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Abstract

Nowadays sensors are implemented in countless of actual scenarios ranging from se-

curity to entertainment applications. They generate a huge amount of transmissions

within the network they belong to, resulting in a costly communication e↵ort. In

order to optimize the transmission process, an event-based system – instead of the

conventional periodic approach – should be used. In this sense, several challenges

appear when multiple sensors are involved at the same time, where new issues about

their event-criteria arise, i.e., how could sensors compare their observations to make

a transmission decision. To this e↵ect, communication between sensor nodes is to

be studied seeking to utilize information in a profitable way. In this work, di↵erent

multisensor network structures are to be compared, i.e., star, chain, and hierarchical

topologies. Finally, quality will be deeply discussed in terms of estimation’s quality

degradation due to the proposed joint trigger criteria as compared to independent

event triggers.
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CHAPTER 1

Introduction

Our century has evolved towards technology involving Internet and telecommuni-

cations in every single step that we take. Our daily life could not be anymore

understood without new technologies, not only playing an important role in our

lives but also being indispensable: what would we do right now without them?

Networks are the actual foundation for our modern digitalized world, working silently

in the background as a huge and apparently infinite infrastructure. Communica-

tions, Internet, everything runs over networks. This work especially focuses on its

information generators, the actual agents that produce thousands of millions of data

units: sensors.

Sensors are the starting points of networks, the information collecters. They measure

real world values to be further on processed on control elements or intelligent units.

Sensors can communicate between each other, with other network elements, or even

with humans. The goal of this research is to improve the communication between

sensors and its processing units, reducing the transmission rate in order to save

constrained resources such as computing power, channel bandwidth, or energy.

As we know, changes in real world do not happen periodically which means that

transmitting sensor’s information in this way leads to an unjustified waste of the

above mentioned resources. Therefore an event-based approach was proposed in [1],

where transmissions only take place when significant real changes occur. This new

idea changes completely previous research directions and turns to a completely dif-

ferent strategical point of view: how to accurately define an event, such that no

important information is missed and actions are still taken in time. For this pur-

pose, various triggers for data transmission were examined, which are to represent

the largest possible information gain at low communication rate for the control cen-

tre, without significantly worsening the result of the state estimation.

At times when no event is triggered and therefore no transmission is received at the

control centre, still some information, called negative information, can be used since
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Chapter 1. Introduction

the absence of new information reflects that the new sensor’s measurement is not as

relevant as to be considered an event.

Not only is the trigger paradigm to be studied but also the sensors’ topology. In [7],

the di↵erence between a centralized, a distributed, and a decentralized scheme was

studied, with the purpose of showing the optimal system according to the underlying

measurements dependency structure. Whether to implement the complete algorithm

on each node or to distribute the workload among them is a decision to consider,

as well as which fusion strategy to chose. Sensor network’s research always pursues

to exploit all information available in the system and therefore the sensor nodes’

structure is the main issue to be studied in this work.

In this paper, approaches to the extension of the single sensor event-based estimation

method from [11] will be investigated, which enable a better triggering decision by

means of a node’s cooperation and maximizing the usage of information. First, this

requires the modeling of an ideal communication channel between a sensor and a

control centre, which is supposed to have no packages loss. Furthermore, a trigger

method is investigated to achieve the most e↵ective data transmission possible,

resulting in a low estimation error at low average transmission rate.
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CHAPTER 2

Basics

This research is based on state estimation principles, event-based systems, and basic

network knowledges. In this section, the basics of each topic will be explain in order

to fully comprehend the scope of the present thesis. Further details can be found in

the literature presented at the end of the document.

2.1 State Estimation

Stochastic processes can be used to describe real-world dynamic systems, where ran-

dom events make an impact on the evolution of the state variables throughout time.

These hidden and not directly detectable variables are constantly being measured

by sensors, obtaining inaccurate and uncertain observations corresponding to the

actual system value. By combining both the measurements and the known system

model, a conclusion about the actual value of the system can be drawn. State es-

timation principles and the basic ideas about the Kalman filter implementation are

described below in this section.

According to [5], given a discrete-time signal z
k
we can distinguish the real signal

term s
k
and the noise term n

k
in every measurement taking place, which is expressed

as

z
k
= s

k
+ n

k

understanding z
k
like an estimation for the real value s

k
. A suitable filter should

then be developed such that it minimizes the error e
k
between both variables defined

as

e
k
= z

k
� s

k
,

e2
k
= (z

k
� s

k
)T · (z

k
� s

k
).

3



Chapter 2. Basics

This constitutes the Minimum Mean Squared Error (MMSE) filter. This filter satis-

fies the known orthogonality principle which states that the estimation error e
k
and

the signal z
k
are orthogonal, i.e., it holds

e
k
= z

k
� ẑ

k
,

E
�
e
k
zT
k

 
= 0 , 8k .

According to Wiener in [12], it is in fact equivalent to the optimal filter denoted as

E
�
s
k
zT
i

 
=

kX

j=0

hk,jE
�
z
j
zT
i

 
i = 0, 1, . . . , k

where hn,j denote the filter coe�cients to be determined. However, this solution is

constrained to a non-recursive causal system.

Additionally, a non-recursive filter may then be easily developed in order to minimize

e
k
, what leads to the commonly used inverse of the autocorrelation matrix Rzz of

the measurements’ noise as a filter.

hMMSE = R
�1
zz

r
ss
,

is commonly known as the Wiener-Hopf equation, where r
ss

alludes to the auto-

correlation vector of the reference signal s. However, this approach implies a high

computational e↵ort as the number of measurements N increase. Thus, a recursive

solution would be desirable. In addition to this, not all measurements are usually

available from the beginning, which leads to the need of an update of the state

estimate among time.

In the following, a recursive approach is presented achieving an e�cient state esti-

mation with constant computational e↵ort.

2.1.1 Kalman Filter

The method of estimating the state, published by R. E. Kalman in 1960 [4], has

been widely applied in a large variety of fields like navigation, dead reckoning (i.e.,

object tracking), and signal processing. Nowadays, it is proven to be the optimal

estimator in the linear Gaussian case, although this is not an assumption to be done

for the filter to be applicable. Otherwise, it constitutes the best linear estimator,

since there are non-linear approaches that may produce better results.
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2.1. State Estimation

The Kalman filter estimations are updated using a weighted average of the present

input observation and the previously calculated state obtaining the desired recursive

approach. It is based on the one hand on a process system described by a linear

model, such as

x
k+1 = Ak xk

+Bk wk
, (2.1)

whereas on the other hand, the observation model, i.e., the sensor’s measurements,

is linked to the actual state x
k
by means of

z
k
= Ck xk

+ v
k
, (2.2)

where both process and measurement noise terms w
k
and v

k
are supposed to be

mutually uncorrelated and independent of the initial state for any arbitrary k, as well

as normally distributed with 0 mean and covariance matricesW andR, respectively.

Likewise, Ak and Ck are the process and the observation matrices and are supposed

to be detectable throughout the network. Bk, for its part, is used to map the

system noise w
k
to each of the individual components of the state variable x

k
. In

the following sections, research is restricted to time-invariant systems and hence

these matrices will be recalled as A, B, and C.

