=1

Wijξj

∥∥∥∥∥∥
2

.

In this funcitonal the weights are assumed known while we look for the
reduced coordinates ξi. Minimization of G gives rise to a M×M eigenvalue
problem whose d lowest non-zero eigenvalues define the basis of the space
in which the manifold is embedded.
It is worth noting that G(ξ1, . . . , ξM ), with the different coordinates ξi
already determined, allows us to obtain a local error estimator as

E(ξi) =

∥∥∥∥∥∥ξi −
M∑
j=1

Wijξj

∥∥∥∥∥∥ . (20)

4.2 Data-Driven Mechanics: Data-based constitutive equations.

In an environment in which large scientific infrastructures produce petabytes of
data every day, it was unavoidable that computational mechanics succumbed
under the tsunami of big data. Science was first experimental (the so-called
first paradigm of science), then was able, by means of models, to establish
a theoretical paradigm. In the last decades it has become heavily computa-
tional, so as to make predictions by simulating the already established physical
laws. However, very recently, the fourth paradigm of science is that of data
exploration, the one that unifies data, theory and simulation [1].

We are far from an epoch of hypothesis-neutral research [44]. It is not ei-
ther a question of finding correlations among data. What data-driven compu-
tational mechanics is all about is to be able to abandon the cumbersome times
of data fitting to complex, phenomenological constitutive equations and to be
able to perform simulations on top of large sets of experimental data without
the need of oversimplifying assumptions. In other words: it is a question of
bringing computation to the data, rather than data to the computation [1].

The word genome, when applied out of the context of biological systems,
refers to a fundamental building block toward a larger purpose. The materi-
als genome—see https://mgi.nist.gov/—is an initiative set forth by the
White House in USA. to face the challenge of incorporating new, designed
materials to the market twice as fast at a fraction of the nowadays cost. This
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initiative emphasizes the need for the design of more advanced computational
techniques able to supplement physical experiments. This will be possible if
data are shared and integrated across the “materials continuum” process of
design. The materials genome initiative highlights the need for an integrated
workflow of experiments, simulation and theory and the development of ad-
vanced simulation tools that are validated through experimental data [45]. It
also emphasizes the need to make digital data accessible, including combin-
ing data from experiment and computation into a searchable materials data
infrastructure. This need has revealed, however, being totally insufficient. For
instance, data produced in one week by the Spallation Neutron Source in the
USA used to take one year of graduate student’s time to analyze [46]. Now,
this research installation is producing data one hundred times faster.

Therefore, it is absolutely necessary to go substantially beyond: to develop
simulation methods able to integrate and perform data acquisition, reduction,
assimilation and analysis so as to be able to seamlessly integrate them in the
design and fabrication processes of products involving radically new materials.

Existing computational tools still posses some other fundamental limita-
tions. One of the biggest is the difficulty of integrating disparate time and
length scales. For instance, we can model and predict the vibration of atoms
in a lattice at time scales on the order of picoseconds. But this information
is not suitable for the prediction of materials behavior across the course of
the years. If a computational tools is needed to cope with this challenge, it
will need to acquire and reduce all this huge amount of data and convert it in
knowledge. Therefore, the need for model order reduction techniques is seen
as a must.

Materials Informatics is a new scientific discipline that applies the princi-
ples of informatics to the design of new materials. It shares much of the spirit of
the materials genome initiative. Indeed, it envisages the design of “specialized
informatics tools for data capture, management, analysis, and dissemination”
and the need for “advances in computing power, coupled with computational
modeling and simulation and materials properties databases” [47]. Again, the
possibility of sifting vast amounts of data reveals to be the bottleneck of a
suitable strategy.

In an attempt to incorporate the huge possibilities of Big Data to the field
of scientific computing, some proposals have been proposed very recently. The
first one represents an attempt of working without constitutive laws [14]. In
fact, they propose a method that works directly with balance equations and
seeks for the experimental point that gives the state closest to equilibrium. To
that end, it employs an optimization procedure.

This method re-opens the epistemic controversy between the scientific ap-
proach followed by Kepler—who, with the help of “big” data, was able to
accurately describe planet’s orbits—or the one by Newton, who unveiled the
laws of physics behind gravitation that could finally explain why the compu-
tations done by Kepler were right.

The other approach, closer to the one of Newton, is to discover governing
equations from data [48] [49] [50]. These methods need for some assumptions
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on the form of the particular sought physical laws, but determines a precise
form of governing laws even in the presence of noised data.

The main limitation that can be envisaged about these two approaches is
their ability to cope with large amounts of data. In particular, the approach in
[14] performs an optimization procedure to find the experimental point closest
to satisfying balance equations that could be very expensive in the presence of
big data. Furthermore, in an ICME approach we want to create new materials,
still inexistent, by extrapolating the conclusions obtained by experimental and
computational data. This is not possible without employing some form of ma-
chine learning, able to extract trends from data and to foresight the properties
of materials yet to come.

