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Abstract
Extensive Monte Carlo simulations are carried out in one, two and three dimensions for 

dynamic local load-sharing fiber bundle models following a power-law breaking rule with 

exponent . This exponent controls de degree of disorder of the bundle. The results are obtained 

using two methods of introducing disorder in the simulations. In the standard, or classical, 

Monte Carlo method the disorder is quenched; in the second, or radioactive, method the 

disorder is annealed. Both methods give identical mean time-to-failure values for systems of the 

same size. However, the radioactive method proves to be more efficient due to the smaller 

standard deviation of the probability distribution function of the time-to-failure. We take 

advantage of this efficiency to compute the asymptotic mean time-to-failure of large systems as 

a function of the degree of disorder, as parameterized by . Based on these extensive 

simulations, conclusions are drawn regarding the upper critical dimension of time-dependent 

local load-sharing fiber bundle models.
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1. Introduction
Fiber-bundle models are simple tools for simulating the failure of heterogeneous materials from 

a microscopic viewpoint. They consist of a number of elements (called fibers) arranged in 

parallel and submitted to a load, either constant or time-dependent. The breaking properties of 

the elements are statistically distributed according to a specific probability distribution, and the 

aim is to assess the breaking properties of the whole ensemble (the bundle). The name of these 

models derives from its initial close connection with the strength of bundles of textile fibers [1]. 

Since Daniels’ [1] seminal work, there has been a long tradition in the use of these models to 
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analyze the microscopic details of the failure process of disordered materials (for a recent 

review, see Ref. [2]).

It was clear from the start that FBMs can be constructed to simulate either the static strength of 

materials or their failure by fatigue. The first type of FBMs aims at mimicking laboratory tests 

where samples (i.e., bundles) are subjected to an increasing load and the objective is to estimate 

the minimum load necessary to break the complete bundle. The second type of FBMs simulates 

breaking by delayed fatigue: individual fibers are assigned an initial time to failure which 

depends on the instantaneous load on each fiber and thus on the load history. The first type of 

model is known as static FBMs and the second type as dynamic or time-dependent FBMs. In 

this paper we deal with this second type of fiber-bundle model.

One of the key ingredients of FBMs, both static and dynamic, is the load transfer mechanism. 

As individual fibers break, the load that they were supporting is transferred to other intact fibers 

in the bundle. Depending on which fibers take this load, three basic load-transfer rules are 

defined: equal load-sharing, local load-sharing and hierarchical load-sharing.

Equal load-sharing (ELS) models are of a mean-field type and ignore the stress enhancements 

near locally failed regions. The name “equal load-sharing” stresses the fact that the load born by 

a failing element is transferred equally to all the remaining elements. Daniel’s [1] seminal work 

on the strength of  bundles of textile fibers was carried out precisely on static ELS bundles, 

work that was followed by Phoenix [3] and McCartney and Smith [4], who provided an 

improved recursive formula for the exact calculation of the probability of failure of a large 

bundle, and compare it with three different asymptotic approximations. Time-dependent ELS 

bundles were initially tackled by Bernard Coleman in a series of papers that dealt with specific 

cases [5-10], which were cast into a general theory of time-dependent ELS bundles in Refs. [3, 

11]. 

The case where stress enhancements near the edge of the fracture are taken into account is 

known as the local load-sharing (LLS) rule, and this has proven much more difficult to address 

from an analytic point of view. In this type of load sharing only the nearest flanking survivors 

carry the extra load of a failed fiber. This was introduced in the literature by Scop & Argon [12] 

and followed by Refs. [13-18] in the context of static bundles. This load transfer scheme is 

useful for modeling heterogeneous materials where friction between elements reduces the re-

distribution of stress to a local neighborhood, and has found a large field of application in man-

made fiber-reinforced composites. The time-dependent version of these LLS models, to which 

this paper is dedicated, was first studied in Refs. [19-22], but advances here have been slow. 

Ref. [23] contains a review of the main findings together with new Monte Carlo simulations for 

a restricted version of the one-dimensional dynamic LLS model, whereas Ref. [24] provides 
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analytic, asymptotic and Monte Carlo results for a generalized version of the same one-

dimensional model.

A third type of load sharing scheme,  hierarchical load-sharing (HLS), was introduced in the 

literature by Turcotte and collaborators [25, 26]  in order to apply the fiber-bundle paradigm to 

large fractures (earthquakes). In the HLS scheme, the load of a failed element is redistributed 

via a hierarchical structure (fractal or Cayley tree) to a neighborhood whose size is of the same 

order as the size of the failed region. This seminal work was followed and expanded in Refs. 