The initial state x0 has a mean value of x̂0 and a covariance matrix P0. For the first

and second moments of the noise processes the following considerations apply

E{v
k
} = 0 ,

E{w
k
} = 0 ,

E
�
v
k
vT
j

 
= R �kj ,

E
�
Bk wk

wT
j
B

T
k

 
= Q �kj ,

E
�
v
k
wT

j

 
= 0 ,

8k, j .

The goal of the remote estimator is to determine an optimal estimate x̂
k
of the

actual state x
k
in the Minimum Mean-Square Error (MMSE) sense based on the

history of the di↵erent measurements z0, z1, ..., zk.The key of the recursive method

lies in the fact that, although the current estimation x̂
k
does depend on all past

state estimations x̂0, x̂1, . . ., x̂k�1 and on all measurements available until now z0,

z1, ..., zk, the Kalman filter provides an estimation directly from the last computed

x̂
k�1 and the current observation z

k
.
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Chapter 2. Basics

The implementation consists of tracking the pair of parameters (x̂
k
, Pk), where Pk

is the error covariance matrix corresponding to the estimate at time k, defined like

Pk = E
�
(x̂

k
� x

k
)(x̂

k
� x

k
)T
 
.

Its trace yields the mean-squared estimation error. In essence, the Kalman filter

scheme is compound of the combination of measurement information with prior in-

formation at each time k, executed as a two-step algorithm: prediction and filtering.

The prediction step employs previous information based on the process model (2.1),

while the update step makes use of the measurement model (2.2).

The prediction result (x̂�
k
, P�

k
) is computed according to

x̂�
k
= A x̂

k�1 , (2.3)

P
�
k
= APk�1 A

T +Q .

These two values serve later on as the prior information used by the filter in order

to update an estimation with the aid of a new measurement z
k
,

x̂
k
= x̂�

k
+Kk (zk �C x̂�

k
) , (2.4)

Pk = (I�Kk C)P�
k
(I�Kk C)T +Kk RK

T
k

= (P�1
k

+C
T
R

�1
C)�1

= (I�Kk C)P�
k
.

In (2.4), the Kalman gain corresponds to the expression

Kk = P
�
k
C

T [CP
�
k
C

T +R]�1

and ensures an optimal combination of both current measurement and prior predic-

tion, suitably weighted by the Kalman gain Kk according to their certainty. In other

words, values with lower uncertainty will be weighted heavier, what allows the model

to dynamically trust the prediction model or the new measurement di↵erently.

The final result is a new estimate which lies between the prior prediction and the

measured state and has a better estimated uncertainty than either of them alone.

To sum up, the implementation of both steps in real systems provide the accom-

plishment of reliable estimations through inaccurate variables, which provides the

Kalman filter of an enormous helpfulness in countless applications.
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2.1. State Estimation

2.1.2 Information Form

The steps described in Section 2.1.1 can be stated in di↵erent formulations regarding

its purpose. The inverse covariance filter, commonly known as the information filter,

is based on the conversion of both parameters (x̂
k
, Pk) to a pair of terms that directly

refer to the information gained across the network, i.e., the information vector and

the information matrix (ŷ
k
, Yk). These are related to the original states and error

covariance matrix by means of

ŷ
k
= P

�1
k
x̂
k
, (2.5)

Yk = P
�1
k
.

On the other hand, sensors will then have to transform their raw measurements z
k

into their own information term and information matrix properly, as shown in the

following equation

i
k
= C

T
k
·R�1

k
· z

k
,

Ik = C
T
k
·R�1

k
·Ck. (2.6)

If we now rewrite the prediction step in terms of the information vector and the

information matrix

Y
�
k

= AY
�1
k�1A

T +BWB
T , (2.7)

ŷ�
k
= Y

�
k
AY

�1
k�1ŷ

�
k�1

,

then the update step becomes a trivial sum

Yk = Yk�1 + Ik, (2.8)

ŷ
k
= ŷ

k�1
+ i

k�1,

where both Equations (2.7) and (2.8) are equivalent to the ones in the previous

section (2.3) and (2.4) respectively. The major among various reasons to study this

formulation of the Kalman filter in this research is the decrease of complexity when

handling new measurements in the update step (2.8). Furthermore, since mathemat-

ically it is still equivalent to a linear system such as the one described in Equation

(2.1), linear properties are still preserved and assumptions taken into consideration

up to this point can be still made. Nevertheless, the time step prediction entails a

higher complexity and thus it will be still carried out by means of the state variable.

7



Chapter 2. Basics

Due to the further focus on multisensor network scenarios, this new form of express-

ing the Kalman filter is considered to introduce a high gain from a computational

point of view since this time multiple observations will have to be treated simulta-

neously. In Section 4, a deep discussion of the use of the information form for each

of the di↵erent proposals is explained and presents the major advantages and eases

that the information form brings to this research.

In Section 2.2, an introduction to event-based transmission is displayed, where unlike

so far new measurements do not take place on every time step and therefore a

modification to the previous set up scenario must be done.

2.2 Event-based Transmission

Since the goal of this work is to optimize the transmission between sensors inside

a network, an event-based approach must be taken into consideration. Any system

concerning an event-triggering technique reduces considerably the communication

rate, what allows these systems to still achieve good results by means of fewer trans-

missions. However, estimation performance may loose therefore accuracy, since new

sensor information is not available on each time step but only on those when events

take place. In this section, an overview on existing methods for event-transmission

is provided, with di↵erent trigger criteria already studied and their corresponding

state estimation modifications overcoming the lack of information at non-event time

frames.

Event-based transmission is specifically applied between the sensor and the estima-

tor, where measurements are typically periodically sent. As real variables do not

change continuously in time, sending its measurements at periodic time steps in-

evitably leads to a low information gain per transmission from the receiver point of

view, where the state estimation will then be performed. To overcome this drawback,

the sensor is extended by a so-called trigger, an additional transmission procedure

which decides whether the present observation should be sent or not. For computa-

tional e↵ort purposes, sensors are supposed to keep only their last sent measurement,

as well as no acknowledgment information or other bilateral communication are con-

sidered in this work. Hence, the transmission decision is made at each time step

based only on internal information of the transmitter without the use of any addi-

tional information from the estimator, from now on also indistinctly referred to as

receiver.

Among all trigger implementations previously studied, two main groups can be

distinguished: deterministic and stochastic triggers. In the following subsections

8



2.2. Event-based Transmission

x̂
k
��k x̂

k
x̂
k
+�k

x

f x
(x
)

Figure 2.1: Violation of the Gaussion distribution of the state variable.

Image from Eva J. Schmitt in [9].

the most common formulations are to be explained.