In this framework, computational mechanics is hold on top of three cor-
nerstones: equilibrium, compatibility and constitutive equations. It is obvious
that, as pointed out by Ortiz and coworkers, the later is of a lower epistemic
character [14]. It is simply nonsense to capture, curate and analyze petabytes
of data just to verify equilibrium during an experiment or to check if com-
patibility is satisfied. Therefore, data-driven computational mechanics deals
naturally with the issue of correctly reproducing from data the constitutive
behavior of the material.

4.2.1 Early times of data-driven approaches

Of course, data-driven approaches in computational mechanics trace back to
early parameter identification methods, that had an important popularity after
the mid-nineties [51] [52] [53]. E. Stein and coworkers produced some of the
most popular references in this field [54] [55] [56] [57]. Essentially, this approach
consisted of an inverse problem solving by finite elements so as to determine
the value of the material parameter that best fits with the experimental results.
However, this approach needs a pre-defined constitutive model and is therefore
very intrusive in the process of material characterization.

By data-driven approaches, however, one tends to think of an approach that
does no presuppose any form of constitutive equation. In fact, the work that
is often considered as the first in the field, the one by Kirchdoerfer and Ortiz
[14], does not employ any constitutive equation, and arose in an attempt to
employ data directly in the computations. There exist, however, some previous
works that, in the framework of numerical homogenization, tried to obtain a
sort of response surface for a representative volume element subjected to any
possible boundary condition, see for instance [58] [59] [60] [61]. These response
surface approaches avoided the employ of any form of constitutive equation
while also avoided the always cumbersome task of a microstructure analysis
at every Gauss point of the macroscopic model.

Recent works by W. K. Liu and coworkers share important similarities
with this rationale. For instance, in [62] a method is developed that works
by designing a sort of response database for material RVEs, such that it very
much eases the task of designing new materials by simply interpolating among
selected microstructures. Of course, in this approach, very much like in the
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one by Yvonnet and coworkers, the issue of the curse of dimensionality (given
the vas amount of design parameters that exists in the problem) is of utmost
importance. To circumvent this curse, Liu and coworkers developed a technique
coined as self-consistent clustering analysis (SCA) [63]. Basically, it relies on k-
means clustering techniques to characterize the macroscopic response of similar
material microstructures [64]. This technique has recently been extended to
elasto-plastic materials with strain softening [65].

4.2.2 Working without constitutive equations

While the work of Yvonnet and coworkers [58] assumes that input data comes
from numerical simulations at the scale of the representative volume element
(RVE) of the material, the work of Kirchdoerfer and Ortiz assumes experi-
mental results. While the former employs high-dimensional interpolation so as
to obtain a sort of response surface for the RVE, the one by Kirchdoerfer and
Ortiz assumes that each experimental result is a pair of strain-stress values
(since it is intended for trusses, no tensorial values are considered) that satisfy
equilibrium and compatibility. Therefore, their method looks for the closest
experimental pair in phase space to satisfy compatibility and equilibrium by
minimizing a cost function.

In subsequent works, Kirchdoerfer and Ortiz extend this approach to noisy
experimental data sets [66] and also to dynamics [67]. A similar approach
is followed in [68] in which the Euclidean distance to experimental points is
substituted by the Mahalanobis distance. Other than that, the approach is
identical to [14].

More recently, the authors introduced the concept of constitutive manifold.
By applying manifold learning to pairs of experimental or numerical stress-
strain values, the manifold structure of these data can be unveiled so as to
ascertain the constitutive behavior of the material or structure [69]. Assume
that a set of nexp experimental stress-strain couples are stored in our database.
These couples are in fact points Xm ∈ RD, m = 1, . . . , nexp, in a space of
dimension D = 12 (six stresses and six strains in Voigt notation). If some
coherence exists between strains and stresses (and this is no more than a
constitutive equation), then, these points could be projected without loss of
information onto a manifold of dimension d � D. Consider, for instance,
a set of randomly generated points according to a generalized Hooke’s law.
By employing Locally Linear Embedding (LLE) techniques, for instance, it is
easy to find out that they pertain actually to a flat manifold in which only
two parameters are relevant (Young modulus and Poisson’s coefficient, for
instance, or Lam coefficients) [43]. The result of embedding coordinates Xm

onto the two-dimensional manifold gives the reduced coordinates ξm. This is
represented in Fig. 1.