[27, 28], who analyzed the properties of these static models by means of exact analytical 

techniques and by numerical simulations. Later, these results were extended to the time-

dependent HLS [29-32].

In summary, as there are two modalities of breaking (static and dynamic) and three basic 

schemes of load transfer (ELS, LLS, and HLS), this gives six different basic types of FBMs, 

each one with a different asymptotic behavior for large bundles: static ELS models have a 

critical point in the sense that there is a finite load c below which an infinite bundle does not 

break and above which it breaks with a probability of one [1]; time-dependent ELS models also 

have a critical point, in this case in the form of a finite time of breaking for an infinite bundle 

[5]. On the other hand, neither the static nor the time-dependent one-dimensional LLS models 

have a critical point: both the strength of the static 1D LLS models [17, 33] and the time-to-

failure of the time-dependent 1D models [22, 23] go to zero as the size of the bundle approaches 

infinity. Thus, we see that ELS and 1D-LLS models have a radically different asymptotic 

behavior, the former with finite strength and finite time to failure and the latter with zero 

strength and time to failure. In contrast, HLS models have a different behavior and, whereas 

static HLS models do not have a critical point (the strength tends to zero with increasing bundle 

size, albeit very slowly [28]), time-dependent ones do have a finite asymptotic time-to-failure, at 

least for systems under the power-law breaking rule and with small power-law exponents [29, 

31, 32]. 

Whereas in the ELS and HLS versions of the fiber-bundle models the spatial dimensionality 

does not matter in terms of the asymptotic behavior of the bundle, in the LLS case the 

dimensionality of the system plays a fundamental role and so we can define one-dimensional, 

two-dimensional, etc. versions of the LLS model. All the results summarized above pertain to 

the 1D version of the LLS models. This is so because little work has been done on higher 

dimensional time dependent LLS models regarding their asymptotic behavior (for static LLS 

models in higher dimensions, see, for example, Refs. [34, 35]). One exception in the case of 

time-dependent models is the work in Ref. [36], where the authors examined how the behavior 

of a bundle depends upon the range over which each fiber interacts with its neighbors, using a 
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function that smoothly interpolates between pure ELS and pure LLS schemes. They performed 

2D time-dependent simulations and found a crossover from mean-field (ELS) to short-range 

(LLS) behavior. In the region with LLS behavior they found a reduction of the time to failure 

with increasing system sizes, and they assumed that this behavior was identical to the 1D case, 

where the time to failure goes to zero as the size of the system increases to infinity. To the best 

of the authors’ knowledge, no 3D time-dependent LLS simulations have been performed. Thus, 

an important question that we want to answer in this paper is: How does the asymptotic 

behavior of higher dimensional time-dependent LLS models compare to their 1D counterparts?

From the computational point of view, two Monte Carlo methods have been devised to deal 

with dynamical FBMs. In the standard or classical Monte Carlo (cMC) method, a lifetime ti0 is 

assigned to each fiber at the beginning of the simulation drawn from a statistical distribution of 

lifetimes. Besides, each fiber bears a common load 0. When one of these elements fails, its 

load is transferred to the neighboring elements, increasing thus the load on them and reducing 

their initially assigned lifetimes. This process will be detailed in Section II. The point is that in 

the standard method the disorder is introduced at the beginning of the simulation, when the 

collection of lifetimes, ti0, is fixed. Afterwards, the process of gradual reduction of the bundle 

size until the failure of the last fiber is deterministic. Thus, in the standard Monte Carlo method 

the disorder is quenched.

In the other method, that we will call the radioactive Monte Carlo (rMC) method because of the 

parallelism between the process of radioactive decay and the fracture of a fiber bundle, the state 

of the system at any time is a vector containing the position of each surviving fiber and its 

individual load, i. An individual breaking width i is defined, which depends only on i. 

Besides, a total width  of the surviving collection of fibers is calculated. The time ii
  

taken by the next element to fail is , and the probability that the failed element be the ith 1  

element is . Thus, in this method it is necessary to compute a probability among the i ip   

set of surviving elements, i.e., to define successive random numbers, at each step of breaking. 

Therefore, in this second method the disorder is annealed. 

