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Mutualistic interactions, those that are naturally beneficial for both interacting species, are recurrently
found in ecosystems. Observations of natural systems show that if we draw mutualistic relationships as
links between species, the resulting mutualistic network of interactions displays a widespread particular
ordering called nestedness. In such an ordering, the mutualistic partners of a given species conform a subset
of the partners of all species with larger degree, that is, of those species having more interactions. On the
other hand, theoretical works show that a nested structure has a positive impact on a number of relevant
features of mutualistic communities ranging from species coexistence to structural stability and
biodiversity. However, how nestedness emerges and what are its determinants, are still open challenges
that have led to multiple debates to date. Here we show, by applying a theoretical approach to the analysis
of 167 real mutualistic networks, that nestedness is not an irreducibly macroscopic feature but an entropic
consequence of the degree sequences (number of mutualistic interactions of each species). Remarkably, we
find that an outstanding majority of the analyzed networks does not show statistically significant
nestedness. These findings point to the need of revising previous claims about the role of nestedness and
might contribute to expand our understanding of how evolution shapes mutualistic interactions and
communities by placing the focus on the node-dependent properties rather than on global quantities.
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I. INTRODUCTION

Almost two decades ago, a seminal work by Bascompte
et al. [1] revealed that nested patterns are ubiquitous in
ecological systems. These patterns were disclosed thanks to
the translation of ecological communities into ecological
networks. On a network representation, nodes depict
species and links capture observed ecological interactions,
like mutualism or predation. Moreover, the network is said
to be bipartite if it can be partitioned into two distinct sets in
such a way that nodes within the same set do not interact
among themselves. For such bipartite networks, a perfectly
nested structure is defined by the fact that the interactions
of a given node are invariably a subset of the interactions of
all nodes with larger degree (see Fig. 1). That is, if B is the

biadjacency matrix of a bipartite network, the network will
be perfectly nested only if both of the following conditions
are true:

if Bi;l ¼ 1 then Bi;k ¼ 1 ⇔ given a pair of columns

k and l such that

XNR

i

Bi;l ≤
XNR

i

Bi;k; ∀ i; ð1Þ

if Bj;k ¼ 1 then Bi;k ¼ 1 ⇔ given a pair of rows

i and j such that

XNC

k

Bj;k ≤
XNC

k

Bi;k; ∀ k; ð2Þ

where NR and NC are, respectively, the number of rows and
columns of the biadjacency matrixB. The conditions above
translate into the fact that specialist species, that is, species
with few interactions and thus a small degree, are seldom
interacting with other specialists. Instead, they appear
attached to generalist species, which have a large degree,
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and hence are in turn connected to a variety of neighbors,
including other generalists. This gives to nested biadja-
cency matrices its distinctive triangular shape composed by
a robust core of connections among generalists to which
specialists cling (see Fig. 1). Although real ecosystems are
never maximally nested, numerous examples of mutualistic
communities across the globe have been found to be
noticeably nested, regardless of their differences in species
composition, climate, or geographical location. Not only
does it seem to be a rather universal pattern in ecology, but
nestedness has also been observed in other areas of study
such as biogeography [2] and socioeconomy, particularly,
for instance, in manufacturer-contractor networks [3], the
world trade web [4,5], or the seller-buyer network of a fish
market [6].
These outstanding observations have triggered an intense

research aiming to properly define and measure nestedness
[7–13] as well as explain its origin [14–17]. Indeed, the
interest in deciding whether a system is nested and/or in
determining its degree of nestedness goes beyond charac-
terizing it from a merely topological viewpoint. In fact,
it has been suggested that nestedness plays an important
role in biodiversity persistence [18–20], a claim which is
nevertheless the subject of an ongoing and intense debate
[21–25]. Admittedly, disclosing how the structure of
mutualistic communities, particularly nestedness, affects
its inner dynamics is key to understanding the history and
predicting the future of worldwide ecosystems, all the more
since mutualistic relationships pervade nature and carry out
essential services, from pollination to nitrogen fixation.
While antagonistic interactions, like parasitism or predation,
are certainly ecologically relevant as well, whether the
resulting empirical networks are nested or not is a con-
troversial issue [26,27], not to mention that theoretical
studies have claimed that nestednessmight be a destabilizing

configuration for antagonistic networks [19]. In addition,
empirical data on how real communities map into more
general networks that include simultaneously different types
of interactions have just begun to appear lately [28,29].
Altogether, this explains why mutualistic networks, yet if a
partial representation of the complexity of natural inter-
actions, are consistently used as model ecosystems.
Recently, the pertinence of nestedness as a suitable

indicator to characterize the dynamics of mutualistic
communities has been challenged by various works. In
fact, it has been argued that either nestedness has no
significant impact on the coexistence of mutualistic com-
munities [23] or it detrimentally affects local stability
[22,30]. Moreover, other properties of the observed net-
works have been claimed to be significant drivers of the
community dynamics [31,32]. In particular, the networks’
degree assortativity or the degree heterogeneity have been
identified as determinants of biodiversity persistence.
Interestingly, within this debate, it was argued that the

results found by James et al. [31] were an artifact of the
applied randomization process, which did not control for
the degree sequences [33]. This claim was in turn answered
by the authors of Ref. [34], who showed that their results
still hold when randomizing the networks preserving
strictly the degree sequences. This controversy leads to
the key question of whether nestedness conceived as a
global trait of the emerging architecture is actually a
relevant and independent property, or contrarily, if it just
derives from lower-order features of the interaction net-
work. Distinguishing between genuine and redundant
patterns is critical if one aims to obtain, from the present
structure of, e.g., ecological communities, information
about its past history and assembling. Therefore, the main
goal of our work is, precisely, to understand whether
nestedness is an independent pattern, or, instead, if it is
naturally caused by other properties of the network.
Importantly, answering this question would also allow us
to solve another open challenge: Namely, what is, in this
context, the right null model against which one should
assess nestedness? The latter question is a relevant issue by
itself [35,36], as any attempt to quantify nestedness
implicitly involves the comparison with a null hypothesis.
Earlier investigations on the structural determinants of

nestedness were concurrent on the relevance of the degree
sequences. First, Medan et al. [37] theoretically showed
that the geometric curve that delimits the region with
interactions in an ideally nested matrix [7] can be ultimately
related, in the continuous limit approximation, to the degree
distributions of both guilds of the corresponding bipartite
network. On the other hand, Joppa et al. [38] identified the
degree sequences as a feature that considerably explains
empirical nestedness, although they still claimed to find “a
statistically significant excess of networks with unusual
nestedness patterns.” Finally, Johnson et al. [39] explored
the emergence of correlations in a finite-size configuration

FIG. 1. Example of a perfectly nested biadjacency matrix for a
bipartite plant-pollinator network. Each node represents a differ-
ent species, and black boxes represent a mutualistic interaction
between a plant and a pollinator. It can be observed that the
interactions of any species form part of a subset of the interactions
of all species with larger degree.
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model and argued that degree heterogeneity together with
dissasortativity are two crucial determinants of nestedness.
Furthermore, in the context of building null models to

measure the significance of nestedness of real systems,
other works have been confronted with the relationship
between nestedness and heterogeneity of degrees, yet
without fundamentally addressing it. A well-known null
model that relates to our work is the fixed-fixed (FF) model,
in which the degree sequences are strictly kept. Typically,
its implementation consists of algorithmically randomizing
the real network, producing null networks by swapping
pairs of interactions in such a way that the degree sequences
are not altered [40]. A common caveat of this model is
that the number of null networks compatible with the
constrained degree sequences might be highly limited. For
instance, Ulrich et al. [12,35] observed poorly significant
nested patterns when using the FF null model. However,
they explained such a result arguing that the FF null model
induces a bias in the sampling due to the fact that the
generated null matrices closely resemble the real network,
contrary to the case where a randomization that relaxes
the degree sequences is applied. In their words [35], “This
similarity makes it more difficult for the FF algorithm
to detect nestedness.” Similarly, Staniczencko et al. [30]
pointed out the limitations of the FF model in assessing the
nestedness significance, given that the number of possible
null networks decreases as the nestedness of the real
network increases.
Despite all these different hints pointing to the crucial