The concept of constitutive manifold not only provides with a very intuitive
and visual concept (if the resulting manifold lives a small enough dimension). It
allows to compute in a very efficient way by iterating between the equilibrium
equation (which is always linear and global) and the non-linear and local
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Fig. 10 Reduced coordinates ξm ∈ R2, m = 1, . . . , nexp, on the resulting two-dimensional
constitutive manifold. These results correspond to a linear elastic material under small
strains. The color map represents the associated elastic energy just to show that the em-
bedding procedure does not hide information.

constitutive manifold. The intersection between both manifolds will provide
precisely with the sought state of the system in the phase space, see Fig. 11. A
very simple iterating algorithm can thus be established that closely resembles
the Large Time Increment technique by P. Ladeveze [70] [71] [19].

Thus, the equilibrium manifold S hosts stress-strain pairs in equilibrium
(σn, εn) at iteration n. To perform an iteration so as to obtain a suitable point
on the constitutive manifold, (σ̂, ε̂) a search direction must be established. The
intersection of this search direction with the constitutive manifold provides the
sought pair. Note that this iteration is local, since each integration point on the
model could be at a different stress-strain state. On the contrary, projection
from the constitutive manifold onto the equilibrium manifold so as to obtain
a new couple (σn+1, εn+1) must be done at a global scale.

In [72] this technique is extended to materials with rich microstructure
in which image techniques can be employed so as to ascertain the details as-
sociated with this fine level of detail. For these, the concept of constitutive
manifold allows for a proper interpolation among selected sampled RVEs, pro-
ducing finally a technique that works very much like the ones developed by
Yvonnet and coworkers. The extension of the concept of constitutive mani-
fold to problems with elastoplastic behavior was addressed in [73]. In [37], on
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S
(σn, εn)(σn+1, εn+1)

(σ̂, ε̂)

Fig. 11 Sketch of the iterative scheme proposed in [69]. In blue, the linear equilibrium
manifold is represented. In red, the constitutive manifold. The technique iterates until finding
the intersection of both manifolds, the true state of the system in the phase field.

the contrary, kernel-PCA techniques [41] [42]were employed to ascertain the
precise form of the manifolds for different microstructures.

4.2.3 Hyperelasticity

Hyperelasticity deserves maybe a special comment, since it is characterized
by the presence of a stored energy (potential) function so as to guarantee
energy conservation in closed cycles. In this framework, data-driven approaches
are directed towards the precise determination of the shape of this energy
functional. While the general procedure is to try to reproduce existing, well-
known constitutive laws by means of parameter fitting of experimental data,
Montans and coworkers propose to avoid the use of existing laws and to simply
interpolate experimental results with the help of splines. This approach is
based upon an old technique developed by Sussman and Bathe [74] and is now
known as what you prescribe is what you get (WYPIWYG) hyperelastcity. It
has been applied to transversely isotropic [75] as well as orthotropic materials
[76], plasticity [77], compressible elasticity [78] and has been recently applied to
living soft tissues [79] [80]. Although initially thought to precisely interpolate
data points, when there is considerable noise in the data a new version must
be employed [81].

4.2.4 Thermodynamic consistency

One of the recurrent questions when studying data-driven procedures in the
framework of integrated computational materials engineering (ICME) is that
of noise in the data. Eventually, this could led to inaccuracies that may have
as a consequence the violation of some first principles. For instance, how do
we guarantee energy conservation and strict positive entropy generation in the
presence of noise in the data?

Recently, the authors have presented a method able to incorporate noisy
data and still guarantee the thermodynamic consistency of the resulting sim-
ulations [15]. The method is developed by resorting to the GENERIC formal-
ism [82] [83] [84]. In a nutshell, the GENERIC (“General Equation for Non-
Equilibrium Reversible-Irreversible Coupling”) formalism seeks for an expres-



Virtual, Digital and Hybrid Twins 37

sion of the time evolution of the necessary variables to describe the material
at hand, żt.

Basically, the GENERIC formalism assumes an evolution of the variables
of the form

żt = L(zt)∇E(zt) +M(zt)∇S(zt), z(0) = z0, (21)

where L is the so-called Poisson matrix, which is responsible for the reversible
(Hamiltonian) part of the evolution of the system. E represents the energy
of the system and M represents the friction matrix, responsible for the irre-
versible part of the evolution of the system. S represents the entropy of the
system for the particular choice of variables z. The choice of these variables
is not particularly relevant, since even if they result to be finally related, this
will be detected by the method.