Our purpose in this paper is to perform extensive Monte Carlo simulations using the two Monte 

Carlo methods (cMC and rMC) with large time-dependent LLS bundles in order to compare 

their respective efficiency. As the simulations will be performed in one, two, and three spatial 

dimensions, from the results obtained we will be able to draw some conclusions about the upper 

critical dimension of the dynamic LLS models.

In Section II a brief description of the two methods of computation, the cMC and the rMC, is 

given. In Section III the efficiency of the two methods is compared. In Section IV the main 
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results concerning the asymptotic behavior of large LLS bundles in 1D, 2D and 3D are 

presented and discussed in terms of the upper critical dimension. Finally, Section V contains the 

conclusions.

2. The two computation methods

2.1. Standard Monte Carlo method
As already mentioned in the Introduction, in the standard Monte Carlo approach (e.g., [29]) the 

population of initial fiber lifetimes is fixed at the beginning of the simulation and the subsequent 

breaking process is deterministic. In other words, the disorder is quenched: a random lifetime is 

assigned to each individual element at the onset, drawn from a probability distribution. This is 

the only time during the whole simulation where random numbers are utilized.

The failure of each element depends on its initial random lifetime and on its load history (t). 

The probability P(t;) of a single fiber breaking at time t after suffering the external load history 

(t) is of the form [3, 9, 23, 29]:

. (2)  0
( ; ) 1 exp ( ) , 0

t
P t d t           

In this equation the function (x) is the hazard function and defines the shape of the probability 

distribution in terms of the integrated time. Inside the integral in Eq. (2) there is another 

quantity, (), which is known as the breaking rule or hazard rate for the instantaneous failure 

of fibers. Two different breaking rules are commonly used in fiber-bundle models: the 

exponential breaking rule [5], 

,  (3)0( ) e   

and the power-law breaking rule [7],

. (4) 0( )     

The exponential breaking rule is associated with time-dependent FBMs because it is the 

simplest form that gives first-order kinetics compatible with the weakest-link criterion [5]. The 

power-law breaking rule was introduced in the fiber-bundle paradigm to impart to Eq. (2) the 

commonly observed Weibull behavior of real materials under constant load [37], in conjunction 

with a hazard function (x) of the form

, (5)( ) , 0x x x  

where  is a positive constant known as the Weibull index. Thus, if we substitute Eqs. (5) and 
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(4) into Eq. (2), we have 

, (6) 00
( ; ) 1 exp ( ) , 0

t
P t d t

            
   


and if we consider a constant load history (t) = 0, then

, (7) ( ) 1 exp , 0P t t t   

which has the form of a Weibull function in the time variable. In what follows we will restrict 

ourselves to the case  = 1, transforming the Weibull distribution into an exponential 

distribution. Taking  = 1 renders a fiber memoryless [23], i.e., its remaining lifetime, given 

survival to time t,  is independent of its load history up to time t, making the model simpler.

In this paper we will assume that fibers follow a power-law breaking rule with exponent , Eq. 

(4).  This exponent is called the stress corrosion index in  rock physics literature, and is 

typically in the range 2-5 for manmade structures [29] and 10-50 for rocks [38].We will also 

take 0 = 1, making our load and time variables dimensionless.

Due to the load transfer from broken to unbroken elements, the individual load supported by the 

surviving elements grows during the progressive breakdown of the bundle, thus reducing their 

initial lifetimes and the time to failure of the whole bundle. This reduced time to failure of fiber 

i, tif, is given by

, (8)0 0
( )ift

it t dt 

where ti0 is the initial (random) lifetime of the i-th fiber and (t) is its load history. To write this 

equation we have already used the power-law breaking rule and  = 1 in Eq. (6). 

For solving the problem by the classical Monte Carlo method, each element i = 1, ..., N in a 

system of size N is initially assigned a random time to failure ti0 under load 0 = 1 based on Eq. 

(7). The actual time to failure tif of element i will be reduced below ti0 every time a load is 

transferred to this element due to the failure of other (neighboring) elements in the system. This 

reduced time to failure tif is obtained by requiring that Eq. (8) is satisfied under the new load 

(t). The tif corresponding to the last failing element, the N-th, is the lifetime of the bundle, Tf. It 

is clear that the dynamics of the simulation is deterministic once the N initial individual failure 

times have been assigned. Each realization of a random N-tuple of failure times will give a 

different time to failure Tf for the bundle, and the mean value of this time to failure is obtained 

by averaging a sufficiently large number of simulations.
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2.2. Radioactive Monte Carlo method
This method of solving time-dependent fiber-bundle models was introduced in Refs. [31, 39] in 

connection with the computer simulation of large HLS bundles, although the algorithm is 

general enough to be applied to any load-sharing scheme. In this method, as briefly summarized 

in the Introduction, the disorder is annealed as it is necessary to compute a probability of failure 

among the set of surviving elements in each step of the breaking process, and for that purpose a 

new random number is needed.