2.2.1 Deterministic Trigger

Deterministic triggers are the simplest event-based approach where a fixed threshold

is designed to make the decision and is constant during all time steps. This implies

on the one hand that the same measurements values will always give out the exact

same transmission decision, independent of the context and on the other hand that

there is no degree of uncertainty whether a transmission will take place or not. Since

using only the new measurement value to make the transmission decision would be

ine�cient, depending on how the compared variable against the threshold is defined

we can distinguish di↵erent deterministic trigger types. It is worth stressing that

the incorporation of a deterministic trigger in a network automatically infers the

violation of the desired Gaussian distribution in the state variable due to the fact

that not all values of the state variables can be achieved by means of a fixed decision

boundary. Figure 2.1 shows how the state variable distribution would look like in

this scenario. For all these reasons, a stochastic trigger will be used further in this

research and its fundamentals can be found in Section 2.2.2.

In this section, three main approaches are to be studied according to Dawei Shi,

Ling Shi, and Tongwen Chen in [10] and the principles explained in [11] are to be

presented.

9



Chapter 2. Basics

Send-on-Delta

The Send-on-Delta trigger computes the di↵erence between the current sensor obser-

vation z
k
and the last sensor measurement sent when an event occurred z

l
, denoting

l as the last event time step. In this sense, this trigger focuses on the di↵erence of

measurement values throughout time in order to make the decision.

The trigger condition can be expressed as

ke = min{k > l
�� kzk � zlk2 > �} , (2.9)

where ke denotes an actual event time step, � is the threshold to be exceeded

in order for a transmission to take place, and the Euclidean norm is adopted as a

distance measure, although any other standard may be used. It is important to point

out that for the Send-on-Delta trigger as well as for all of the following explained

deterministic triggers, � remains invariant through time.

Predictive Sampling

Instead of considering the di↵erence only between measurement values, a comparison

can also be made in term of predictions. Predictive Sampling consists of evaluating

the di↵erence between the current measurement z
k
and a predicted measurement ẑ

k
,

computed whether by a parallel Kalman filter implemented at the sensor node or by

a transmission taking place from the receiver back to the sensor. However, neither

of them are desirable in this research given the requirements previously explained,

since the desired resource saving and low computation e↵ort would be violated. For

this reason this approach was not finally implemented. Again as a distance measure,

the Euclidean norm is selected.

The trigger condition would in this case look like

ke = min{k > l
�� kz

k
� ẑ

l
k2 > �} .

2.2.2 Stochastic Trigger

Stochastic triggers solve the Gaussianity violation problem. They preserve the state

variables distribution function due to the uncertainty introduced when deciding to

trigger. This approach simply removes the certainty of a transmission according

only to the current measurement. In contrast to deterministic triggers, no hard

decision must be made but instead the threshold is this time implemented by a

random variable, which changes for each trigger on every time step. In this section,

further details of the stochastic trigger are described according to [3, 13].

10



2.2. Event-based Transmission

Let ⇠
k
be a uniformly distributed random variable between [0,1]. For each time

step k, the condition for a trigger to transmit information towards the estimator is

defined by

⇠
k
> �(z

k
) ,

from where a binary variable can be derived in order to describe the trigger behaviour

on each time step k, formulated as

�k =

8
<

:
1, ⇠

k
> �(�k) ,

0, ⇠
k
 �(�k) .

(2.10)

As it is shown in Equation (2.10), the threshold is now compared against �(�k),

employed as a decision function and characterized by an unnormalized Gaussian

density function designated by

�(�k) = exp

✓
�1

2
�T
k
Z

�1�
k

◆
. (2.11)

Analyzing in detail Equation (2.11), two remarkable variables stand out. On the

one side, the matrix Z introduces an additional degree of freedom in the system,

designed with the aim of finding the tradeo↵ between the communication rate and

the estimation performance. Furthermore, it plays the role of an additive measure-

ment noise at those time steps when no new measurement arrives at the receiver in

absence of an event. It is important to highlight that the greater the parameter Z

is, the smaller the event-rate will be and hence, the lower the estimation quality will

be. In other words, higher values of Z give out worse system performance in terms

of estimate quality since the trigger condition becomes harder to fulfill.

On the other side, the parameter �
k
is suitably defined in accordance with the desired

system’s behaviour. In stochastic triggering, the vectorial di↵erence between two

variables will be used. Further in my research, di↵erent configurations of the variable

�
k
are to be considered depending on the topology of the network, seeing that

according to the algorithm implemented, the parameter �
k
is forced to be defined

in a concrete variable space. For the nonce, the modification to the Send-on-Delta

deterministic implementation explained in Section 2.2.1 is to be adapted.

Let first define the specific case when the stochastic trigger uses a Send-on-Delta

trigger. In this case, �
k
is defined as

�
k
= z

k
� z

l
, (2.12)

11
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what leads to the uncertainty of the transmission decision by means of z
k
. In this

sense, the probability of sending the new measurement towards the estimator can

be seen as

P
�
�k = 1

�� �
k

 
= 1� �(�

k
) .

In other words, the decision function �(�
k
) can directly be interpreted as the prob-

ability of non-sending, for a given �
k
.

P
�
�k = 0

�� �
k

 
= �(�

k
) ,

where �(�
k
) lies between (0, 1]. To conclude with the Send-on-Delta case, increasing

values of �
k
lead to an increasing probability of transmission. For |�

k
| ! 1 it holds

P
�
�k = 1

�� �
k

 
! 1 .

If we now extend these results to the general form of a stochastic trigger, the pa-

rameter �
k
would actually depend of the choice of c in the following expression

�
k
= z

k
� c ,

where no restrictions hold. In order to determine c, the probability of not transmit-

ting at a determined time step k can be computed as

P
�
�k = 0

�� x
k

 
=

1Z

�1

P
n
�k = 0, y

k

�� x
k

o
d y

k

=

1Z

�1

P
n
�k = 0

�� y
k
, x

k

o
· P

n
y
k

�� x
k

o
d y

k

= const. ·
1Z

�1

exp
⇣
�0.5(y

k
� c)T Z

�1 (y
k
� c)

⌘
·

exp
⇣
�0.5(y

k
�Ck xk

)T R
�1 (y

k
�Ck xk

)
⌘
d y

k

= const. · exp
�
�0.5(c�C x

k
)T(Z+R)�1(c�C x

k
)
�
.

12



2.2. Event-based Transmission

A Gaussian distribution for the probability of non-transmitting is obtained by any

choice of c. This, in fact, constitutes the principle used later on in Section 3.2 where

the state estimation is derived for the stochastic trigger scenario.

Finally, it is important to point out that the parameter c should be easily reproduced

at the receiver, since its value is used in the estimation process at those time steps

when there is no measurement transmitted, i.e., in absence of events.

In conclusion, given the basic fundamentals of state estimation in Section 2.1 and of

event-based transmission mode in Section 2.2 the following Ssction deals with the

complete scenario and the adaptions needed in order to estimate state variables in

presence of a stochastic trigger. Later on in Section 4 everything explained will be

extended to a multiple sensor approach, and finally in Section 5 numerical results

will be shown, as well as a final conclusion about all topologies developed. Finally,

Section 6 will sum up the main points of this work and will arise new issues for

future research.

13





CHAPTER 3

State Estimation with Event-based

Transmission

According to the fundamentals presented in Chapter 2, the combination of both

state estimation and event-based transmission is to be developed in the following.