Matrices L and M need to satisfy the following relationship:

L(z) · ∇S(z) = 0, (22a)

M(z) · ∇E(z) = 0, (22b)

often referred to as degeneracy conditions. This is fulfilled by simply choos-
ing L skew-symmetric and M symmetric, positive semi-definite. Then it is
straightforward to verify that

Ė(z) = ∇E(z) · ż = ∇E(z) ·L(z)∇E(z) +∇E(z) ·M(z)∇S(z) = 0,(23)

which is equivalent to the very basic principle of conservation of energy in
closed systems. In turn,

Ṡ(z) = ∇s(z) · ż = ∇S(z) ·L(z)∇E(z) +∇S(z) ·M(z)∇S(z) ≥ 0, (24)

guarantees the satisfaction of the second principle of thermodynamics.
The method consists, then, in the identification of matrices L and M—

something straightforward in the vast majority of the cases—and the particular
structure of the gradients of energy and entropy (Hamiltonian and dissipative
parts of the constitutive equations, respectively).

In [15] this is done by a data fitting procedure that shows very promising
characteristics. Not only the particular behavior of the material can be iden-
tified. The time discretization of Eq. (21) allows to develop as a byproduct
a very efficient time integration scheme with the right properties in terms of
conserving and dissipative magnitudes, see [85,86] for more details.

4.2.5 Hybrid methodologies

As just emphasized, a growing interest has arose on the development of data-
driven techniques to avoid the employ of phenomenological constitutive mod-
els. While it is true that, in general, data do not fit perfectly to existing models,
and present deviations from the most popular ones, we believe that this does
not justify (or, at least, not always) to abandon completely all the acquired
knowledge on the constitutive characterization of materials. Instead, what we
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recently proposed [87], by means of machine learning techniques, to develop
correction to those popular models so as to minimize the errors in constitutive
modeling.

Plenty of effort has been dedicated throughout history to create very ac-
curate models, however, we also know that no model is perfect: it is always
subjected to certain limiting hypotheses. In [87], we provided an alternative
route by enhancing or correcting existing, well-known, models with informa-
tion coming from data, thus performing a sort of data-driven correction. In that
first work a special effort was put on the correction of plastic yield functions,
while work in progress adresses more complex scenarios involving hardening
and damage.

The proposed data driven correction technique is conceptually simple.
Imagine that our departure point is a given, well-known parametric model
M(p). It is important to keep in mind that we are looking for an enhance-
ment or correction of the previous model based on the available experimental
results. Therefore, a discrepancy model D(c), which applies to the first model,
needs to be defined. So to speak, reality, R, is approximated as

R =M(p) +D(c)
∣∣
p
, (25)

where p represents the set of parameters governing the model and c represents
the set of parameters needed to define the necessary correction.

Since our measurement capabilities will in general be constrained to some
experimentally observable quantities, both our objective reality and the cor-
rection to the model will be restricted to these experimental settings. In other
words,

R
∣∣
s
≈M(p) +D(c)

∣∣
p,s
. (26)

It is worth to mention that the way we define the observables s could have
an important impact over the calibration of the set of correction parameters,
c and remains a research field very active as discussed later.

4.3 Model Learners

In the last decades we have seen a tremendous development of artificial intelli-
gence (IA) techniques. Machine learning (ML) and manifold learning, and, no-
tably, deep learning (DL) techniques, have assisted to an unprecedented growth
in the wide range of applications they can be envisaged for. With the erup-
tion of data-enabled science and engineering (the so-called fourth paradigm
of science), applied science is today a symbiosis of theory, experiments and
simulation.

In a changing scenario that goes beyond the industry 4.0 paradigm and
moves towards the next generation, 5.0, based on collaborative robotics, con-
nected devices are continuously producing huge amounts of data. These must
be stored, curated and processed so as to unveil trends, find out hidden cor-
relations, and, eventually, make decisions in real time. Learning governing
equations from data has thus acquired an utmost importance in recent times.
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In science, a model is no more than a mathematical expression relating an
input and its associated output. If both, input and output, are expressed in a
discrete form, i.e., through vectors I and O respectively, then the model can
be expressed as the matrix K that allows computing the output O as soon
as the input I is specified. In other words, the model expresses KO = I. In
this discussion, and without loss of generality, we assume the same number of
components of the input and output vectors, but the discussion the discussion
remains valid in a more general case.

In mechanics usually input and outputs are loads and displacement (or
velocities) and the model is usually known. The model consists of the com-
bination of balance equation (assumed universal) and constitutive equations
relating kinematic and mechanical variables (e.g. the Hooke law in elasticity
relating strain and stress or the Newton law relating stress and its associated
rate of strain).

When the model is assumed known, from the large catalog or dictionary of
material behaviors the only needed thing is using experiments to calibrate the
model, that is, for identifying the parameters involved in those constitutive
equations. As it is well known, the choice is enormous, and the final predic-
tions depend on both the quality of the chosen model and the quality of its
calibration.