Initially, at t=0, the system is intact and all the N elements support a load (t = 0) = 0 = 1. The 

breakdown of the bundle proceeds sequentially, element after element, with the appropriate load 

redistribution after each breaking event, from i=1 until the breaking of the last, i=N, element. 

Thus, the i index denotes the successive N steps of the breaking process of the bundle. The point 

then is to determine how long it takes to break one element in the ith step. This will be denoted 

by i and its computation will be specified later. In consequence, the time of collapse of a 

bundle of N fibers is

. (9)
1

N

f i
i

T


 

In an arbitrary intermediate state i of breaking, the bundle will be in a configuration with i 

broken elements, and N−i unbroken elements bearing different individual loads j. The j index 

extends to all N−i unbroken elements of the bundle. Note that due to the conservation of the 

total load during the breaking and redistribution processes, at any i, .0 1

N i
jj

N N 


   

Now, in analogy with a radioactive process (where the concept of decay width is essential to 

compute the decay rate of an isotope with more than one decay mode), we define the breaking 

width of an unbroken element as 

. (10)j j
  

Note that j is the same thing as  in Eq. (4). The total breaking width of the configuration at 

step i can then be written as

. (11)
1

( )
N i

j
j

i




  

The lifetime of that configuration is simply the inverse of the total breaking width (in complete 

analogy with the lifetime of a radioactive isotope, which lifetime is the inverse of the total decay 

width):
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. (12)1
( )i i

 


Finally, the probability of breaking the unbroken element j is given by

, (13)( )
( )

j
jp i

i





which is, using again the terminology of radioactive decay, the branching ratio of the jth path. 

Thus, the choice of the specific fiber that breaks in each time step is made by generating a 

random number between 0 and 1. We see that using this approach we will obtain, as for the 

cMC, different values for the N deltas in each Monte Carlo simulation of the total breaking of a 

bundle. The mean value of a sufficiently large number of simulations provides, again, a 

convergent result for Tf, the lifetime of the system. But in contrast to the cMC, here one starts 

with a unique configuration, and the fluctuations in Tf arise from the different rupture paths 

resulting in each simulation.

2.3. The 1D-LLS algorithm and its generalization to higher dimensions
The 1D-LLS model we have implemented follows the procedure of, e.g., Newman and Phoenix 

(2001), in which the 1D fiber bundle is a linear chain of N fiber elements numbered from 1 to N. 

Each element is initially loaded with a load 0 (that is taken as unity) and the system evolves as 

explained in the previous two sections depending on which version of the Monte Carlo method 

is used. Once fiber failures have occurred, two different types of surviving fiber elements can be 

distinguished:  interior surviving fibers and boundary surviving fibers. Interior surviving fibers 

are surrounded by surviving elements and thus carry the same initial load 0; on the other hand, 

boundary surviving fibers are those that are nearest neighbors to one or two failed fibers, and 

thus carry the extra load inherited from them. In general, a boundary surviving fiber that has r 

failed fibers to its left and right carry a load 

. (14)1
2r
r

  

This expression is valid for all fibers except those at both ends of the chain. Rule (14) has the 

property of giving the same extra load to all the boundary fibers of a crack (a crack is simply a 

contiguous segment of failed fibers), thus enabling the computation of the load of each 

boundary fiber without the need of specifying the complete load history of each fiber. In other 

words, given the geometrical configuration of the system at a given instant, the load of every 

surviving fiber can be computed without invoking the load history. This symmetry is 

compatible with fracture mechanics and the concept of the crack intensity factor and, at the 

same time, simplifies the internal bookkeeping of the Monte Carlo algorithm.  
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This procedure can be generalized to two and more dimensions simply by redefining a crack as 

a cluster of contiguous failed nearest-neighbor fibers. In a 2D square lattice each fiber has four 

nearest neighbors while in a 3D cubic lattice it has six. Thus, the whole procedure can be boiled 

down to tracking  the clusters of failed fibers (that is, the crack population) and assigning to all  

surviving boundary elements the extra load coming from its flanking cracks (clusters) of total 

size n and perimeter , , where the perimeter  is the number of elements forming  , 1   n n

the boundary of the cracks. In a 2D square lattice the maximum number of flanking cracks is 

four, and in a 3D cubic lattice, six. For example, in a 2D square lattice a single broken element 