question of the relevance of nestedness as an independent
property, the debate still remains open [21]. The difficulty
in obtaining a definitive answer to this problem is related to
the nature of the methodology used in previous studies,
which discussed the statistical correlations between
observed properties of the real systems and the correspond-
ing nestedness measures provided by the considered null
models. Since these null models typically randomize
algorithmically the observed network under some chosen
constraint, they are often affected by correlations that are
enhanced by the finite size of the studied networks,
eventually introducing undesired statistical bias.
In order to address the aforementioned questions, here

we adopt a completely different path. We derive math-
ematical expressions for the first two moments of the
nestedness distribution, which depend only on the entries of
the adjacency matrix. Contrary to the former studies
discussed above, we construct a maximum entropy ensem-
ble of networks where constraints are not enforced algo-
rithmically but by maximizing its likelihood of appearance.
This prevents the statistical bias that was present in the
previous methodological approaches. Next, we demon-
strate that the nestedness is determined by the degree
sequences of the two branches of the corresponding
bipartite graph, and therefore, that it is not an irreducible
pattern. We validate our claim by showing that for each one

of the 167 mutualistic networks of an empirical set formed
by diverse types of plant-animal mutualistic communities,
the observed amount of nestedness in real ecosystems
could solely arise from the empirical degree sequences.
Our work also provides a null model that can be used to
discriminate whether a real network shows a significant
nested pattern or not. Additionally, we discuss the rationale
of our findings and provide an explanation of our results in
terms of the heterogeneity of the degree distributions and
their entropic character. We round off the paper discussing
the implications of our work. In particular, the fact that the
astounding universality of nested patterns can be reinter-
preted as a result of the distribution of the number of
contacts indicates that evolution has not selectively favored
a nested assemblage of mutualistic communities but simply
a significant diversity in the degree of specialization in
mutualistic relationships. More generally, our results are a
reminder of the importance of systematically testing the
significance of any observed network pattern, even more if
one aims to study the influence of such a pattern on the
network dynamics. These conclusions, although more
directly impactful in the area of ecological and mutualistic
systems, could also be relevant for our general under-
standing of the topology of networks and their role in
social, biological, and technological systems.

II. CONSTRUCTION OF THE
STATISTICAL ENSEMBLE

We first construct a maximum entropy statistical ensem-
ble of networks for each of the empirical networks that we
use to validate our theoretical insights under the constraint
that the degree sequences in the ensemble match on
average the empirical ones—this being true for the two
guilds of the corresponding bipartite graph. This methodo-
logical approach has the advantage that possible missing
links or overrated interactions, which might lead to impov-
erished ecological data [41], are dealt with in a proper way.
Indeed, enforcing the randomized degree sequences to be
equivalent to the empirical ones only on average limits the
possible impact of having noise in the data, while assuring
that the results are not dependent on specific details.
To construct the ensemble, we adopt a statistical physics

perspective [42] by providing the probability of the
appearance of each network in the ensemble. This varies
from previous works which proposed randomizing the real
network, although imposing similar conditions on the
degrees, algorithmically [35,38,40]. Instead, here we apply
a recently introduced randomizing scheme [43,44] and
construct an ensemble following the exponential random
graph model. This ensemble maximizes the Shannon-Gibbs
entropy given the average degree sequences of the two
guilds of a bipartite network as a constraint. Yet, it is not
fully determined due to the presence of free Lagrange
multipliers resulting from the constrained optimization of
the entropy. Following Squartini and Garlaschelli [43] and
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Garlaschelli and Loffredo [45], we impose that the degree
sequences of the empirical network have to be found with
maximum likelihood (see the Appendix A for details). This
enforces, as aimed, the ensemble’s mean degree sequences
to match the empirical ones, whilst precluding common
biases of other sampling techniques [45].
Eventually, this maximization of the likelihood provides

a set of coupled equations to solve for the Lagrange
multipliers [in principle, one equation per node; see
Eqs. (A7) and (A8) in Appendix A]. Hence, determining
the statistical random ensembles of our 167 empirical
networks entails solving computationally 167 optimization
problems. For each network, we numerically find the
Lagrange multipliers that maximize the likelihood using
two different independent algorithms: (i) simulated
annealing, which is a global pseudorandom numerical
method for optimizing the likelihood and (ii) a determin-
istic gradient-based algorithm for solving nonlinear sys-
tems of equations (see Appendix B for more information on
the numerical implementation).
A primary advantage of constructing a maximum-

likelihood and maximum entropy ensemble is that in the
case of local constraints (like the degree sequences), the
probability of the existence of a graph in the ensemble can
be exactly factorized into the probabilities of the existence
of a link between any two species [43]. In this way, we can
obtain the average probability that two potential mutualistic

partners interact in the statistical ensemble. If we call a
real bipartite matrix B�, then this probability matrix will
be represented by hB�i. Therefore, after numerically
determining each optimal set of Lagrange multipliers,
we build the matrix containing the average probability
of interaction corresponding to each empirical network (see
an example in Fig. 2).

III. STATISTICAL MEASURES OF NESTEDNESS

We perform the statistical measures on the ensemble
following one of the two following approaches. On the one
hand, as long as the property that we aim to evaluate can
be analytically formulated in terms of the elements of
the bipartite adjacency matrix, Squartini and Garlaschelli
showed [43] that it is possible to obtain, at first order, the
analytical expression of the first and second moments of the
corresponding distribution. These expressions depend only
on the link probabilities. In other words, it is not necessary
to sample the ensemble; instead, the mean and the standard
deviation of the nestedness index can be analytically
calculated. On the other hand, one can always sample
the ensemble in order to study the statistics of the target
property on a generated unbiased sampling [47]. In this
paper, we focus on the analytical solution to the debate
about the origin of nestedness. Nevertheless, we check that
our results also hold when using the sampling approach.

FIG. 2. Comparison between empirical mutualistic interactions and probability of interacting in the ensemble. The probability of
interaction between species in the statistical ensemble given by hB�i is shown as a color heat map for the plant-pollinator network
recorded by Inoue et al. [46]. The empirical corresponding bipartite matrix of interactions B� is superimposed in black. Both plant and
pollinator species are ordered in decreasing order of their degrees (from top to bottom and from left to right). As it can be seen at a
glance, the obtained probabilities are consistent with the observed interactions, with the dark regions delimiting an upper left triangle, as
in an ideally nested structure. Note that the color legend is in logarithmic scale.
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In this section, we start by describing how to obtain the
analytical expressions of the first two moments of a
network property in the ensemble. Second, we apply them
to derive the analytical expressions for the mean and the
standard deviation of the two indices for nestedness for
which this is possible, as we discuss in the following
subsections: the well-known nestedness metric based on
overlap and decreasing fill (hereafter, NODF) [9] and the
recently proposed spectral radius [30].

A. General analytical expressions of the first two
moments of the distribution of a given property

of the network

Here, we describe how to obtain statistical measures in
the random ensemble through analytical expressions. Let us
call a property X and its average across the statistical
ensemble hXi�. The asterisk superscript indicates that the
statistical ensemble is built for a given real bipartite matrix
B�. When the property X can be calculated as an analytic
function of the bipartite matrix B, then it is possible to
derive an analytical expression of the first and second
moments of X in terms of the average probabilities of
interaction hB�i. Following Squartini and Garlaschelli [43],
for the bipartite case, these expressions read

hXi� ≃ XðhBi�Þ; ð3Þ

σX ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNP

p¼1

XNA

a¼1

�∂XðBÞ
∂bpa

�����
2

B¼hBi�
σ2bpa

vuut ; ð4Þ

where σbpa is the standard deviation for the bipartite matrix
element bpa. The condition for these approximations to
be accurate is that the property X needs to be Gaussian
distributed in the random ensemble.