We could operate differently. We do not assume a model from the so-called
models dictionary; we are creating it from the scratch in a different way and
using a quite different representation. Both are being described in what follows.
Here, the model K is unknown, but in exchange many input/output couples
are available, i.e. (Ii,Oi), i = 1, · · · ,M . In that case the problem becomes
the one of calculating the model K from the available input/output data,
assuming that all input/output couples are related by the unknown model,
i.e. KOi = Ii, ∀i.

A naive view on the problem, assumed linear, consists of rewriting the
problem in the extended matrix form OK = I, where K is the vector form of
the unknown matrix K, I the extended vector that concatenates all the inputs
Ii, ∀i, and O an extended matrix constructed from the outputs vectors (known
assumed known) Oi, ∀i. Now, if sufficient data is available, one could imagine
that the model could be extracted by solving the extended linear system,
K = O−1I (when O is not inversible, its pseudo-inverse can be applied, among
many other possibilities).

It is worth noting that the choice of inputs and outputs is far from being
a trivial task. When Galileo studied falling bodies, he considered the distance
travelled by the object after every second, that distance being the difference
between its initial and present positions. Thus, by comparing these distances (5
meters travelled during the first second, 15 during the next one, then 25, etc.,
he observed that data followed the relation 15/5 = 3/1, then 25/15 = 5/3, ... He
thus affirmed that the consecutive traveled distances follow the prime numbers
series (1, 3, 5, ...). We must remember that at that time differential calculus
was not available (it was waiting for the arrival of Newton and Leibniz!). It was
without any doubt an excellent discovery—a predictive model—, but expressed
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into an alternative form with respect to the nowadays usual model formats.
The most important point in this discussion is not the law itself, is the fact
that Galileo considered the right variable, the travelled distance and not the
position itself. If he had decided to consider the position itself, very probably
the deduced law could have violated the principle of Galilean invariance (frame
indifference).

Nowadays, after centuries of rigorous and fruitful theoretical and applied
scientific accomplishments, for the vast majority of the models employed by
engineering and scientists, input and outputs are well pre-defined. However, in
many other, less experienced contexts the choice is more involved. This occurs
mainly when nonlinearities become history-dependent, such that they involve
a number of state variables able to replace time-trajectories.

In the field of data analytics and machine learning, there are many op-
tions for constructing a model able to be used to predict outputs for given
inputs. The simplest possibility consists in choosing the known output related
to the closest known input. Even if it seems a straightforward alternative, it
entails a major issue, the choice of the metric. This is particularly delicate
when the inputs are of different nature and have very different characteristic
values (strongly dependent on the considered units), significantly impacting
the notion of neighborhood.

There are many other model constructors. Among them, and without the
aim of being exhaustive, we would like to mention:

– Linear and nonlinear regression. Linear regression is considered mainly be-
cause of its simplicity. Its main advantage is that when P inputs (param-
eters) are considered, P data suffice to construct it even if more, or even
less, data can also be employed. Non-linear regressions considering higher-
order approximation require much more data. For example, the number
of monomials involved in quadratic approximations scale with P 2 and, in
general, the complexity when considering degree D scales with PD. Thus,
to circumvent the curse of dimensionality P and/or D should be reduced.
As discussed previously, manifold learning allows considering the strictly
minimum number of explicative parameters, p ≤ D, whereas the use of
separated representations (in the context of the rPGD discussed in Section
3) limits the effect of D [16].
Nonlinear regression can be efficiently replaced by locally linear regres-
sion, in particular Hierarchical Bayesian Linear Regression seems especially
promising [88].
In a similar way rPGD can be replaced by a multiple local PGD-based
nonlinear regression while ensuring continuity thanks to its consideration
within the partition of unity (PU) framework [26].

– Decision trees and its random forest counterpart [89] have been tradition-
ally intensively used for classifying and for constructing regressions. The
rPGD discussed above aimed at conceiving a sort of fully-combinatorial
decision-tree within a variational framework.
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– Deep-learning based on the use of neural networks (NN) (see [90] among
many others available papers and books) is probably the most powerful
and most extensively used regression tool. NN employ a certain number
of neuron layers, in order to account for existing couplings, and some ad
hoc nonlinear behavior, and then the system is trained with the available
data to finally generate a black-box model. Even if such a route is an
appealing alternative when nothing a priori is known (e.g., e-commerce,
sociology, psychology, marketing, etc.) in the case of engineering such a
route makes it difficult to assimilate all the existing scientific acquired
knowledge in the form of models. Today, significant efforts are being paid
in order to render it more comprehensible from the physical point of view.
A deeper understanding of its functioning is crucial to improve its efficiency
(reducing the training stage) and addressing more complex phenomena and
physically based complex models.
Physics-informed Deep Learning was considered by Karniadakis and coau-
thors [91] [92] for data-driven solution of nonlinear PDE as well as for the
discovery of nonlinear PDEs.