(crack o size n = 1) has a perimeter = 4 and, thus, , as expected. Obviously,  , 1,4 1 1 4    n

the necessity of tracking the evolution of all the clusters of failed fibers imposes a penalty on the 

computation needs of these higher dimensional LLS models in comparison with the simple, 

chain-like 1D-LLS bundles. However, the Hoshen-Kopelman cluster counting algorithm [40] is 

quite efficient and we have been able to simulate 2D and 3D systems with up to a million fibers 

with both Monte Carlo methods (cMC and rMC), although computing times are quite long, as 

the next section will show.

3. Comparison of the two Monte Carlo methods
Because the cMC and rMC are two different ways of solving a fiber bundle model by means of 

Monte Carlo simulations (where the key difference, although not the only one, pertains to the 

type of disorder, quenched disorder in the cMC and annealed disorder in the rMC), first we 

should check whether both Monte Carlo procedures deal with the same problem. As our main 

purpose here is to know how the mean time to failure, , changes with the system size ND fT

(where D is the dimensionality of the system), the fundamental variable for us is . We would fT

say that both implementations of the Monte Carlo algorithm solve the same problem if they give 

the same value for . fT

Before centering the analysis in the mean value of  for different  values and system sizes, fT

we show in Figure 1, as an example, the internal breaking dynamics of 2D 30x30 systems with 

=5. The graphs plot the time interval between successive breakings (the deltas), starting with 

the first element to break and ending with the last. The continuous line in each graph is the rMC 

result and the open circles the cMC result. The graph on the left is for one Monte Carlo 

realization, whereas the graph on the right is the average of 100 Monte Carlo realizations. Three 

conclusions are immediately apparent: (1) the rMC method has much less dispersion than the 

cMC method; (2) both methods give the same deltas; and (3) both methods give the same final 

time to failure. This last point is the most important for us and is quantified below for different 



10

spatial dimensions and different  values. 

Figure 1. Internal breaking dynamics of 30x30 time-dependent 2D LLS systems for  = 5. In the graphs 
the time interval between successive failures is plotted against the number of broken elements. The 
continuous line is the result of the rMC method and the open circles the result of the cMC method. The 
graph on the left is for one Monte Carlo realization, whereas the graph on the right averages 100 Monte 
Carlo realizations.

Table I summarizes the main results obtained with the two Monte Carlo implementations for 

LLS bundles of different sizes in 1D, 2D and 3D for two different values of the exponent  ( = 

2 and  = 20). The table gives the mean time to failure ( ) and its standard deviation (1), fT

together with the ratio of mean times to failure, , and the ratio of cMC rMC( ) ( ) ( )f f fr T T T

standard deviations , . As can be seen, the ratio of mean times to failure is cMC rMC( )r    

always close to 1.0 (maximum deviation of 9% for the 1D-LLS case with  = 20 and N = 

10000), which indicates that both Monte Carlo methods give essentially the same result for the 

variable . As for the standard deviation, the picture is quite different. The standard deviation fT

ratio r() is always larger than one and for specific combinations of D, N and , the ratio is very 

high, indicating that the rMC has a much smaller standard deviation than the cMC. This is 

explicitly shown in Figure 2 where the empirical distribution functions for 2D-LLS bundles of 

size N = 502 are depicted for  = 2 (left) and  = 4 (right). From the results gathered in Table I it 

can be concluded that the standard deviation ratio r() is larger for small systems and tends to 

diminish with system size (which is logical as the standard deviation should be zero for an 

infinite system). Also, r() is larger for smaller values of  (again a logical results as  

parameterizes the disorder in the fibers’ time to failure, and a larger  means a smaller disorder). 

Finally, r() is also larger for 1D systems than for 2D or 3D systems. The only exception to 

these rules is the 2D-LLS case for  = 2. Most of the difference in standard deviation between 

the cMC and rMC implementations comes from the much larger dispersion of delta values 

during the breaking of the system, as Figure 1 clearly shows. The much reduced dispersion in 
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delta values of the rMC produces much more stable time to failure values, which translates 

directly into lower standard deviations around the mean value (and also into lower standard 

errors).