The scheduled procedure (i.e., predict and update steps) has to be appropriately

adapted taking all previous exposed facts into consideration.

3.1 Deterministic Trigger

Given the basics of deterministic triggering explained in Section 2.2.1, this section

seeks to apply them to the original state estimation formulation, so that equations

include event-based intrinsics. To this e↵ect and according to the principles pre-

sented in [11], we define Tp which contains all periodic time steps with a sampling

time ⌧s. It can be expressed as

Tp =
�
n⌧s

�� k 2 Z+

 
,

where Tp ⇢ R. In this sense, time steps when events happen Te are also contained

in Tp and therefore it holds

Te ⇢ Tp .

On the other side, at those time steps where the event criteria is not fulfilled and thus

no transmission takes place the measurement values lie within a bounded subset,

connoted as

H(e, k) ⇢ R
m ,
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where m refers to the dimension of the measurement vector. We can now rewrite

the trigger condition described in Equation (2.9) for the Send-on-Delta trigger in

terms of H(e, k) as

ke = min{k > l
�� z

k
62 H(e, k)} .

This results in two possible situations at the estimator: the use of an actual new

measurement or the use of an implicit previous measurement from a past time step,

i.e.,

z
k
2

8
<

:

�
z
ke

 
, k 2 Te ,

H(e, k), k 2 Tp \ Te .
(3.1)

Both cases are approximated by an elliptic quantity and given

z
k
2

8
<

:
L(zke , ✏I), k 2 Te ,

L(ẑe,k , He,k), k 2 Tp \ Te ,

for ✏ ! 0 the elliptic quantity L(zke ,✏I)
would exactly be the measurement value

z
ke

of the event taking place. Moreover, the general expression of an ellipsoid with

average µ and a variance ⌃, can be represented by

L(µ,⌃) :=
�
x 2 R

m
�� (x� µ)T ⌃

�1 (x� µ)  1
 
.

In order to rewrite the Expression (3.1) as an equation, the noise term e
k
has to be

introduced in the following way,

z
k
+ e

k
=

8
<

:
z
e,k
, k 2 Te ,

ẑ
e,k
, k 2 Tp \ Te ,

where ẑ
e,k

is a predicted observation needed due to the lack of an actual measure-

ment. Given this result, the measurement or observation model can be expressed

for both stochastic and deterministic noise as
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3.1. Deterministic Trigger

Model: z̃
k
= Ck xk

+ vs,k + vd,k ,

Realization: z̃
k
=

8
<

:
z
e,k
, k 2 Te ,

ẑ
e,k
, k 2 Tp \ Te ,

where again, as explained above, a stochastic implementation would then preserve

the Gaussian distribution of the measurement’s noise vs,k ⇠ N (0,R) , where by

a deterministic trigger additionally the equality vd,k = e , vd,k 2 L(0,Ee,k) can be

applied, with

Ee,k :=

8
<

:
0, k 2 Te ,

He,k, k 2 Tp \ Te .

In the concrete instance of a Send-on-Delta implementation, the quantity H(e, k)

is represented by an m-dimensional sphere with radius � and centered on zke�1 ,

holding for any time step ke�1 < k < ke:

ẑ
e,k

= z
l
,

He,k = � · I .

The Linear Event-Triggered Estimator (LETE) is considered to be an extension of

the standard Kalman filter, which also considers a deterministic noise approach. In

this case, each state estimate x̂
k
is also associated with a estimation error matrix

Xk, in addition to the covariance error matrix Pk.

Aiming to minimize the maximum mean squared error, corresponding to trace(Pk+

Xk), the LETE equations for the prediction and update state then become on the

one hand,

x̂�
k
= A x̂

k�1 , (3.2)

P
�
k
= APk�1 A

T +Q ,

X
�
k
= AXk�1 A

T ,
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and on the other hand,

Kk = [P�
k
C

T +
1

1� !k

Xk C
T] (3.3)

· [CP
�
k
C

T +
1

1� !k

CXk C
T +R+

1

!k

Ek]
�1 ,

x̂
k
= x̂�

k
+Kk (zk �C x̂�

k
) ,

Pk =(I�Kk C)P�
k
,

Xk =
1

1� !k

(I�Kk C)X�
k
(I�Kk C)T +

1

!k

KkEkK
T
k
.

It is important to point out that the ellipsoid matrix Ek depends on the chosen

trigger approach from the ones presented in Section 2.2. However, to fully define

the update step the parameter !k has to be determined. Given this one dimensional

optimization problem and according to [6], the Mean Squared Error is minimum for

0 < !k < 1, when

min
!k

trace(Pk +Xk)

= argmin
!k

trace
�
(1� !k) ((1� !k)Pk +Xk)

�1 + !k C (!k R+ Ek)
�1

C
��1

applies.

To sum up, steps shown in Equations (3.2) and (3.3) describe the LETE procedure,

considered to be the extension of the standard Kalman filter to deterministic noise

scenarios. In the following section, to complete the state estimation with event-based

transmission explanation another modification to the originally periodic approach

is presented.

3.2 Stochastic Trigger

If we now turn the direction of the research towards a stochastic triggering technique,

several trigger intrinsics change. Up to this point of the work, the deterministic case

was fully explained in the previous section. Focusing now on the fundamentals

described in Section 2.2.2, an adaption to the Kalman filter steps presented in Sec-

tion 2.1.1 is to be done.

In time steps when no information is transmitted, a correction must be done since

the course of the state variable is no longer accurate. In [1] a method is presented

in which a matrix Sl is employed to reduce the e↵ect of the last measurement

innovation, designed in such way that
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3.2. Stochastic Trigger

z
k,l

= z
k
� Sl zl ,

Sl = CA
l
⌃C

T (C⌃C
T +R)�1 ,

where l again connotes the last time step when an event took place and ⌃ designates

the state vector covariance matrix in stationary state, statisfying the Lyapunov

Stability equation

⌃ = A⌃A
T +Q,

limiting its practice to stable systems though.

Finally, the state estimation proposed in Section 2.2 is to be properly modified in

order to include the fundamentals of a stochastic Send-on-Delta trigger, looking

to achieve a Kalman filter implementation for such scenarios. On the one hand,

the prediction step may not be adapted, since it does not make use of the new

measurement, and therefore no modification is needed when the observation is not

sent. Thus, the prediction step is still equivalent to the original formulation in (2.3)

as

x̂�
k
= A x̂

k�1 , (3.4)

P
�
k
= APk�1 A

T +Q .

On the other hand, however, the update step incorporates the trigger decision vari-

able �k to identify the two possible scenarios taking place described in Formula

(2.10).

x̂
k
= x̂�

k
+Kk (�k ⌘

k
� ⌘̂�

k
) ,

⌘
k
= z

k
� z

l
,

⌘̂�
k
= Ck x̂

�
k
� z

l
,

Pk = (I�Kk C)P�
k
,

Kk = P
�
k
C

T [CP
�
k
C

T +R+ (1� �k)Z]
�1 . (3.5)

In conclusion, Formulae (3.4) and (3.5) constitute the state estimation event-based

algorithm by means of the Kalman filter.