– Dictionary learning [93] consists in, given many events (vectors), construct-
ing a matrix (called dictionary) so that every event must be written as a
sparse linear combination of the columns in the dictionary. More precisely,
assume the pairs (xi,bi) collected into the columns of matrices X and
B respectively. The goal is to compute A (the dictionary) and X from
the knowledge of B in such a way that the columns of X are sparse. The
job is successfully performed by using a variety of techniques: method of
optimal directions, K-SVD or the matching pursuit algorithms, including
the orthogonal variant. In a more general sense Tensor Learning is offering
unexpected possibilities [94].

– Manifold learning, widely described in Section 4, the tSNE [95] and other
described in [38], complemented with advanced clustering and classification
techniques (e.g. K-means [96], Support Vector Machines —SVM— [97] [98]
and the incipient powerful techniques based on Topological Data Analysis
[99] [100]) are becoming unavoidable.

– Sparse identification [48] consists in assuming the search model from a
general form involving many linear and nonlinear contributions (polyno-
mial, cosinus, exponentials, ... and different combinations of them). It is
expected that not all these contributions will be required for approximating
the available data, and consequently sparsity is invoked.

– Dynamic model decomposition [101] proceeds from a given time series of
data, by computing a set of modes each of which is associated with a
fixed oscillation frequency and decay/growth rate. For linear systems these
modes and frequencies are analogous to the normal modes of the system. Its
extended framework by using a data-driven approximation of the Koopman
operator [102] is also attracting a growing interest.

– Data-driven operator inference for nonintrusive projection-based model re-
duction was considered by Peherstorfer and Wilcox [50]. It infers approx-
imations of the reduced operators from the initial conditions, inputs, tra-
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jectories of the states, and outputs of the full model, without requiring
the full-model operators. Similar procedure was considered in [15] while
ensuring a thermodynamic consistency.

4.4 Rationalizing the need of data: From Big-Data to Smart-Data

Data-driven engineering requires a huge amount of data. This constitutes one
of its main drawbacks and, at the same time, one of newest and powerful
characteristics. For many engineering applications, such an amount of data is
sometimes not available (as opposed to many other sciences where data is often
cheap to acquire but difficult to curate). In the sequel, we assume without loss
of generality an elastic behavior. Thus, constructing the constitutive manifold
by carrying out a sequence of homogeneous tests with the purpose of acti-
vating every possible strain states, seems out of reach for today’s capabilities
(hopefully it will not be so in a near future).

In our recent works, we considered an alternative approach, widely consid-
ered in the community of image correlation [103]. In this field, complex stress
states are invoked during experimental campaigns. Thus, for instance, by de-
termining the strain state in a region of the specimen we could, by applying
inverse identification, unveil a large region of the constitutive manifold. The
concept of constitutive manifold has been established in some of our latest
works in the field [72] [69]. In them we analyzed two alternative pathways. In
the first one we unveiled gradually the manifold from loading data. Therefore,
at each load increment, the elastic tensor for a new strain value is determined.
It should be noted, nevertheless, that such an approach revealed to be complex,
partly due to the use of the elastic tensor as the main mechanical variable.
It also revealed to be complex in the case of nonlinear constitutive equations.
The second route consisted of constructing a polynomial approximation of the
elastic energy, whose second derivative results in an elastic tensor, and whose
identification from collected data seems simpler and more robust.

The establishment of the smart-data paradigm is in progress. All of us
will probably agree in that, to describe the filling process of a balloon, for
instance, the specification of position and momentum of every molecule is not
required. It is enough to specify some macroscopic, thermodynamic variables:
volume, temperature, pressure, ... to describe the system. In our opinion, the
big-data paradigm is analogous to fully characterize every atom. The right
approach appears now clear: there is a need to create a multi-scale theory of
data, that should work at equilibrium and off equilibrium. The former consists
of a sort of thermodynamics of data (knowledge) and the last focuses on its
transport mechanisms (information). Some attempts exist on this field [104]
and researches should continue progressing.

Thus, one could expect that smart data should inform physics on the type
of data to collect, where and when to do it, with the main objective of acquir-
ing maximum information and knowledge. The era of collecting every possible
datum to curate only a small percentage of them should be replaced by acquir-
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ing the right data, the one of highest quality. Collecting and treating data is
expensive and takes time. It compromises real-time feed-back, which is needed
for decision-making, and is indeed mandatory in many applications like video-
surgery, robotics or autonomous car driving, to cite but a few.

Data rationalization can be efficiently performed by considering smart-
sampling strategies. When no prior exist, Latin Hypercube techniques can
be used to obtain a reasonable representation of the whole multidimensional
space. This technique has been commonly considered in design of experiments
—DoE— as well as to construct meta-models (surrogate models).