Table I. Comparison of the mean time to failure and standard deviation for the two Monte Carlo methods.

 = 2  = 20
cMC rMC cMC rMC

Dim Size

 fT 1 fT 1
r( fT

)

r()
fT 1 fT 1

r( fT
)

r()

100 0.3476 0.054 0.3486 0.029 1.00 1.9 0.0108 0.011 0.0101 8.9e-6 1.07 1236
1000 0.2801 0.025 0.2779 0.022 1.01 1.1 0.00121 0.0011 0.00114 2.6e-5 1.06 42.3

1D-
LLS

10000 0.2354 0.0024 0.2320 0.0024 1.01 1.0 0.00023 0.0001 0.00021 3.4e-5 1.09 2.9
102 0.4872 0.0056 0.4871 0.0037 1.00 1.5 0.0134 0.011 0.0133 0.00053 1.01 20.7
502 0.4782 0.010 0.4781 0.0011 1.00 9.1 0.0021 0.0009 0.0021 0.00051 1.00 1.8

2D-
LLS

1002 0.4778 0.0059 0.4778 0.0006 1.00 9.8 0.0013 0.0005 0.0013 0.00036 1.00 1.4
53 0.4990 0.05 0.4989 0.0015 1.00 33.3 0.01897 0.010 0.01894 0.0013 1.00 7.7

103 0.4945 0.018 0.4945 0.0009 1.00 20.0 0.00928 0.002 0.00929 0.0014 1.00 1.4
3D-
LLS

203 0.4940 0.004 0.4939 0.0003 1.00 13.3 0.00567 0.001 0.00599 0.0009 0.95 1.1

Figure 2. Comparison of the empirical distribution functions of the two Monte Carlo methods for two 
different values of the exponent  in the 2D-LLS case.

Table II summarizes the efficiency differences between the cMC and rMC simulation methods 

as applied to time-dependent LLS bundles. We define the efficiency of a method as the number 

of simulations that must be performed, for a given N and , to achieve a relative error of 0.1% in 

the mean value of the time to failure, . From the standard error of the mean, SE, which gives fT

the absolute error, we can compute the relative error by dividing the standard error by the mean 

value, SE/ . If we want this relative error to be 0.1% = 0.001, then we set SE/  = 0.001, and fT fT

recalling the definition of standard error, , where SD is the standard deviation and SE SD n

n the number of simulations, we have = 0.001 and thus:0.1%( )fSD T n

. (15)
2

0.1%
SD

0.001 f

n
T

 
   

 

This quantity is the one given in Table I, together with the time per simulation, tps, in seconds, 
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for both Monte Carlo methods and two different values of the  exponent,  = 2 and  = 20.

As the tps for cMC and rMC are very similar, the difference in efficiency between both MC 

methods stems mainly from the difference in standard deviation, as Figure 2 clearly shows.

Table II. Number of simulations to reach an error of 0.1% in the mean time to failure (n) and time per 
simulation (tps) in seconds. The efficiency ratio  is (ntps)cMC/(ntps)rMC.

 = 2  = 20
cMC rMC cMC rMC

Dim Size

n tps n tps  n tps n tps 
100 24,367 0.0011 7063 0.0011 3.4 953,982 0.0027 0.60 0.0020 2.1e6

1000 7989 0.031 6324 0.028 1.4 818,131 0.17 370 0.104 3614
1D-
dLLS

10000 10,767 2 10,550 2.15 0.9 185,694 14.1 40,800 8.77 7.3
102 13,371 0.0012 56 0.0012 239 643,134 0.0026 1596 0.0026 403
502 540 0.2 6.0 0.18 100 194,700 0.93 56,898 0.932 3.4

2D-
dLLS

1002 153 3.1 1.6 2.96 100 140,990 14.8 79,149 15.13 1.7
53 10,597 0.0018 14.5 0.0016 822 261,366 0.0034 4809 0.0026 71

103 1357 0.057 3.1 0.037 674 72,317 0.15 22,454 0.102 4.7
3D-
dLLS

203 58 3.18 0.44 2.37 177 46,125 11 24,938 6.26 3.2

4. Discussion: Critical dimension, illusion or reality?
It is clear that in load-transfer models, the larger the number of fibers that receive the load from 

a failing element (i.e., the load-transfer neighborhood), the more stable the system is. In LLS 

models the load-transfer neighborhood is related to the spatial dimension of the system, and in 

the HLS models to the coordination of the Cayley tree [29]. This means that the same LLS 

model in two spatial dimensions is more stable than in one spatial dimension and, 

correspondingly, the same models in three dimensions are more stable than in one or two 

dimensions, etc.