Chapter 2 and Chapter 3 deal with the state-of-art single sensor scenario, where the

previous fundamentals explained are applied to a single sensor network to achieve

an optimal state estimation employing a Kalman filter. In the following chapter,

the extension to a multiple sensor case is presented where di↵erent approaches are

taken into consideration, i.e., star, ring, and chain topologies are developed and then

tested in a final evaluation in Chapter 5.
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CHAPTER 4

Multisensor Event-based State Estimation

Sensor elements in real networks rarely work on their own since readings from a

unique noisy device brings little to a desirable robust system. To overcome the

drawbacks of noise in observations, the combination of di↵erent sensors’ data is pre-

ferred. Besides, being able to foresee future system states by means of present values

allows the end user to achieve a better service quality, by dynamically adjusting the

network to the current demand for example.

The way in which the di↵erent devices of a multisensor network are organized influ-

ences significantly the global system performance. When turning from a single to

a multisensor scenario, issues about how to communicate the sensors to the central

unit arise. Treating all sensors independently leads to an undesired waste of re-

sources since combining the measurements from di↵erent sensors in a yet unknown

way could easily lead to a quality improvement or a network resource saving.

In this section, three main topologies are to be studied and evaluated in terms of the

Minimum Squared Error(MSE) for a given event-rate interval between [0,1]. Each

of the next proposed approaches are based only on di↵erent sensors’ distributions,

keeping the other network variables constant. First, an elementary approach is pre-

sented in Section 4.1, named the star topology, where sensors only transmit to the

central unit and no communication between them is considered. This scenario will

be used as the basis for all future comparisons due to its simplicity to implement

it. Later on in this section, other two prime network structures are to be devel-

oped, which aim to improve the mentioned star topology performance by involving

communication between the sensor nodes and by trying to exploit common infor-

mation between them and to overcome degradation introduced by the existence of

noise in the system. On the one hand, the chain topology explained in Section 4.3

simply concatenates sensors one after the other one with the purpose of combining

all measured information before processing it in the control unit. In this sense, each

node would not only receive a measurement zi
k
as an input but also the previous
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Chapter 4. Multisensor Event-based State Estimation

Figure 4.1: Star topology network.

sensor’s information in case it was sent zi�1
k

, where i is the number of the sensor

in the network. Furthermore, even when the preceding sensor does not transmit,

information can still be used since the absence of events allows the reuse of the last

received transmission. Hence, in this case the ith-sensor would receive zi�1
l

. How to

possibly combine both terms in a smart manner will be addressed in two di↵erent

ways further on in this work.

On the other hand and continuing on the same path, if not only were sensors ef-

ficiently communicated between each other but also counted with the estimation

beforehand, computation taking place across the network would then remain clean

and straightforward. This in fact constitutes the main idea of the ring topology

explained in Section 4.2, where by closing the mentioned earlier chain in a circle

sense, the algorithm could simply start from the predictions and employ the sensor

nodes information later on.

4.1 Star Topology

As shown in Figure 4.1, the star topology represents the simplest method to solve

the arrangement of several sensors in a network. First of all, sensors in this network

structure are only dependent on their own measurement zi
k
at each time step k,

which frees us from changing the trigger definition described in Section 2.2. In

other words, the trigger condition in this basic scenario still relies only on their own

new measurement and their last transmission, which must be saved after each new

event. This fact constitutes the simplicity of the additional sensors’ handling in

this topology since the triggering condition can still be defined in the measurement

space, according to Equations (2.10) and (2.12).

Therefore, the transmission mode in the present network layout (i.e., periodic or

event-based) influences only the information received at the input of the estimator,
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4.1. Star Topology

which will be N units of data, whether brand new observations in those time steps

k where events happened or past measurements z
l
repeated throughout time. This

leads to a minor modification to the original Kalman filter formulation explained in

Equation (2.4), which in this scenario each sensor information is computed sequen-

tially.

In essence, the estimator takes one by one all observations zi
k
measured at the same

time, computing an estimate after each one x̂i

k
and using it as a new prediction

x̂(i+1)�
k

for the next update x̂i+1
k

. Likewise, the covariance matrix P
i

k
is correspond-

ingly updated. To sum up, 8i it applies

ith� Sensor computes : (4.1)

K
i

k
= P

i�
k

C
T [CP

i�
k
C

T +R+ Z(1� �i

k
)]�1

x̂i

k
= (I�K

i

k
C)x̂i�

k
+K

i

k
zi
l

P
i

k
= (I�KC)Pi�

k

ith� Sensor updates :

x̂(i+1)�
k

= x̂i

k

P
(i+1)�
k

= P
i

k
,

where zi
l
already incorporates the last trigger decision according to Formula (2.10).

Finally, after all N sensor nodes have computed an estimation, a precise favourable

final one is obtained which the central Kalman filter node will later on embrace in

order to predict the next state value, with regard to algorithm described in Equation

(2.3).

If we now focus on the information form described in Section 2.1.2, the same scenario

can be computed as

ith� Sensor computes : (4.2)

ŷi
k
= ŷi�

k
+C

T[R+ Z(1� �i

k
)]�1zi

l

Y
i

k
= Y

i�
k

+C
T[R+ Z(1� �i

k
)]�1

C

ith� Sensor updates :

ŷ(i+1)�
k

= ŷi
k

Y
(i+1)�
k

= Y
i

k

applicable 8i, where again zi
l
refers to the last transmitted measurement. The

Kalman filter node later utilizes the Nth-Sensor estimation to compute a new pre-

diction according to Equation (2.5).
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Figure 4.2: Ring topology network.

Up to this point of the work, computation e↵ort di↵ers substantially inside the

sensor nodes between both formulations of the star topology formulated in Equation

(4.1) and Equation (4.2), endowing the information filter of attractive advantages.

Ultimately the pair of parameters (yi
k
, Yi

k
) would be turned back to state space by

means of the inverse covariance matrix and finally the original pair (x
k
, Pk) would

be obtained. Numeric and performance results of this topology are found later on

in Section 5.

4.2 Ring Topology

Research at this point of the work turned the filter approach point of view in order

to achieve an event-based multisensor topology which could beat the star results.

The introduction of transmissions between sensor nodes opens a whole new wide

range of possibilities in terms of network structures. Nevertheless, multiple di�cul-

ties arise and their handling becomes a great issue to consider as it will be shown

later on in this section. Focusing first on the ring topology development, Figure 4.2

shows its network structure where the two main parameters sent across the network

are to be changed to (ii
k
, Ii

k
) although the information form is still worthwhile. This

fact required the estimator node to be instead placed first, so that at each time step

k the predicted values (ŷ�
k
, Y�

k
) were already computed and used by each sensor,

who will later on add its information vector and matrix to the existing estimation.