B. Derivation of the analytical expressions for NODF

In this subsection, we present the analytical expressions
for the average and the standard deviation of nestedness
measured by the index known as NODF. We choose this
metric among the vast range of indices in the literature due
to a variety of reasons: First, it can be calculated through
an analytical and compact expression in terms of the matrix
elements. Second, and contrary to other metrics, its
definition is based on a clear and explicit quantification
of conditions in Eqs. (1) and (2), precluding any type of
geometric or algorithmic approach. Finally, it is widely
used not only in ecology but also in network applications to
economics [6,44] or sociology [48].

1. Definition and distribution of NODF

The NODF index involves two contributing factors to
nestedness: decreasing fill, that quantifies to what extent,
after ordering the rows and columns of the matrix, the

degree sequences strictly decrease, and paired overlap,
that accounts for the number of shared partners between
all pairs of columns (rows), normalized by the smaller
degree. By gathering the sequential analysis indicated by
Almeida-Neto et al., [9] we propose the following compact
expression to calculate the NODF:

NODFðBÞ ¼ 1

K

XNP

i<j

�
½1 − θðvj − viÞ�

PNA
a¼1 biabja

vj

�

þ 1

K

XNA

k<l

�
½1 − θðhl − hkÞ�

PNP
p¼1 bpkbpl

hl

�
;

ð5Þ

where K ¼ NPðNP − 1Þ þ NAðNA − 1Þ
200

: ð6Þ

Here we use the following notation: vp is the degree
of plant p and ha the degree of animal a. The double sums
run over two indices, and we consider that the bipartite
adjacency matrix is labeled as shown in Fig. 3, such that
row i is placed above row j and column k at the left of
column l. The K factor contains the normalization over the
number of all possible pairs and the fact that the NODF is
defined to take values between 0 and 100. Finally, the θ
stands for the Heaviside step function, which is zero when
its argument is negative, and 1 if its argument is positive or
zero. As a result, the 1 − θðvj − viÞ term encapsulates the
decreasing fill condition.

k l

i

j

FIG. 3. Example of an ordered matrix of interactions not
perfectly nested. Species of both guilds are ordered in decreasing
degree, and the numbered labels indicate their rank (the larger the
degree, the smaller the rank). The indexes i, j, k, and l illustrate
our notation for rows and columns.
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In fact, from now on we use the following abbreviations
for the decreasing fill term:

DFij ¼ 1 − θðvj − viÞ; such that;

if vj ≥ vi then DFij ¼ 0;

and if vj < vi then DFij ¼ 1; ð7Þ

DFkl ¼ 1 − θðhl − hkÞ; such that;

if hl ≥ hk then DFkl ¼ 0;

and if hl < hk then DFkl ¼ 1: ð8Þ

Despite being a popular metric, some authors have raised
concerns about the use of the NODF to measure nestedness.
In particular, Staniczenko et al. [30] showed that the NODF
is unable to detect nested patterns when the proportion
of repeated degrees in the network is large. This short-
coming is due to the decreasing fill factor, which heavily
penalizes degree degeneracy. In order to ensure that our
results are not affected by this limitation in the sensibility of
the NODF, we obtain as well the analytical expressions of
the first two moments of an alternative version of the metric
called the stable NODF proposed by Mariani et al. [49].
This metric is more robust against slight variations in the
degree sequence and, importantly, solves the drawbacks
outlined by Staniczenko et al. [30] since it does not include
the decreasing fill term. The definition of the stable NODF
as well as the analytical expressions of the first two
moments of its distribution in the ensemble can be found
in Appendix C. Still, we keep our main focus on the NODF
given its widespread use for measuring nestedness, together

with the fact that the mentioned lack of sensibility is not
particularly relevant but for small or highly dense networks.
We next verify that the NODF is Gaussian distributed in

the ensemble, as required if we aim to apply Eqs. (3) and
(4) by performing a check on a subset of the empirical
networks. To this end, for each of the corresponding
statistical ensembles, we generate a sample of 104 networks
obeying the probability of link existence given by hBi�. We
then compute the nestedness of each sampled network
using the NODF in order to generate the nestedness
distribution. In all cases, we successfully fit a Gaussian
function (see Fig. 4 for an example).

2. Analytical expression for the first moment
of the NODF

The analytical and packed expression for the NODF
that appears in Eq. (5) can then be plugged into Eq. (3).
Accordingly, we obtain that the first moment of the ran-
domized NODF for a given real bipartite matrix B� reads

hNODFðBÞi� ¼ 1

K

XNP

i<j

�
DFij

PNA
a¼1hbiaihbjaiPNA

a¼1hbjai

�

þ 1

K

XNA

k<l

�
DFkl

PNP
p¼1hbpkihbpliPNP

p¼1hbpli

�
: ð9Þ

Note that
PNA

a¼1hbpai ¼ vp and
PNP

p¼1hbpai ¼ ha, given
that the randomized matrix necessarily fulfills the enforced
constraints. Additionally, this condition warrants that the
ordering of the matrix be equal to the original one, which is
important since the NODF is ordering dependent through
the decreasing fill terms. It is also of interest to remark that
the previous expression can be understood in probabilistic
terms. Indeed, given that hbpai ¼ ppa, where ppa are
independent link probabilities, the overlap term might be
seen as a joint probability of two independent events
divided by a normalizing factor which is the union of
independent probabilities. For example, for the pair of
animal species k and l, the overlap term results in

PNP
p¼1hbpkihbpliPNP

p¼1hbpli
¼

PNP
p¼1 ppkpplPNP

p¼1 ppl

: ð10Þ

3. Analytical expression for the
second moment of the NODF

The standard deviation is given by Eq. (4), which for the
NODF reads

σNODF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNP

p¼1

XNA

a¼1

�∂NODFðBÞ
∂bpa

�����
2

B¼hBi�
σ2bpa

vuut

with σ2bpa ¼ ppað1 − ppaÞ; ð11Þ
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FIG. 4. Nestedness distribution for a sampling of the statistical
ensemble corresponding to the empirical networks by Small [50].
In blue, the fit of a Gaussian function using the mean and standard
deviation extracted from the distribution (mean μ ¼ 45.8 and
standard deviation σ ¼ 4.2). In gray, thevalues of the nestedness of
the real network and of the analytical average, which correspond to
the average computed using the analytical expression in Eq. (9).
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where we use the fact that the existence of a link in the
network is a Bernoulli process. Furthermore, the derivative
with respect to a general matrix element brc (the index r
stands for rows and c stands for columns) can be split into
the contributions of plants and of animals:

∂NODFðBÞ
∂brc ¼ ∂NODFðBÞplants

∂brc þ ∂NODFðBÞanimals

∂brc :

ð12Þ

After deriving, we obtained that

K
∂NODFðBÞplants

∂brc ¼
XNP

j¼rþ1

DFrj
bjc
vj

þ
Xr−1
i¼1

DFir
bic
vr

−
Xr−1
i¼1

XNA

a¼1

DFir
biabra
vr2

; ð13Þ

K
∂NODFðBÞanimals

∂brc ¼
XNA

l¼cþ1

DFcl
brl
hl

þ
Xc−1
k¼1

DFkc
brk
hc

−
Xc−1
k¼1

XNP

p¼1

DFkc
bpkbpc
hc2

; ð14Þ

which after being plugged into Eq. (11) provides an
analytical expression for the standard deviation of the
distribution of the NODF in the ensemble.

C. Derivation of the theoretical expressions
for the spectral radius

In this subsection, we derive the theoretical expressions
for calculating the average and standard deviation of
nestedness using the so-called spectral radius [30]. We
perform the statistical measures using this metric due to its
increasing popularity among nestedness indices, and, more-
over, due to its computational advantages: First, it is a
mathematical property of the graph which does not depend
on the ordering of the matrix, and second, its numerical
calculation is fast. Nonetheless, in this subsection we argue
as well that the measures obtained with the spectral radius
should be handled with care, since this metric does not
reliably quantify nestedness at a fine scale and, moreover, it
is not normalized.