In 2D-LLS models, this was put in evidence in a series of papers by Herrmann and 

collaborators, both in static [41] and dynamic [36, 42] FBMs. It was assumed that the load 

transfer function had a variable spatial range parameterized as , where add is the load add r 

transferred to a neighbor element  and  the exponent that controls the interaction range: as 0 

the ELS case is recovered and as  the LLS case is recovered. In this model the two regimes 

are separated by c  2. When  < c the system has a large load-transfer neighborhood and 

behaves as an ELS bundle, whereas for  > c the system has a small load-transfer neighborhood 

and its behavior is that of an LLS bundle, with a rather abrupt transition between both regimes. 

However, the number of fibers that share the load of a failing element is not the only crucial 

factor regarding the stability of these models. The load enhancement induced near the fractures 

together with the assumed power-law behavior of the breaking width,  = , lead to a fast 

collapse of the bundle, especially for large values of the exponent . In other words, it is not the 

same to assume  = 2 as to assume  = 10. The increase in this parameter can give rise  not  



13

only to quantitative changes in the behavior of the bundle but also to qualitative changes. The 

essential role played by a parameter like  in models close in spirit to FBMs can be seen in, for 

example, in Refs. [27, 43, 44]. If instead of using the power-law breaking rule, Eq. (4), one uses 

the exponential breaking rule, Eq. (3), the risk of fast, almost instantaneous failure can be even 

more extreme. 

Keeping in mind these general thoughts regarding the key role that a parameter like  can have 

in the fracture of disordered materials, we will now describe the behavior of time-dependent 

LLS bundles as a function of   (which parameterizes the degree of disorder) and the spatial 

dimension D.

Figure 3. Asymptotic behavior of dynamic 1D-LLS systems for four different values of . Simulations 
have been performed with the rMC method.

In Figure 3, (1/Tf)1/(-1) is plotted against the system size (in log scale) for four different values of 

 in 1D-LLS bundles. Although there is no exact formulation of the shape of the distribution 

function for the bundle lifetime, it is known that the mean time to failure of time-dependent 1D-

LLS models goes to zero as 1/lnN [22, 23]. In Ref. [23] the authors give approximate 

asymptotic results for the size effect on the mean bundle lifetime  for time dependent 1D-fT

LLS under the power-law breaking rule and  = 1 (and for arbitrary  in Ref. [24]):

. (16)
1

1
0

12
lnfT

N


       

 

From this equation it is immediately clear that a plot of  versus lnN is a straight line 1 ( 1)(1 )fT 

with a slope . However, this slope is only reached for very large bundles and the 11
2 ( 1) 

actual slope for finite bundles has a correction (1+N), where N depends both on N and , 

tending to zero when N but increasing, for a given N, when  increases. This correction 
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introduces a curvature in the  versus lnN plot, as Figure 3 shows.  The simulation 1 ( 1)(1 )fT 

results shown in the figure are consistent with the size-dependent slopes predicted by Eq. (16) 

with the (1+N) correction, confirming that the rMC method gives the same mean time to failure 

as the cMC method.

 Figure 4 shows the simulation results for the 2D-LLS case. Although for 2D systems there is no 

analytical prediction of the asymptotic behavior of the time-dependent LLS model, we have 

used the same scaling for the plot axes as in Figure 3 in order to compare the asymptotic 

behavior of the 1D- and 2D-LLS bundles. What we see is a crossover from a behavior similar to 

the 1D-LLS systems for large values of  (>6), to an asymptotic behavior where 1 ( 1)(1 )fT 

tends to reach a plateau. In other words, this crossover signals a change from a zero to a non-

zero time to failure for infinite systems. This small- behavior is reminiscent of the behavior of 

dynamic ELS systems, whose time to failure for infinite systems is finite and equal to 1/. For 

example, for  = 2, the time to failure of an ELS bundles is 0.5 (and thus ),  1 ( 1)(1 ) 2fT  

whereas the asymptotic time to failure of a 2D-LLS bundle is 0.4778  0.0001,  4.5% less (