When first attempted this topology in a periodic transmission formulation, results

proclaimed that the ring and the star topologies were mathematically equivalent in

absence of trigger elements. This equivalence was not surprising since both scenarios
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4.2. Ring Topology

integrate each sensor estimation onto the next. Hence, mathematical elaboration of

this method is already described in Section (4.1) taking �k as 1 what would result

in the following algorithm.

ith� Sensor computes : (4.3)

ŷi
k
= ŷ�

k
+ ii

k

Y
i

k
= Y

�
k

+ I
i

k

ith� Sensor updates :

ŷ(i+1)�
k

= ŷi
k

Y
(i+1)�
k

= Y
i

k

Given this ring topology periodic algorithm, it is important to highlight that the

only di↵erence with respect to that of the chain topology periodic case presented

later on in Section 4.3 is the order in which several terms of a sum are grouped.

In other words, by simply moving the brackets in the estimated information vector

ŷ
k
computation the ring and chain measurement update steps can be distinguished.

This can be shown in the following formulae

ŷ
k
= (((ŷ�

k
+ ii

k
) + ii+1

k
) + ...) + iN

k
, (4.4)

ŷ
k
= ŷ�

k
+ ((ii

k
+ ii+1

k
) + ...+ iN

k
) .

Finally facing the event-based implementation in the ring multisensor scenario and

considering now the concatenation of triggers after each sensor, an alteration to

Formulae (4.3) is now incorporated in those time steps when no event is captured

by a trigger. The complete execution taking place in this cases can be formulated

as

if no event : (4.5)

Y
i

k
= ((Yi

l
)�1 + Z)�1

ŷi
k
= Y

i

k
(Yi

l
)�1ŷi

l
,

where ŷi
l
and Y

i

l
designate the information vector and information matrix which

were last sent by the ith-sensor on the last event time step.

Thus, given the developed algorithm it is clear that this new topology not only brings

worthy advantages when considering numerous sensor nodes, but also employs an

inferior computation e↵ort when event-based transmission is studied. To express the
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Figure 4.3: Chain topology network.

trigger criteria, a conversion back to the state space needs to be done by modifying

Equation (2.12) to

�
k
= (Yk)

�ŷ
k
� (Yi

l
)�1ŷ

l

= x̂
k
� x̂

l
.

This attractive attempt to improve the simple star topology in a way where all

di↵erent observations were first combined before processing them, resulted in an

inferior e�ciency, since error variables are growing across the network due to the

increasing information’s uncertainty on its way towards the estimator. In conclusion,

as it will be numerically explained in the following section, handling observations

only once before the implementation of the Kalman filter (i.e., the star topology

algorithm) is still worthy when comparing it with realizing several computations

with observations before estimating (i.e., the ring topology implementation).

4.3 Chain Topology

Due to the large error accumulated across the ring topology explained in Section 4.2

another sensors’ rearrangement was developed. Figure 4.3 shows the structure of

the chain topology. Given this scenario, two di↵erent implementations of the chain

were investigated in this research and in both periodic and event-base transmission

mode.

The first topology development is named the information form chain, due to the

exclusive transmission of the information vector and information matrix throughout

the chain. Thus, it can be completely described in reference to both and its basics

are explained in Section 4.3.1. Since there were several issues on its development,

the second approach to solve the chain topology is later on explained in Section 4.3.2

, denoted as the measurement fusion chain topology.
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4.3. Chain Topology

4.3.1 Information Form Chain Topology

In absence of triggers, i.e., when periodic transmission is implemented, the system

implementation is trivial when employing the information form. Focusing first on

the sensor nodes’ behaviour, each observation zi
k
will need first to be converted into

an information vector ii
k
according to the transformation explained in (2.6). Then,

each information vector and matrix (ii
k
, Ii

k
) will contribute to a global summation

transmitted across the network connoted hereinafter (ji
k
, Ji

k
) .

For instance, if only two sensors were considered, we could merely express

ji
k
= C

T
k
·R�1

k
· zi

k
+C

T
k
·R�1

k
· zi�1

k
,

J
i

k
= C

T
k
·R�1

k
·Ck +C

T
k
·R�1

k
·Ck ,

to describe how the ith-sensor accumulates its own information with the one imme-

diately received. If we now generalize this results to N sensors, it holds

jN
k
= C

T
k
·R�1

k
·

NX

i=1

zi
k
,

J
N

k
=

NX

i=1

(CT
k
)i · (R�1

k
)i ·Ci

k
,

to the last ongoing parameters. Finally, the estimator located at the end of the

chain would compute an estimate as

ŷ
k
= ŷ�

k
+ jN

k
,

Yk = Y
�
k

+ J
N

k
.

Like in every information form implementation, a last space transformation needs

to be executed to finally get the variables (x
k
, Pk) in their original state space, so

reversing Equation (2.5) we get

x̂
k
= P

�1
k
ŷ
k
,

Pk = Y
�1
k
.

The algorithm explained in a periodic transmission scenario was successfully im-

plemented. However, if we now turn the direction of the chain topology research

towards an event-based transmission system, severe mathematical issues come into
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view. The unfamiliar fact that now sensors deal with information terms and not

raw measurement values makes the trigger condition definition unfeasible.

Studies during this research development showed that when expecting to convert

information vectors back to the measurement space in intermediate nodes, with the

purpose of implementing once again the sensor’s trigger in terms of measurements

singular matrices appeared. This problem when trying to compute the algorithm

presented in (4.5) in absence of events made it impossible to simulate an information

form chain topology scenario in a desirable event-based transmission mode, and

therefore only a periodic transmission result was completely developed.

As to continue deep down the topology impacts in a multisensor network, a shift

between the parameters sent from node to node throughout the network needs to

be done. Up to this point, we can conclude that the straightforward sharing of

information vectors ii
k
in an intermediate accumulative term ji

k
impedes the system

to incorporate triggers between sensors.

To overcome this obstacle, the attempt to communicate directly information esti-

mations (yi
k
, Yi

k
) after a local sum is already computed inside each sensor node

was presented in Section 4.2, proving that the brackets’ order change in the Al-

gorithm (4.4) made it possible to achieve an event-based approach. This simple

change of standpoint between transmitting ii
k
or ŷi

k
allows the fully development of

the topology, which in this first case was not successful. In conclusion, computing an

estimation step at each sensor leads to a successful practice which in the information

space consists of a simple local sum. Additionally, another implementation of the

chain topology took place in this research, based on a measurement fusion before-

hand. The next section explains its intrinsics and deals with its new formulation,

as well as consistent results are later on presented in Chapter 5.

4.3.2 Measurement Fusion Chain Topology

According to Q. Gan and C. J. Harris in [2], if all observation models C
i

k
are the

same, where then 8i it applies

C
i

k
= C

i+1
k

= Ck ,

a simple solution to a periodic transmission scenario can be derived through the use

of data fusion. Looking for an event-based extension and constraining the network

model to a single sensor model, we could then implement a measurement fusion after
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each node transmission. Given for instance two sensors, if the first trigger decides to

send information, the following computation would take place on the second sensor

R̃
2
k
= ((R1

k
)�1 + (R2

k
)�1)�1 , (4.6)

z̃2
k
= R̃

2
k
((R1

k
)�1z1

k
+ (R2

k
)�1z2

k
) ,

where (R̃k, z̃k) are the fused error covariance matrix and the fused measurement

respectively. To proof that in fact it is equivalent to the original multisensor Kalman

filtering process, the estimated state variable and error covariance matrix should look

like

x̂
k
= Pk((P

�
k
)�1x�

k
+C

T
k
(R1

k
)�1z1

k
+C

T
k
(R2

k
)�1z2

k
) , (4.7)

P
�1
k

= (P�
k
)�1 +C

T
k
(R1

k
)�1

Ck +C
T
k
(R2

k
)�1

Ck .