In the field of a posteriori MOR (POD or RB) the issue of performing bet-
ter samplings was addressed to correctly drive the greedy constructor. Thus,
the so-called “magic points” were proposed in the context of Reduced Based
based MOR [17]. In a stochastic framework the issue of better placing the
measurement points has also extensively been considered.

When using reduced basis, data assimilation easily allows data-completion.
To make it simple, imagine that a given field u(x) in a domain Ω, i.e., ∈ Ω,
can be expressed from a linear combination of functions φi(x), i = 1, . . . ,M ,
according to

u(x) =
M∑
i=1

αiφi(x). (27)

If this field is known at M particular locations Xj , uj = u(x = Xj),
we could compute the M alpha coefficients αi. The choice of those M points
should ensure the invertibility while reducing the numerical errors.Then, with
those coefficients already calculated, Eq. (27) allows us to complete the so-
lution, that is, to predict the solution at every point x ∈ Ω from the mere
knowledge of it at M locations.

Another family of techniques growing rapidly are related to sparse sampling
[105], closely connected with compressed sensing that we summarized in what
follows.

Most of nonlinear dimensionality reduction techniques consider least-squares
fitting of the data, however compressed sensing is based in the use of the L1

norm instead. As described in [106], there is a subtle link between sparsity and
the use of the L1 norm. When considering curve fitting, the use of standard L2

norms magnifies the influence of outliers, because of the squared norm. Then
the impact of those outliers in the fitted curve can thus be significant.

In the same spirit, the solution of underdetermined algebraic systems is
a tricky issue, because they contains an infinite number of solutions. As il-
lustrated in [106], the use of the pseudo inverse produces a fully populated
solution vector whereas when considering the ScilabTM or MatlabTM back-
slash the solution contains a lot of zero entries, and then results sparse. When
solving the problem with L2 and L1 optimizations (trying to obtain the min-
imum norm solution), the former becomes much less sparse than the last. In
the case of overdetermined systems the same tendencies can be observed.

Thus, from a purely engineering viewpoint, L1 can be associated to sparsity.
For this reason the L1 norm was considered as an appealing candidate for ad-
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dressing signal reconstruction problems. This alleviates the Nyquist-Shannon
sampling theory, that states that for recovering a signal, one must sample at
twice the rate of the highest frequency involved in the signal.

Imagine a vector f in the usual space or time domains, and its counterpart
in a domain in which it should accept a sparse representation, i.e., its vector
counterpart c contains many zeros. Imagine for a while a single-frequency
harmonic function in the time domain. Its sampling requires a number of its
solution at different time instant as stated by the Nyquist-Shannon sampling
theory. However, if we express it in the frequency domain, a single information
suffices, the amplitude at the given frequency.

Those appealing spaces of representation, when they exist, remain un-
known. Thus, in general, different choices are considered: the ones related
to frequency (Fourier or discrete cosines transform) or the ones related to
multi-resolution wavelets, among many other possible choices.

If we denote by T the matrix making the discrete transformation between
both representations, the original one and the one in which the representation
is expected to be sparse,

Tc = f , (28)

since vector c is expected to have many zero entries (as soon as it corresponds
to a space in which the signal becomes sparse), one could expect that its
solution could be computed from some rows of matrix T and vector f , after
solving the resulting underdetermined system by making use of a L1-norm
based optimization.

The choice of such rows can be made in different ways. However, the most
usual one consists in a random selection, even if nowadays many works are
addressing this issue. From a matrix perspective such extraction simply con-
sists in the definition of a diagonal matrix, with unit entries at the rows to
extract. If the set of rows to extract is denoted by S, the extraction matrix E
is defined from {

Eii = 1 if i ∈ S
Eij = 0 otherwise

.

The solution of problem defined by Eq. (28) can be approximated by the
solution of the underdetermined system

ETc = Ef , (29)

using a L1-norm based optimization.
Thus, the two main ingredients are: (i) the use of an adequate space in

which the solution of the problem at hand is expected to exhibit sparsity, and
(ii) the solution of the underdetermined problem by using a L1 norm.

Compressed sensing is at the origin os the so-called ”single pixel camera”,
where instead of acquiring the global image information, i.e., the vector f , to
be then compressed, only few entries of it are acquired, i.e., Ef , and as soon
as vector c is calculated by solving Eq. (29), the whole field (image) can be
reconstructed from Eq. (28).
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5 Conclusions and prospects

The hybrid twin, that perfectly encompasses the functionalities of its two
predecessors, the so-called virtual and digital twins, consists of:

1. the pre-assumed physical contribution, efficiently addressed by using Model
Order Reduction techniques;

2. a data-based modeling of the gap between predictions and measurements;
3. external actions to drive the model solution towards the desired target

(control and decision making);
4. the unbiased noise filtering;

where sufficient data is required with three main aims: (i) to calibrate the phys-
ical model; (ii) to construct the data-based model; and (iii) to make decisions
to keep the system under control and progressing to the wished target.