1. Definition and distribution of the spectral radius

The spectral radius was recently proposed by
Staniczenko et al. [30] as an alternative metric for nested-
ness that directly relies on the spectral properties of the
adjacency matrix. Let us call I the identity matrix andA the
adjacency matrix of a bipartite matrix B, such that

A ¼
�

0 B

B⊺ 0

�
; ð15Þ

which is a square, symmetric, and non-negative matrix,
given that ai;j ≥ 0. The spectral radius of the matrixA (also
called the dominant eigenvalue or largest eigenvalue) is
defined as follows:

ρðAÞ ¼ maxfjλijg; ð16Þ
where λi for i ∈ f1;…; ng are the eigenvalues of A; thus,
the roots of the equation detðIλ −AÞ ¼ 0. Since A is a
symmetric matrix, λi ∈ ℜ ∀ i.

The capability of the spectral radius for quantifying the
degree of nestedness of a network is rooted in a theorem by
Bell et al. [51] that states that within the set of networks
having the same number of links and nodes, the one
yielding the maximum spectral radius will be perfectly
nested. In fact, Staniczenko et al. [30] showed that more
nested networks tend to have larger spectral radius.
However, importantly, this relation is only true in statistical
terms. Indeed, the results of Staniczenko et al. reveal that, if
we take two slightly different networks, the one with the
largest spectral radius is not necessarily the most nested
(see, for instance, Fig. 1 from Ref. [30]). Therefore, the
sensibility of the spectral radius at a fine scale (i.e., to
distinguish between small differences in the degree of
nestedness of two networks) is rather limited. Another
caveat of the spectral radius is that it is not normalized.
This implies that nestedness measures are affected by
network properties like the density of links or the size,
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FIG. 5. Distribution of the spectral radius over the ensemble
calculated for the real network collected by Small [50] for a
sampling made of 104 networks. In blue, the fit of a Gaussian
function using the mean and standard deviation extracted from
the distribution (mean μ ¼ 8.8 and standard deviation σ ¼ 0.4).
In gray, the values of the nestedness of the real network and of the
theoretical average, which correspond to the average computed
using the theoretical expression in Eq. (19).
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thus hindering the comparison among networks which do
not share those characteristics.
Next, we check whether the spectral radius is Gaussian

distributed over the ensemble. In particular, for each
network in our dataset, we generate a sample of 104

networks obeying the probability of link existence provided
by hBi�. Then, we calculate the spectral radius of each
sampled network algorithmically using the R package
RARPACK [52]. Finally, we verify that the resulting
distribution is indeed normal, as can be seen in Fig. 5.

2. Theoretical expression for the first moment
of the spectral radius

Given that ρðAÞ is a function of thematrix entries ofA, we
can apply the linear approximation proposed by Squartini
and Garlaschelli in Eq. (3) in order to estimate the average
over the ensemble computed for a real bipartite matrix B�:

hρðAÞi� ≈ ρðhAi�Þ; ð17Þ
where

hAi� ¼
�

0 hBi�
hBi�⊺ 0

�
: ð18Þ

These expressions mean that the average spectral radius
can be found as

ρðhAi�Þ ¼ maxfjhλiijg; ð19Þ

where hλii are the roots of the equation

detðIhλi − hAi�Þ ¼ 0: ð20Þ

In practice, Eq. (20) has to be solved numerically, which
implies that no analytical expression for the average of the
spectral radius exists. In particular, we numerically imple-
ment the calculation of the spectral radius of each matrix
hAi� using the R package RARPACK [52].

3. Analytical expression for the second moment
of the spectral radius

Using Eq. (4), the standard deviation of the spectral
radius over the ensemble can be estimated by

σρ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNP

p¼1

XNA

a¼1

�∂ρðAÞ
∂Apa

�����
2

A¼hAi�
σ2Apa

vuut : ð21Þ

Here, the calculation of the derivative of the spectral radius
f½∂ρðAÞ�=∂ApagjA¼hAi� is nontrivial given that there is no
general analytical expression for the spectral radius because
Eq. (20) needs to be solved numerically. Nonetheless, we
now show how is it possible to obtain such a derivative by
applying the results by Deutsch and Neumann [53].

Let us start by assuming that M is a square, non-
negative, and irreducible matrix. Then, it is known that
its spectral radius ρðMÞ is a simple eigenvalue, and it is
equal to its Perron root. Since ρðMÞ is a simple eigenvalue,
it has multiplicity 1, and it is possible to obtain its first
derivatives with respect to Mij. Indeed, if we denote by D
the matrix whose matrix elements are

Dij ¼
∂ρðMÞ
∂Mij

; ð22Þ

then following Ref. [53], D can be computed using the
expression

D ¼ ðI −QQ#Þ⊺: ð23Þ

Here,Q is a special type of matrix known as anMmatrix
[54] and defined as

Q ¼ ρðMÞI −M; ð24Þ

while Q# is the group inversion of Q [55]. The group
inversion is a more general type of inverse that can be
applied as well to singular matrices. For certain types of
matrices, the group inverse is equivalent to another class of
inversion known as theMoore-Penrose inverse. This is true
if and only if the matrix of study is range Hermitian [55].
One of the conditions that warrants that a matrix is range
Hermitian is the following:

rangeðQÞ ¼ rangeðQHÞ; ð25Þ

whereQH is the conjugate transpose (also called Hermitian
conjugate) of Q. If we now assume that Q is range
Hermitian, Eq. (23) can be rewritten as

D ¼ ðI −QQ†Þ⊺; ð26Þ

where Q† represents the Moore-Penrose inverse of Q.
Let us show now that Eq. (26) can be used to calculate

the derivative with respect to our matrix of interest A, in
particular, in the case where A ¼ hAi�. First, we show that
hAi� fulfills the conditions that allow us to apply Eq. (23).
Next, we prove that a matrix QA defined as

QA ¼ ρðhAi�ÞI − hAi� ð27Þ

is a range-Hermitian matrix and, consequently, Q#
A ¼ Q†

A.
First, we know already that hAi� is a square and non-

negative matrix, yet it remains to be shown whether it is
irreducible. A matrix is said to be irreducible if and only
if its corresponding graph is strongly connected; that is, if it
is possible to find a path that connects any pair of nodes
of the network. Because hBi� is a complete bipartite

PAYRATÓ-BORRÀS, HERNÁNDEZ, and MORENO PHYS. REV. X 9, 031024 (2019)

031024-8



graph (hbiji� > 0 ∀ i; j), then it is clear that it is strongly
connected, and therefore, hAi� is an irreducible matrix.
Second, the condition for the matrix QA to be range

Hermitian is provided by Eq. (25). In our case, ρðAÞ ∈ ℜ
and Aij ∈ ℜ ∀ i; j, therefore, QA;ij ∈ ℜ ∀ i; j. From
this, it follows that

rangeðQH
A Þ ¼ rangeðQ⊺

AÞ; ð28Þ

where we use that the conjugate transpose of a real matrix is
simply its transpose. We still need to prove that

rangeðQ⊺
AÞ ¼ rangeðQAÞ: ð29Þ

This condition is equivalent to

row space of QA ¼ column space of QA: ð30Þ

Note that this is not true in general. In our case, given that
QA is a square and symmetric matrix, its row and column
spaces are equal, and therefore, Eqs. (29) and (30) are
verified. This proves that QA is range Hermitian,
and consequently, its group inverse is equivalent to its

Moore-Penrose inverse. With this proof, we show that a
matrix DA defined by

DA;ij ¼
∂ρðAÞ
∂Aij

����
A¼hAi�

ð31Þ

can be computed using the following expression:

DA ¼ ðI −QAQ
†
AÞ⊺: ð32Þ

We implement Eq. (32) using the R MASS package [56],
in particular, the function ginv to calculate the Moore-
Penrose inverse.