= 2.093  0.0001).  In Figure 5 we have plotted only the case  = 2 in order to see 1 ( 1)(1 )fT 

more clearly the plateau reached by the time to failure in systems with large disorder. The left 

graph plots the evolution with respect to variable  and the right graph in terms of the 1 ( 1)(1 )fT 

original variable . In both cases it is clear that the horizontality of the curve for N > 10,000. fT

Figure 4. Asymptotic behavior of 2D-LLS bundles for increasing values of , from  = 2 to  = 20. Note 
the apparent change in asymptotic behavior for -values in the range 4-6.
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Figure 5. Asymptotic behavior of a 2D-LLS bundle with  = 2. The left plot shows the trend in the 1/Tf 
scale (in which 1D-LLS systems plot as straight lines with positive slope), and the right plot in the simple 
Tf scale (in which the 1D-LLS systems tend to zero). It is obvious that the behavior shown for the  = 2, 
2D-LLS systems is radically different.

Finally, we have performed Monte Carlo simulations in 3D for three different values of :  = 2 

and 4 as representative of high disorder materials and  = 20 as representative of low disorder 

materials. Figure 6 plots the asymptotic behavior for the three  values. As was the case for 2D-

LLS bundles, the  = 2 and  = 4 simulations tend to a constant mean time to failure as the 

system size is increased. For N = 203 systems the time to failure for  = 2 reaches a plateau at Tf 

= 0.4939  0.0001 or = 2.0247  0.0001. This value of Tf  is only  1.2% smaller than 1 ( 1)(1 )fT 

the asymptotic time to failure for an ELS bundle with the same . If we remember that 2D-LLS 

bundles have an asymptotic mean time to failure of Tf = 0.4778  0.0001 for  = 2, we see that 

the increase in spatial dimension brings the asymptotic time to failure closer to the mean field 

case, for which Tf = 1/ = 0.5. In the case of  = 4 we have a similar picture: the 3D simulations 

give an asymptotic time to failure of Tf = 0.22784  0.00002 or = 1.63726  0.0005, 1 ( 1)(1 )fT 

whereas the ELS value is Tf = 1/ = 0.25., or  = 1.5874; i.e., the LLS value is 9.7% 1 ( 1)(1 )fT 

smaller than the ELS one. For comparison, the 2D asymptotic time to failure for  = 4 is Tf = 

0.18304  0.0002, a 36% smaller than the ELS value. These results gives weight to the idea that, 

at least for small- bundles, D = 2 seems to be the critical dimension of time-dependent LLS 

bundles under the power-law breaking rule with an exponential hazard function (i.e.,  = 1 in 

Eqs. (5), (6) and (7)).

The  = 20 case (Figure 6), in contrast, has an asymptotic behavior reminiscent of the one- and 

two-dimensional cases (see Figure 3 and Figure 4), with a monotonic increase in the inverse 

mean time to failure as the system size is increased, with no  sign of a plateau.  
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Figure 6. Asymptotic behavior of 3D-LLS bundles for three different values of . The left axis 
corresponds to  = 20 and the displaced right axis to  = 4.

5. Conclusions
From the simulations performed in 1D-, 2D-, and 3D-LLS bundles, we draw a first conclusion: 

in the computation of time-dependent LLS models the radioactive implementation of the Monte 

Carlo method (rMC) is more efficient that the classical Monte Carlo method (cMC). The higher 

efficiency of the rMC is mainly due to the smaller standard deviation associated with the 

computation of the mean time to failure, .fT

Regarding the second question posed in the Introduction about the existence or not of a critical 

dimension in these models, our conclusion cannot be firm. Our results indicate that 2 seems to 

be a critical dimension for low values of  (i.e., large levels of disorder), but not for high values 

of  (i.e., small levels of disorder). This conclusion also holds for 3D simulations.

Retrospectively, this second conclusion leads us to rethink old beliefs. For example, in Ref. [32] 

we obtained a convincing numerical result indicating that time-dependent HLS bundles had a 

critical point, that is, a non-zero time to failure for infinite systems. In contrast, our results here 

regarding  indicate that the existence of a critical point for  =2 does not guarantee the 

existence of a critical point for larger values of .

After having explained the two Monte Carlo methods, it is clear that one could start a simulation 

using the cMC implementation as a first stage and, at a given point in the breaking process, pass 

on to the other implementation and finish the breaking of the bundle with the rMC. The 

information about the positions of the surviving elements and their loads as obtained with the 

cMC, together with the time elapsed since the beginning of the process, would constitute the 

initial conditions for the second stage of this hybrid method.
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