If we now replace the fused terms defined in Equation (4.6), we get the following

expressions:

x̂
k
= Pk((P

�
k
)�1x�

k
+C

T
k
(R̃1

k
)�1z̃1

k

= C
T
k
(R̃k)

�1
R̃k((R

1
k
)�1z1

k
+ (R2

k
)�1z2

k
) ,

P
�1
k

= (P�
k
)�1 +C

T
k
(R̃k)

�1
Ck

= (P�
k
)�1 +C

T
k
((R1

k
)�1 + (R2

k
)�1)Ck ,

which in fact are equivalent to Equation (4.7).

Following this example, if the second sensor decides to trigger, the fusion taking

place on the third sensor would look like

R̃
3
k
= ((R̃2

k
)�1 + (R3

k
)�1)�1 ,

z̃3
k
= R̃

3
k
((R̃2

k
)�1z̃2

k
+ (R3

k
)�1z3

k
),

involving these time the pair (R̃2
k
, z̃2

k
), which already incorporates the information of

the first sensor according to (4.6). This fact helps to accumulate information all over

the network, without the need of complex computation and hence, the measurement

fusion chain appears as the best solution considered in this research.
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Furthermore, extending this data fusion approach to a triggering scenario and ap-

plying the principles of [2] to an event-based approach a great advantage is obtained:

in absence of events, when again a modification to the previous implementation has

to be made, the original formulation explained in the algorithm (4.2) can simply be

reused. The designed matrix Z can be added to R̃k at these concrete time steps.

Thus, if we adapt the star implementation developed in Section 4.1 to Q. Gan and

C. J. Harris data fusion approach we obtain:

ith� Sensor computes :

ŷi
k
= ŷi�

k
+C

T[R̃+ Z(1� �i

k
)]�1z̃i

l

Y
i

k
= Y

i�
k

+C
T[R̃+ Z(1� �i

k
)]�1

C

ith� Sensor updates :

ŷ(i+1)�
k

= ŷi
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This solution was named the measurement fusion chain topology and its perfor-

mance resulted as good as that of the star, as it is shown in Chapter 5. This last

development was considered the largest advance in this multisensor network research

and was successfully implemented in the simulation environment. Nevertheless, its

research is still open to new extensions or further issues that may arise in the future.

4.3.3 Conclusion

To sum up, three di↵erent methods of arranging sensor nodes in a wireless network

have been studied and their algorithms have been developed in this section. A

simulation environment was set up in order to quantify their gains and to represent

their estimation’s quality in a visual way. Numerical results were obtained as well

as a fair comparison took place between them. All variable configurations, as well

as the methodology employed, are fully explained in the following section.

On the one hand, the star topology was implemented in both state and information

space. Both formulations gave out the same state estimation and their di↵erence

relied on their computation e↵ort. On the other hand, the ring topology was only

developed by means of the information form of the Kalman filter but its estimation

quality resulted unacceptable. For this reason, this solution was rejected later on in

this research. Finally, the chain topology was approached from two di↵erent points

of view: an information form approach which resulted unfeasible and could not be
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tested, and a measurement fusion approach, which has been chosen to be the biggest

advance in this work due to its great performance and simplicity in its computations.
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CHAPTER 5

Evaluation

In Section 4, three main di↵erent multisensor network topologies have been presented

and their event-based state estimation implementations have been developed. Given

all these outcomes, a comparison between them is to be done in order to achieve

results in terms of estimation quality. In addition, the state-of-art major single

sensor scenarios, both periodic and event-based practices, are also to be a basis

to be compared with and this research pursues to evaluate the improvements of

multiple sensors in networks.

A simulation environment has been established regarding this purpose, where all

possible network configurations were elegible and later on plotted considering their

e�ciency. The simulation takes place in discrete-time steps, at which an event can

be triggered and a transmission therefore sent throughout the network. At the end

of it, the state estimation takes places periodically at each time step. Sensors’ mea-

surements are assumed to be a↵ected by Additive White Gaussian Noise (AWGN)

and channels are supposed ideal without taking latency or packet losses into consid-

eration.

5.1 Goals

According to event-based systems, di↵erent design goals can be pursued depending

on which restrictions are decisive in the considered network. Possible scenarios

among numerous options are in this section mentioned.

On the one hand, an energy limitation at the sensor nodes implies that no local

state estimation should take place at them in order to keep their computing e↵ort

as low as possible. In this case, a simple trigger mechanism is suitable.

On the other hand, a limit on the transmission’s bandwidth forces the information

content per sending to be as high as possible, whereas the number of transmissions
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will correspondingly be kept minimal. Hence, in this scenario an elaborated trigger

is desirable so that a local measurement estimation can be computed on each sensor

node before deciding whether to transmit or not.

Additionally and especially in distributed multisensor systems, transmission rate

is preferred to be kept also minimal in order to reduce the number of information

fusions taking place. In this sense, processing is worthy to be distributed so that it

minimizes the number of fusion computations in the central unit.

Regardless of the particular target, reducing the communication rate is in gen-

eral terms an everlasting ambition which enlarges the convenience of event-based

mechanisms and leads to an increasing interest in new advancements following this

practice.

5.2 Network Model

Considering the main targets illustrated in Section 5.1, the network constructed in

the simulation is characterized by the following features.

First of all, communication between sensors and communication sensor-to-estimator

is considered to be wireless. Nevertheless, packet losses are left outside the scope of

this work, assuming channels to be ideal. In addition to this, the bandwidth available

for transmission is also considered ideally not limited, what does not restrict the

number of transmissions per unit of time. Finally, the energy power at the sensor

nodes, on the other hand, is advised tight, pursuing therefore the first of the goals

mentioned in Section 5.1.

5.3 Results

The three topologies studied in this work and presented in Section 4 were compared

using a Monte Carlo simulation and their analytical results can be found in Figure

5.1. There the estimation quality in terms of MSE was studied for a range of

transmission rates. In order to set these, di↵erent values of Z were used so that

all topologies could be fairly compared. The scenario configured was composed of

15 sensors with equal measurement models and a stochastic Send-on-Delta trigger

annexed to each of them. The figure shows how a high number of sensors makes the

star topology nearly una↵ected by low transmission rates and therefore its curve is

nearly constant. This holds due to the independency between the trigger decisions

in the star topology.
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Figure 5.1: Trade o↵ between MSE and transmission rate for each topology.

On the one hand, the measurement fusion chain has a similar performance in com-

parison to the star. Moreover, when reducing the number of sensors in the network

the star topology performance is strongly a↵ected while the chain topology results

remain nearly unchanged. This fact turns the yellow and red curves even closer

to each other. On the other hand, the ring topology seems unacceptable and has

therefore been rejected as a solution to an event-based multisensor topology.