IV. SIGNIFICANCE OF EMPIRICAL
NESTED PATTERNS

For each of the 167 empirical networks, we obtain the
matrix giving the probability of interaction between
any two species of different guilds. This set includes
three different kinds of mutualistic communities: plant-
pollinator, seed-disperser and plant-ant (see Appendix J).
Using Eqs. (9) and (11), we are able to compute the

(a) (b)

(c)

2σ
1σ

2σ
1σ

2σ
1σ

FIG. 6. Significance of the nestedness of real networks. The figure shows the empirical measure of nestedness against the average
value of nestedness in the generated statistical ensemble (red dots) for the 167 real mutualistic networks. The three panels correspond to
different kinds of mutualistic systems: (a) seed-dispersal, (b) plant-pollinator, and (c) plant-ant. In particular, the ant-plant mutualism is
where ants provide plants with services like defense from herbivores, pollination, and/or gathering of nutrients, while plants offer shelter
and/or food. The shadowed areas represent 1 (teal) and 2 (light gray) standard deviations of the mean. Further details about the number
of networks whose nestedness are within these boundaries are provided in Table I. A detailed significant test results in only three
networks having a statistical significant (in all cases under-represented) nestedness value. Overall, the results indicate that the nestedness
of these mutualistic networks is not significant.
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expectation value of nestedness measured by the NODF,
hNODFðBÞi�, and its standard deviation, for each empirical
network in our dataset. A comparison between the expected
value of nestedness calculated over the statistical ensemble
corresponding to each real network and the actual nested-
ness of the real network shows a striking agreement; see
Fig. 6. As reported in Table I, the absolute difference
between these two quantities is less than 1 standard
deviation for 100 out of 167 networks (59.9%), rising to
158 out of 167 networks (94.6%) if we account for 2
standard deviations. After performing a multiple testing
correction (see Appendix D), we find that only three out of
the 167 empirical networks show significant nestedness
(corrected p value< 0.01). The three of them, which are of
relatively small size (≤ 55 species), are found to be less
nested than predicted by the statistical ensemble.
Moreover, we verify that our results are not affected by

the shortcomings related to the decreasing fill factor by
repeating the above calculations using the index stable
NODF. In fact, our conclusions not only hold but are also
strengthened when using this metric, since we find 118 out
of 167 networks (70.7%) within a distance of 1 standard
deviation to the mean, and 162 out of 167 networks
(97.0%) within 2 standard deviations (see Appendix E).
Additionally, in order to ensure that our findings are not

an artifact of using the NODF metric, we perform the same

analysis for the spectral radius, as we explain in Sec. III C.
As shown in Fig. 7 and Table II, this supplementary
analysis produces results that are generally in agreement
with those reported above for the NODF metric. After
performing the multiple testing correction, we find that
22 out of 167 networks unexpectedly nested (corrected
p value< 0.01). Although this proportion is larger than the
one found by the NODF, we argue that, given the poor
performance of the spectral radius metric at fine scales, it is
not necessarily an indication of the significant nested
patterns but a consequence of the intrinsic limitations of
the metric.
Finally, we also verify that performing the measures

by sampling the ensemble and then computing the dis-
tribution of nestedness gives compatible results, both for
the NODF (see Appendix F) and the spectral radius (see
Appendix G).

V. NETWORK PROPERTIES DETERMINING
NESTEDNESS EMERGENCE

In light of the previous results, the next question to be
considered is whether we can determine which character-
istic of the degree sequences controls how nested a network
is. Taking into account that the degree distributions of
mutualistic communities have been reported to commonly
follow a (truncated) power law [57], we propose, as a
plausible candidate, the heterogeneity in the number of
contacts per species. Thus, our hypothesis is that for two
networks with identical number of species and connections
but diverse degree sequences, the most heterogeneous
one (taking into account both guilds) will be as well the
most nested.
To evaluate this conjecture, we make use of a self-

organizing network model that is devised with the aim of
optimizing the nestedness of a network [58] by rewiring
existing links (see Appendix H). After applying this

TABLE I. Results disentangled into communities showing the fraction of networks (abbreviated above as “ntws”)
whose discrepancy between the real and randomized nestedness is less than or equal to 1σ or 2σ. Nestedness is
measured with the NODF.

Type of community Fraction of ntws with jz scorej ≤ 1 Fraction of ntws with jz scorej ≤ 2

Plant-pollinator 82 out of 133 61.7% 126 out of 133 95.5%
Seed-disperser 16 out of 30 53.3% 28 out of 30 93.3%
Plant-ant 2 out of 4 50.0% 4 out of 4 100.0%
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Identity curve

FIG. 7. Significance of the nestedness of real networks mea-
sured with the spectral radius ρ. The figure shows the theoretical
average value of nestedness in the statistical ensemble against
the empirical measure of nestedness (red dots) for the 167 real
mutualistic networks. The shadowed areas represent 1 (teal) and 2
(light gray) standard deviations of the mean.

TABLE II. Fraction of networks whose discrepancy between
the real and randomized nestedness is less than or equal to 1σ or
2σ for nestedness measured by the spectral radius.

Fraction of ntws
with jz scorej ≤ 1

Fraction of ntws
with jz scorej ≤ 2

67 out of 167 40.1% 114 out of 167 68.3%
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algorithm to our empirical set of networks, we find that the
resulting degree sequences are, with respect to the original
ones, more heterogeneous and that the final networks are
more nested; see Fig. 8(a). This observation allows us to
bridge the gap between two structural features that have
been classically treated separately, although previous
works have already suggested their connection [16,39].
Interestingly enough, the relationship between a network’s
heterogeneity and nestedness also explains why dynamical
implications once attributed to nestedness like the sustain-
ability of communities with a large number of different
coexisting species [18] or the network’s structural stability
[19,20], have been recently successfully associated with
other properties such as the heterogeneity itself [32] or the
species’ degree [25,31].

Moreover, accounting for the heterogeneity offers some
further insight into the process of emergence of nestedness
out of the degree sequences. At first glance, it might not
be evident why our null model reproduces so well the
empirical nestedness. A priori, we naively expect that
the random ensemble contains both nested and non-
nested structures alike, in which specialists appear attached,
respectively, to generalists or to other specialists. Although
a given number of connections are certainly imposed
by the existence of supergeneralists as well as by finite-
size effects, usually there is still room for reshuffling
links (like in the “swapping algorithm” [40]). In terms
of mixing, we would say that, concerning specialists, both
assortative configurations (nodes have neighbors with
degrees similar to their own) and disassortative ones
(neighbors have dissimilar degree) are, in theory, feasible
(see Appendix I).

Why then does our algorithm generate disassortative
networks as shown in Fig. 8(b)? Here, the particularity
that we use a maximally entropic ensemble plays a crucial
role. Johnson et al. [59] showed that, in the case of
heterogeneous systems, disassortativity is generally more
entropic; that is, it is more likely as long as no external
pressures are at work. To put it simply, this occurs because
for a species with few interactions there exist many more
chances to engage with another species with numerous
connections than matching to a low-connected partner.
Therefore, the low significance of empirical nested patterns
reported here is directly related to the fact that the number of
mutualistic interactions per species is a highly hetero-
geneous quantity. Johnson et al. [39] also observed this
fundamental relationship among heterogeneity, disassorta-
tivity, and nestedness, yet using a finite-size configuration
model. In our null model, on the other hand, finite-size
correlations are decreased since the degree sequences
are allowed to vary, thus showing that the emergence of
nestedness is a genuine entropic consequence of degree
heterogeneity.