Control and decision making is efficiently performed by using artificial in-
telligence and machine learning techniques, as soon as the learning state is
successfully accomplished. On the other hand, the data-based model construc-
tion can be performed:

– from the use of machine learning techniques (data-mining, regression, deep-
learning, manifold learning, ... as previously described);

– by expressing the deviation in a parametric form within the PGD frame-
work by using the regression PGD —rPGD— discussed before. In this
framework, data-science could be used offline to define the smartest data
so be considered, and in particular, what data, and when and where they
should be collected, defining the new smart-data paradigm.

It is important to note that in some circumstances the physical model is
almost unattainable. Thus, the only possible contribution concerns the data-
based model that is constructed from scratch by using any of the available
techniques discussed in the present paper, but requiring a larger amount of
“smart” data.

From the discussion addressed in the present work, some actions seem
urgent to us:

1. In what concerns model order reduction, one of the main challenges is that
of constructing consistent interpolations of pre-computed solutions (non-
intrusive PGD) on the solution manifold so as to be able to proceed even
when solutions exhibit localization. The parametric solutions of models
exhibiting bifurcations is another major issue.
Many engineering problems involve trajectories: processes (incremental
forming, additive manufacturing, ...), agent trajectories, etc ... The issue of
parametrizing a trajectory remains an open issue of major interest nowa-
days. Finally, reduced models of components should be integrated at the
system level, and consequently efficient ROM-interfaces defined.

2. Concerning tests, the issue of unbiased and biased noise must be addressed,
as well as its collection at different scales. Inverse techniques must be de-
veloped in order to have access to non-measurable variables, because of its
nature or accessibility.
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In the same way that a single test is able to offer a rich amount of data
(e.g., image correlation) one could imagine replacing the test machine by
a computer, and expecting that by solving a problem that activates as
many parametric values as possible, one could expect having access to the
parametric solution from a single (few) numerical simulation(s).

3. Regarding the incipient smart-data paradigm, efforts must be paid to create
a multi-scale theory of data, a sort of data-thermodynamics, that should
work at equilibrium and off-equilibrium, to offer a response to four key
questions: (i) what data should be collected?; (ii) where?; (iii) when?; and
(iv) at which scale(s)?

4. For model learners and data-driven modeling, different questions arise.
One of them concerns the nature of state variables (able to encapsulate
all the history-dependent present state) and the way of identifying them
from collected data. Another extremely exciting topic concerns the similar-
ities between deep-learning based on neural networks and more physically
based model learners as the ones discussed previously. Finally addressing
noise and outliers, and differentiate them from multi-scale physically events
remains also an open crucial issue.

5. Finally, concerning data and manifold learning (PCA and its nonlinear
counterparts and variants), they are most of the times is based on Euclidean
distances. It seems that the extraction of uncorrelated parameters from
data needs alternative metrics. Looking at two trees, even a child is able
to conclude on their similarity (both are recognized as trees in real-time)
even if the Euclidean distance among them could be very large. In this
regard, TDA (Topology Data Analysis) is attracting interest because of
its appealing properties and spectacular capacity of classifying. Topology
persistence, persistent homology, mappers, computational geometry, ... are
opening a field of unimaginable opportunities.
Moreover, the use of persistence diagrams allows us to define metrics based
on topology (of major interest when addressing shape and topology opti-
mization) and its associated persistent images (eventually combined with
sparse sensing) allows defining interpolation, a crucial aspect when address-
ing reduced order modeling.
Very often, similarity must be judged and stablished outside a vector space.
Imagine establishing similarity between traffic signals or color words (yel-
low, red, ...). Identifying the similarity of words referring to color requires
their transcription to a vector in a given vectorial space that allows for
applying standard analysis tools. This transcription can be successfully
accomplished using Word2Vect techniques [107].

It is at this point the dilemma of data versus models totally loses it sense.
Both are not concurrent, they should be considered together, one enriching the
other and vice-versa. Physics allows determining what observations should be
considered when establishing a predictive data-based model while avoiding
major risks, as for example, the violation of the frame invariance or thermo-
dynamical consistency (energy conservation and entropy production). On the
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Fig. 12 Closing the models-data circle

other hand, data-science could drive physics towards the most pertinent data
offering the maximum amount of pertinent information (smart-data versus
big-data). The model-data circle is definitively closed as sketched in Fig. 12.
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orthotropic hyperelasticity. Computational Mechanics, 53(6):1279–1298, Jun 2014.
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for isotropic, compressible materials. Computational Mechanics, 59(1):73–92, Jan 2017.
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