Di↵erent reasons could cause such a degradation of the ring topology estimation:

first, the concatenation of several sensors decreases their event-rate obtaining a

lower transmission rate in the final estimator; while on a star topology decisions are

made independently what in fact keeps the transmission rate constant throughout

all sensors. When studying each sensor’s behaviour separately, the purple curves

in Figure 5.2 confirmed the decrease of trigger decisions throughout the ring. The

system was set up twice with 20 sensor nodes and the initial transmission rates were

configured to 0.39 and 0.325. The figure shows how the event-rates decrease to 0.245

and 0.19 respectively.

In order to overcome this problem and seeking to achieve a better estimation quality,

another implementation of the ring topology was developed. When looking for fur-

ther sensors to trigger more often, the idea was to change dynamically the parameter

Z explained in Section 2.2.2, so that the trigger criteria was easier fulfilled in future

sensors. Several parameters were designed and three di↵erent implementations are

shown in green in Figure 5.2.
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Figure 5.2: Two di↵erent implementations of the ring topology.

Even though a nearly constant rate is achieved, when the simulation was again run,

results did not improve. Therefore this was rejected as the reason that causes such

degradation to the ring topology performance and a closer look to its formula took

place. Focusing now on those time steps when no event takes place, which are the

truly issue of the ring topology, the following information matrix update takes place

Yk = ((Yl)
�1 + Z)�1,

where Yl, i.e., the last sent information matrix, will always be reused unless a

transmission takes place. However, on the same time steps the star topology would

instead compute

Yk = Y
�
k
+C

T(R+ Z)�1
C ,

where Y
�
k
is still a new prediction for its value. This means that the star topology

still predicts the new information matrix even when no measurement arrives while

the ring topology computes it but never uses it since it will always employ Yl. This

has been proven to be the reason to reject the ring topology as a solution for this

work.

Turning now to the measurement fusion approach presented in Section 4.3, the

same study as shown in Figure 5.1 is plotted in Figure 5.3 but zoomed in for visual

purposes. It can bee seen that for low transmission rates the MSE values are not

higher than 0.45, which proves that this topology performs nearly as good as the

star.

In Figure 5.4, the Normalized Estimation Error Squared (NEES), MSE and the

mean trace of the error covariance matrix (in the figure named “PE mean”) are
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Figure 5.3: MSE analysis of the measurement fusion chain topology.

shown. On the one hand, the NEES in the ith-run is defined according to X. Rong

Li in [8] as

NEES = (xi

k
� x̂i

k
)T(Pi

k
)�1(xi

k
� x̂i

k
) ,

which serves as a credibility measure for any estimator. If its mean value is the

dimension of the state variable, the filter used is proven to be consistent. In the

system implemented the dimension of the state was set to two and Figure 5.4 shows

that the mean of the NEES lies around that value.

On the other hand, the MSE and the mean trace of the error covariance matrix are

alike and low, both desirable and acceptance tests.

5.4 Conclusion

In conclusion, di↵erent sensors arrangements have been developed, implemented,

and tested.The star topology has been used as a base for all comparisons due to

its simplicity and high e�ciency. The ring topology, implemented by means of a
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Figure 5.4: Performance of the Measurement Fusion Chain topology.

lower computational e↵ort algorithm, has been finally rejected as an acceptable so-

lution even though it could correctly be used in a wireless network scenario. Finally,

the chain topology has proven, on the one hand, that the information space is not

suitable for a trigger definition, and therefore an initial chain topology could not

be fully developed. However, when fusing data beforehand mathematical equations

were again feasible and hence, this last topology has been selected as the best de-

velopment of this work.
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CHAPTER 6

Conclusions

The state-of-art in single sensor networks with event-based transmission has been

deeply discussed in this research with the purpose of extending the scenario to a

multisensor network. To this e↵ect, di↵erent sensor nodes’ arrangements have been

implemented with the aim of achieving the highest estimation quality with the low-

est transmission rate possible. First in Section 4.1, the star topology was explained

where each sensor only communicates with the central estimator. In this case, se-

quential estimations take place using one measurement at each time and getting

to a final improved estimation thanks to the multiple observations available. A

Kalman filter was employed at the estimator node in two di↵erent formulations: in

the original proposed in [4] and in the information form. It was proven that both

implementations give out the exact same estimation for the same input although

the computational e↵ort is lower for the second formulation, what constitutes the

main advantage of the information form. Then in Section 4.2 ,the ring topology

was described where communication between sensor nodes was introduced, before

a combined signal reached the estimator where again a Kalman filter was placed.

The ring topology implementation sends the information vector and the information

matrix over the network and computes a new estimation on each sensor node. In

this sense, it is equivalent to the star topology but with the main di↵erence that in

this case, the predicted values computed at the estimator can be used beforehand at

each time step. This fact makes it easier for the sensors to compute the developed

algorithm and allows the created network structure to work. Finally in Section 4.3,

a third topology named the chain topology was described. Changing from the circle

structure presented in the ring topology to an open chain, where the estimator is

no longer connected to the first sensor in the network, results were strongly im-

proved. Two di↵erent implementations were studied in this work: the information

form approach and the measurement fusion approach. In the first scenario, instead

of transmitting the information vector and information matrix across the network,

these were computed only at the estimator and only the new sensors’ information
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terms were sent. However, computations taking place on the sensors were unfeasible

and this implementation could not be tested. In the second chain topology devel-

opment, the measurement fusion published in [2] was employed. Extending it to an

event-based transmission network, each sensor computed a fused measurement and

a fused error covariance matrix and the final pair was later used by the Kalman

filter implemented in the estimator. This last topology was finally successful and

therefore, the previous implementation of the chain topology was rejected.

All three systems were implemented in a simulation environment to compare their

results. In order to do so in a fair manner, by adjusting the parameter Z explained

in Section 2.2.2 and involved in Formula (2.11) di↵erent event-rates were obtained.

Each of them gave out a di↵erent estimation quality measure. The graphs presented

in Chapter 5 showed that the star topology performed best of all three and ring

topology the worst.

When studying possible reasons for this last fact, this research concluded that the

predicted information matrix was never used by the ring topology while the other

two topologies did compute it in the estimation step. This was assumed to cause

such a high degradation for the ring topology performance shown in Figure 5.1.

On the other hand, the measurement fusion chain topology achieved high estimation

quality even with low event-rates as it can be seen in Figure 5.4. This topology has

been considered the greatest development in this research since, even though it

does not beat the star topology, its consistency and computational e↵ort are very

attractive and the information available in the whole network is used in a smart

manner.

Some issues about multisensor event-based state estimation are still open for future

studies, such as the development of new topologies which could improve the given

results in this work, or the study of di↵erent triggering mechanisms, which may be

interesting from the network point of view in order to compare not only sensor nodes’

arrangement but also trigger intrinsics. Besides, facing real wireless problems, such

as latency or packet losses, could be the next step to continue this research.
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