VI. DISCUSSION

The findings above are of utmost importance in at least
two fundamental aspects. First, they demonstrate that,
given the degree sequence of real networks, the observed
nestedness is not significant-—at least for almost all
networks here analyzed. Therefore, they show that nested-
ness is not an independent pattern, in sharp contrast to the
widely extended belief that it is so. In other words, these
results reveal that the observed nested structure of the

(a) (b)
2σ
1σ

FIG. 8. Determinants of nestedness. (a) Relative change in nestedness and the corresponding change in heterogeneity measured for the
set of 167 empirical networks and the average over the respective rewired ones. We use the rewiring algorithm described in Appendix H.
Nestedness is measured using the NODF metric, whereas the heterogeneity is measured through the variance of the degree sequence of
the unipartite adjacency matrix. We find a correlation index for a linear fit (excluding the top outlier) of R ¼ 0.88. This closely linear
relationship discovers a tight bound between nestedness and heterogeneity. (b) A comparison between the real observation of the degree
assortativity r (Pearson’s coefficient among degrees) and the average estimation in the statistical ensemble for the 167 networks of our
study. The fact that r < 0 for all values indicates that both real networks and the average of the randomized ensemble are naturally
disassortative.
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ecological communities studied is, in fact, a mere entropic
consequence of the heterogeneity of the degree sequence.
Second, regarding the long-standing controversies about
the use of a proper null model for nested networks [35], our
findings point out the need of incorporating the information
contained in the degree sequences. Moreover, our results
indicate that an appropriate null model is the set of
exponential random graphs for which the probability of
finding a graph having the empirical degree sequences is
maximized [43]. This approach exhibits at least two main
advantages with respect to previous null models. In the first
place, it overcomes the finite-size effects of the FF model,
which does not allow for a proper algorithmic randomiza-
tion [12,35,40], hence restraining too narrowly the explo-
ration of the phase space of null matrices. With respect to
models that preserved the degrees on average by construct-
ing a probability of interaction proportional to the species
degrees [60], it has been shown that this form of the
probability is subject to bias since it is not a maximum-
likelihood choice [45]. In fact, while exponential random
graph models have been extensively used in other fields like
sociology [61] or economics [44], their possible application
to ecological networks is still largely unexplored. Thus, we
propose that the methodology implemented here (along
with the theoretical expressions of the two first moments
derived for the NODF index and the spectral radius) could
be a general tool to asses nestedness’ significance.
Concerning the question of the emergence of nestedness,

it is worth mentioning that, in recent years, nestedness has
been proposed to arise either as an ecological feature that
provides an optimal balance between competition and
mutualism [18] or as a by-product of processes such as
the assembling rules [62–64]. Our results imply that no
selective pressure is required for nestedness to appear, which
does not exclude, however, that such a pressure could have
shaped the degree sequences. Even though such conclusions
do not invalidate nestedness’ usefulness as an indicator of
stability or robustness, we like to underline that our findings
clearly demonstrate that the degree sequences are the lower-
order determinants of nestedness. Accordingly, the nested
pattern is notmore informative of the evolutionary history of
real systems than their degree sequences alone.
Furthermore, it is important to recall that the networks

of our study are often both spatially and temporally
aggregated. Given the significant variability of species’
interactions along time [65] and space [66], the fact that
nestedness emerges from a local property like the degrees is
a parsimonious explanation. Indeed, degree heterogeneity
is a general feature, not only characteristic of the aggre-
gated network but also of its spatial and temporal counter-
parts. On the other hand, if nestedness were an independent
pattern, its emergence would require a specific selection of
interactions across time and space, which is a much more
intricate process and hence a less simple justification of the
origin of nestedness.

In concluding, these results highlight the interest of
focusing on the ecological and evolutionary mechanisms
that have led to the coexistence of both specialized and
generalized mutualisms in the same community [67,68],
giving rise to the observed high heterogeneity of the degree
sequences. Understanding the way in which structural
properties emerge in ecological communities is a funda-
mental long-standing challenge that can provide critical
clues to depict ecosystems’ past assembling, present func-
tioning, and future responses. Finally, given that nested
patterns have been recurrently detected across systems as
diverse as biological, social, and technological networks, our
findings are expected to have relevant implications beyond
the present analysis of ecological mutualistic communities.
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APPENDIX A: DETAILS ON THE MAXIMUM
ENTROPY AND MAXIMUM-LIKELIHOOD

ENSEMBLE

This Appendix provides additional details on how we
constructed the statistical ensembles. An ensemble is a
set of networks across which unconstrained features vary
randomly and over which we perform statistical measures.

1. General randomizing scheme

We denote a network in the ensemble by its graph G,
and we callG� the graph corresponding to the real network.
We characterize the ensemble by the probability of the
occurrence of each of its elements PðGÞ. Following
Refs. [42,43], we determine the maximum entropy ensem-
ble such that a set of constraints are satisfied on average,
thus allowing slight mismatches across the ensemble. This
methodology is equivalent to constructing a grand-canoni-
cal ensemble (opposite of the microcanonical ensemble,
which corresponds to the FF null model, where the
constraints need to be exactly met).
We start by maximizing the Shannon-Gibbs entropy

defined as

S ¼ −
X
G

PðGÞ lnPðGÞ; ðA1Þ

where the sum runs over all the graphs G in the ensemble.
This maximization leads to the exponential random graph
model, which reads
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PðG=θ⃗Þ ¼ e−HðG;θ⃗Þ

Zðθ⃗Þ
; ðA2Þ

with H being the graph Hamiltonian such that HðG; θ⃗Þ ¼
θ⃗ · ⃗CðGÞ, and being Z the partition function Z ¼ P

e−HðGÞ.
The set of variables θ⃗ are the Lagrange multipliers
resulting from the maximization of Eq. (A1) under
the chosen constraints coded in the components of the
vector C⃗.
Second, we proceed to calculate the exact values of

the Lagrange multipliers. Following Squartini and
Garlaschelli [43] and Garlaschelli and Loffredo [45],
we determine these parameters by imposing that the
properties of the real network are found in the ensemble
with maximum probability. Indeed, we may write the log-
likelihood of observing the real network Lðθ⃗Þ ¼
ln½PðG�jθ⃗Þ� as

Lðθ⃗Þ ¼ −HðG�; θ⃗Þ − lnZðθ⃗Þ: ðA3Þ
Maximizing this quantity thus allows us to fix the θ⃗�

values. This second requirement ensures not only that the
constraints are met on average but also that they are the
most likely ones, which is a warranty of nonbias [43].

2. Ensemble for a bipartite network with
constrained degree sequences

We now explain how the randomizing scheme by
Squartini and Garlaschelli [43] applies to our specific
problem, namely, a bipartite network subject to local
constraints. The scheme has already been applied to study
international trade networks [44].
To begin with, we construct the Hamiltonian for a

bipartite network, whose bipartite matrix we call B. At
variance with the monopartite case, we have two degree
sequences (one for each of the guilds) which need to be
taken into account separately. Although the scheme is
equally valid for any bipartite network, for the sake of
clarity, we restrict our notation to the paradigmatic case of
plant-pollinator communities. Thus, we speak of systems
with NP number of plants and NA pollinating animals.
The degree sequences corresponding to the observed
network are represented, respectively, by v⃗ and h⃗, where
vp is the number of visiting animal species that a plant
species p receives (degree of the plant species p), while ha
is the number of different hosting plant species interacting
with the pollinator species a (degree of the animal
species a).
In order to enforce both distributions as constraints, we

introduce two sets of Lagrange multipliers, α⃗ for plants and
β⃗ for animals. Subsequently, the graph Hamiltonian can be
written as

HðB; α⃗; β⃗Þ ¼ α⃗ · v⃗þ β⃗ · h⃗: ðA4Þ

The introduction of the Lagrange multipliers means that
the probability Eq. (A2) of encountering a bipartite graphB
in the exponential random graph ensemble becomes

PðBjα⃗; β⃗Þ ¼ e−α⃗·v⃗−β⃗·h⃗P
Be

−α⃗·v⃗−β⃗·h⃗
: ðA5Þ

As in Ref. [43], we introduce the variable change xp ¼
e−αp and ya ¼ e−βa . Then, the log-likelihood of encounter-
ing the real network degree sequences in the ensemble is

Lðx⃗Þ ¼
XNP

p¼1

vp lnðxpÞ þ
XNA

a¼1

ha lnðyaÞ

−
XNA

a¼1

XNP

p¼1

lnð1þ xpyaÞ; ðA6Þ

which we need to maximize in order to find the optimal
variables x⃗� and y⃗� that ultimately define our ensemble.

Indeed, by requiring that ∇⃗Lðx⃗; y⃗Þ ¼ 0⃗, we obtain the
following set of equations:

vp ¼
XNA

a¼1

xpya
1þ xpya

for p ¼ 1;…; NP; ðA7Þ

ha ¼
XNP

p¼1

xpya
1þ xpya

for a ¼ 1;…; NA: ðA8Þ

It can be easily shown that these equations are equivalent
to imposing that the average degrees (right-hand side)
are equal to the degree sequence from the real network
(left-hand side).

3. Probability matrix of interactions

It has also been shown in Ref. [43] that in the case of
local constraints, the probability of finding a network B in
the ensemble can be factorized in terms of the probability of
the existence of a link between a plant species “p” and
animal species “a,” which we call ppa. In effect, by taking
ppa ¼ ½ðxpyaÞ=ð1þ xpyaÞ�, replacing it into Eq. (5), and
doing a little algebra, one finds

PðBjα⃗; β⃗Þ ¼
Y
p;a

ppa
bpað1 − ppaÞ1−bpa ; ðA9Þ

where bpa is the (p,a) element of the bipartite matrix
of interactions. Then, using Eq. (A9), it is almost
immediate to see that hbpai ¼ ppa, thus, in turn, hbpai ¼
½ðxpyaÞ=ð1þ xpyaÞ�. This shows that, as we said, the right-
hand side of Eqs. (A7) and (A8) is a sum over a column or
row of expected values of the randomized bipartite matrix.
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We also note that the possibility of factorizing PðBjα⃗; β⃗Þ
essentially entails that the existence of a link between
any pair of species of different guilds constitutes a set of
independent events. This factorization is a consequence of
the fact that the considered constraints concern average
values of local quantities (here the degrees). In this way,
one obtains the exact expected randomized matrix of
interactions:

hB�i ¼

0
BBBBBBBBB@

p11 p12 … p1a … p1NA

p21 p22 … p1a … p2NA

… … … … … …

pp1 pp2 … ppa … ppNA

… … … … … …

pNP1
pNP2

… pNPa … pNPNA

1
CCCCCCCCCA
:

ðA10Þ

APPENDIX B: COMPUTATIONAL
IMPLEMENTATION

Here we give the numerical details on how we obtain the
Lagrange multipliers x⃗� and y⃗� that define the correspond-
ing statistical ensembles of the empirical networks. The
determination of these multipliers might be achieved
following either of two procedures: by directly maximizing
the log-likelihood in Eq. (A6) or by solving the nonlinear
coupled set of Eqs. (A7) and (A8). While in this section we
present our particular implementation for bipartite graphs,
there is a MATLAB package developed by Squartini et al.
[47] which numerically solves this optimization problem
for a variety of types of unipartite graphs and constraints
[69]. The main difference between their implementation
and our approach lies in the numerical functions used to
find the optimal Lagrange multipliers. Whereas their pack-
age uses a local optimizing function [71], we make a
special effort to ensure that the maxima we find are global,
in particular, by combining the use of a global search
algorithm with a local optimization function repeated over
a large set of pseudorandom initial conditions.

1. Direct maximization of Eq. (A6)

We numerically optimize the log-likelihood by simulated
annealing [73–75]. Given the pseudoaleatory character of
this approach, which allows us to overcome the barriers
separating local minima, it is extendedly used in situations
in which the coexistence of several local optima is
expected.
More precisely, in our case we need to take into account

that in Eq. (A6) the degrees may be degenerate. This means
that nodes of the same guild having identical degrees satisfy
equivalent equations, hence, necessarily bearing the same
solution. To account for this degeneracy, we introduce a

multiplicity factor mp for plants and ma for animals. If we
call redP and redA the redundancy for plants and for animals
(namely, the corresponding numbers of repeated degrees),
then the system can be redimensionalized to N0

P ¼ NP −
redP and N0

A ¼ NA − redA. This procedure is an extension
to the bipartite case of the redimensionalization proposed
in Ref. [45] for a unipartite network. Consequently, the
log-likelihood might be rewritten as

Lðx⃗Þ ¼
XN0

P

p¼1

mpvp lnðxpÞ þ
XN0

A

a¼1

maha lnðyaÞ

−
XN0

A

a¼1

XN0
P

p¼1

mpma lnð1þ xpyaÞ: ðB1Þ

Although, in analytical terms, the original expression in
Eq. (A6) and this latter one are obviously equivalent, from a
computational point of view, reducing the number of
variables enhances the algorithm’s efficiency. In addition,
imposing from the beginning such an identity between
variables improves the accuracy of the program.
We program a standard version of the simulated

annealing algorithm. The random number generator we
use is the one by Toral and Chakrabarti [76], with a starting
temperature of T ¼ 103, a reduction factor of the temper-
ature of RT ¼ 0.85, and a total number of updates per fixed
temperature of 2 × 104. The algorithm stops when five
consecutive iterations differ in less than a parameter
tol ¼ 10−6. Furthermore, we run the algorithm ten times
per network with different random seeds in order to
produce independent sequences of explorations. We con-
sider that the global optimum is reached when all the runs
converge to the same solution.

2. Solution of the system given
by Eqs. (A7) and (A8)

We solve the set of equations by means of a local
deterministicalgorithmknownas themodifiedPowellhybrid
method. In particular, we use the MINPACK library [77] for
FORTRANavailable online [78]. Thismethod finds the zero of
a nonlinear system by exploiting its Jacobian, which we
analytically calculate and implement into the program.
As before, we redimensionalize the problem to N0

P
equations for plants and N0

A equations for animals, which
now read

vp ¼
XN0

A

a¼1

maxpya
1þ xpya

for p ¼ 1;…; N0
P; ðB2Þ

ha ¼
XN0

P

p¼1

mpxpya
1þ xpya

for a ¼ 1;…; N0
A ðB3Þ

We implement these equations and their Jacobian and
run the algorithm with a tolerance tol ¼ 10−11 (as defined
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in the source code). The possibility of exploiting the
gradient provides, in general, a greater local accuracy than
the simulated annealing technique. However, its short-
coming lies in the risk of getting trapped in local optima,
from which, due to its deterministic nature, it is unable to
escape. To compensate for this drawback, we perform a
significant sampling of the space of initial conditions by
running 104 iterations of the algorithm, each with a
different random selection of starting points covering as
well distinct ranges. However, due to the encounter of
rough, rather accidental configuration surfaces, the modi-
fied Powell hybrid method is not always able to converge to
a solution. The rate of success is approximately 50%.
To finally ensure that we find the global maximum, we

compare the outcomes of the various independent runs.
Moreover, for the cases when the Powell algorithm con-
verges we also compare the solutions obtained for both
methods which amounts to a total of ten runs for the
simulated annealing and 104 for the Powell hybrid method.
In all these cases, the same maximum is found.
We also check that the constraints are correctly met with

a relative precision between 0.01% and 10% by computing
the expected degrees from Eqs. (A7) and (A8) and
comparing to the corresponding values of the observed
networks. The worst case of 10% is typically caused by
discrepancies in low degrees, generally the most sensitive
to imprecisions in the elements of the randomized matrix
(since the matrix elements of low-degree nodes are usually
very small; see Fig. 2 in main text as an example).

APPENDIX C: ANALYTICAL EXPRESSIONS
OF THE FIRST TWO MOMENTS

OF THE STABLE NODF

The definition of the stable NODF (also named SNODF)
is, as proposed by Mariani et al. [49], analogous to the
classic metric NODF except for the decreasing fill term.
In particular, keeping the same notation as in the main text,
it reads

SNODFðBÞ ¼ 1

K

XNP

i<j

PNA
a¼1 biabja

vj
þ 1

K

XNA

k<l

PNP
p¼1 bpkbpl

hl
;

ðC1Þ

where K ¼ NPðNP − 1Þ þ NAðNA − 1Þ
200

: ðC2Þ

Note that the definition above requires the network B to
be ordered by decreasing degree in both guilds. Having said
that, the primary advantage of removing the decreasing fill
factor is that the contribution of pairs of rows or columns
with exactly the same degree is taken into account. This is
specially important for networks where the fraction of
repeated degrees is significant either because the number of
nodes in one or both guilds is small or because the density
of links is high. Nevertheless, for the majority of networks

in our dataset, the values of nestedness measured by NODF
and SNODF are closely similar.
The analytical expression for the average of the SNODF

over the ensemble is

hSNODFðBÞi� ¼ 1

K

XNP

i<j

�PNA
a¼1hbiaihbjaiPNA

a¼1hbjai

�

þ 1

K

XNA

k<l

�PNP
p¼1hbpkihbpliPNP

p¼1hbpli

�
: ðC3Þ

The standard deviation of the SNODF is given by the
analogues of Eqs. (11) and (12), where the partial deriv-
atives in Eq. (12) correspond to

K
∂ SNODFðBÞplants

∂brc ¼
XNP

j¼rþ1

bjc
vj

þ
Xr−1
i¼1

bic
vr

−
Xr−1
i¼1

XNA

a¼1

biabra
vr2

;

ðC4Þ

K
∂ SNODFðBÞanimals

∂brc ¼
XNA

l¼cþ1

brl
hl

þ
Xc−1
k¼1

brk
hc

−
Xc−1
k¼1

XNP

p¼1

bpkbpc
hc2

:

ðC5Þ

APPENDIX D: SIGNIFICANCE TESTS

We quantify the significance of the nestedness measures
using the z-score index, which for a general property x
reads ½ðx� − hxiÞ=σx�. For us, hxi is the average nestedness
computed in the ensemble, either analytically or by explicit
sampling, and we compare it with the empirical observa-
tions x�. The standard deviation is σx. Given that the
nestedness values are Gaussian distributed in the random
ensemble, the z scores can be directly related to p values.
We perform a multiple test correction which allows us to
account for the fact that as the number of statistical tests
increases, so does the probability of finding rare events
[79]. Thus, when considering the multiple comparisons, we
can prevent overstating the number of significant discov-
eries. It is pertinent to apply this technique here since the
167 cases studied are evaluated under the same null
hypothesis, and all of them follow a normal distribution.
We employ the false discovery rate method, in particular,
the Benjamini-Hochberg procedure which applies to inde-
pendent tests [79]. The correction is numerically carried out
using the STATSMODEL package in PYTHON [80].

TABLE III. Fraction of networks whose discrepancy between
the real and randomized nestedness is less than or equal to 1σ or
2σ for nestedness measures performed with the stable NODF.

Fraction of ntws
with jz scorej ≤ 1

Fraction of ntws
with jz scorej ≤ 2

118 out of 167 70.7% 162 out of 167 97.0%
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APPENDIX E: STATISTICAL MEASURES
OF THE STABLE NODF

We compute the real nestedness and its statistical
significance using the stable NODF for the 167 networks
in our dataset. In particular, for each real network we
calculate the estimated average and the standard deviation
using the analytical expressions in Eq. (C3)–(C5). Figure 9
and Table III show that real nestedness is not statistically
significant when measured by the stable NODF.

APPENDIX F: STATISTICAL MEASURES
OF THE NODF ON A SAMPLING

We also perform the statistical measures of the NODF
on a sampling of the ensemble. The sampling is formed
by 104 networks generated using the link probabilities in
Eq. (A10) for each one of the 167 empirical networks.
As we can see in Fig. 10 and Table IV, the real value
of nestedness and the average over the sampling are
statistically compatible.

APPENDIX G: STATISTICAL MEASURES OF
SPECTRAL RADIUS ON A SAMPLING

We carry out as well the calculations for the expected
average and standard deviation of the spectral radius on a
sampling. To this end, we sample the statistical ensemble
by producing 104 networks. For each sampled network,
we compute the spectral radius ρ using the R package
RARPACK [52]. Finally, we calculate the average and the
standard deviation of the resulting distribution. Figure 11
and Table V show the comparison between the real value
of the spectral radius and the average computed over the
ensemble, which turn out to be statistically compatible.
It is important to remark that the sampling and the

theoretical approach provide slightly different measures of
nestedness when using the spectral radius. This is due to the
non-normalized character of the spectral radius, which sets
a dependence on both the size of the network and its
number of links. Indeed, a superior bound for the spectral
radius which depends on these quantities is given by Yuan
[81], who proposed that, for a connected graph A having N
nodes and L links, it is fulfilled that ρðAÞ ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L − N þ 1
p

.
In fact, when sampling the ensemble, the number of links is
conserved on average, but the average number of nodes
with nonzero degree decreases. This means that the average
density grows and, consequently, so does the spectral
radius. This explains the difference between the measures
over the sampling and the theoretical ones and calls for
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FIG. 10. Comparison between the real measure of the NODF
and the average computed over the sampling formed by 104

networks for the 167 networks of our study.

TABLE IV. Fraction of networks whose discrepancy between
the real and randomized nestedness is less than or equal to 1σ
or 2σ for NODF distributions estimated on a sampling of the
ensemble.

Fraction of ntws
with jz scorej ≤ 1

Fraction of ntws
with jz scorej ≤ 2

108 out of 167 64.7% 150 out of 167 89.8%
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FIG. 9. Comparison between the real measure of the stable
NODF and its average in the ensemble estimated using an
analytical expression for the 167 networks of our study.
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FIG. 11. Comparison between the real observation of the
spectral radius ρðλÞ and the average estimated over a sampling
of the statistical ensemble formed by 104 networks for the 167
networks of our study.
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special caution when using the spectral radius to quantify
nested patterns.

APPENDIX H: SELF-ORGANIZING
NETWORK MODEL

In order to reorganize the original network into an even
more nested structure, we numerically implement the self-
organizing network model proposed by Burgos et al. [58].
This methodology keeps constant many aspects susceptible
to affecting the measure of nestedness, like the size and fill,
but modifies the degree sequences through the redistrib-
ution of connections. We rewire the links among species
following two simple rules: (i) When changing an inter-
action, the new partner must have higher degree than the
old neighbor, and (ii) if the proposed redistribution leaves
one of the two nodes with no interactions at all, we reject
the change. This operation is repeated until the system
achieves a frozen state in which no more reconnections are
accepted (we consider this happens when 103N consecutive
rejections occur, being N the number of nodes of the
network). The final frozen state is normally not perfectly
nested, since condition (ii) typically leads to configurations
which are not utterly optimal. To compensate for this
limitation, we carry out 103 independent rewiring oper-
ations for each network. We then average the target
properties, namely, nestedness (measured using the
NODF) and the variance of the joint degree sequence of
the two guilds.

APPENDIX I: STATISTICAL MEASURES OF
DEGREE ASSORTATIVITY

Assortativity is a network feature that quantifies to what
extent nodes tend to match other nodes that are similar
(or dissimilar) to them. Here, we use the notion of degree
assortativity. We follow the definition proposed by
Newman [82], which consists of a normalized correlation
coefficient between degrees. This eventually corresponds to
the Pearson correlation coefficient denoted by r, such that
r ¼ −1 indicates perfect disassortativity, r ¼ 0 no corre-
lation at all, and r ¼ 1 maximum assortativity.

In order to compute the statistical properties of this
quantity, we produce for each ensemble a sampling made
up by 104 networks. We then measure computationally
the assortativity of each sampled network using the
assortativity_degree function from the R IGRAPH package

in Ref. [83]. Figure 12 displays the anticorrelation between
the Pearson’s coefficient and nestedness, showing that,
in general, the more dissortativity a network is the more
nested it is. Finally, these measures allow us to calculate the
first and second moments of the assortativity for each
ensemble in our set.

APPENDIX J: DATA

In our study, we analyze 167 real interaction networks
from the Web of Life dataset [84]. This set consists of 133
plant-pollinator communities [85–130], 30 seed-dispersal
communities [131–148], and four plant-ant communities
[149–152]. Data sometime include information about the
link’s weights, but we convert all networks to binary
matrices.
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