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ABSTRACT In this paper, we consider an accelerated method for solving nonconvex and nonsmooth
minimization problems. We propose a Bregman Proximal Gradient algorithm with extrapolation (BPGe).
This algorithm extends and accelerates the Bregman Proximal Gradient algorithm (BPG), which circumvents
the restrictive global Lipschitz gradient continuity assumption needed in Proximal Gradient algorithms (PG).
The BPGe algorithm has a greater generality than the recently introduced Proximal Gradient algorithm
with extrapolation (PGe) and, in addition, due to the extrapolation step, BPGe converges faster than the
BPG algorithm. Analyzing the convergence, we prove that any limit point of the sequence generated by
BPGe is a stationary point of the problem by choosing the parameters properly. Besides, assuming Kurdyka-
Lojasiewicz property, we prove that all the sequences generated by BPGe converge to a stationary point.
Finally, to illustrate the potential of the new method BPGe, we apply it to two important practical problems
that arise in many fundamental applications (and that not satisfy global Lipschitz gradient continuity
assumption): Poisson linear inverse problems and quadratic inverse problems. In the tests the accelerated
BPGe algorithm shows faster convergence results, giving an interesting new algorithm.

INDEX TERMS Bregman proximal gradient algorithm with extrapolation, bregman distance, proximal
gradient algorithm, smooth adaptive condition, relative weakly convexity.

I. INTRODUCTION

In recent years, different numerical methods have been
devised to solve large-scale minimization problems, but still
the Cauchy gradient method is at the kernel of most of the
schemes (for instance, see the recent books [6], [9] and it is
assumed that the gradient of the objective function is globally
Lipschitz continuous). This assumption is quite restrictive in
some real applications and, therefore, new families of meth-
ods have recently been designed to solve more generic cases.
In this sense, the remarkable paper of Bauschke et al. [2]
introduced a new method based on the Bregman distance
paradigm (BPG algorithm) capable of addressing non-global
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Lipschitz continuous gradient problems in the convex case,
and Bolte et al. [8] extended it to the nonconvex case.

On the other hand, a great effort has been made to accel-
erate the proximal gradient algorithm to reduce the number
of iterations. Several techniques have been introduced, such
as the fast iterative shrinkage-thresholding algorithm (FISTA)
proposed in [4], the use of Nesterov’s techniques [26], [27],
and recently introduced in [39] a version of the proxi-
mal gradient algorithm with extrapolation for some noncon-
vex nonsmooth minimization problems (but assuming that
the gradient of the objective function is globally Lipschitz
continuous).

The main goal of this paper is to focus on the introduction
of a new scheme, and analyze theoretically its convergence,
which combines the power of the method developed in [8]
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capable of solving non-global Lipschitz continuous gradient
problems in the convex and nonconvex case, and that includes
extrapolation techniques [39] to accelerate the method.

In this paper, we consider the following minimization
problem:

inf{W(x) :=fx)+gx):x € Rd}. P)

where f is a nonconvex continuously differentiable function
and g is a proper lower-semi-continuous (l.s.c.) convex func-
tion. We assume that the optimal value of (1) is finite, that is,
U* = inf{W(x) : x € ]Rd} > —o00. Problem (1) arises in
many applications including compressed sensing [17], signal
recovery [3], phase retrieve problem [25]. One classical algo-
rithm for solving this problem is the Proximal Gradient (PG)
method [31]:

1
xF1 = arg min {g(x)+<Vf(xk),x — x4+ —Ix —xk||2},
X 2Ak

where k& € N, A, is the stepsize on each iteration.
Proximal gradient method and its variants [14], [20], [28],
[35], [38], [40] have been one hot topic in optimization
field for a long time due to their simple forms and lower
computation complexity.

One branch of developing new PG methods was devoted
to convergence accelerations. Accelerated proximal algo-
rithms [4], [37] on convex problems have shown to be quite
efficient. They were also useful for solving nonconvex prob-
lems [11], [18], [23], [39]. For solving nonconvex prob-
lems (1), one simple and efficient strategy is to perform
extrapolation for each k € N, with the following form (where
x = xo)

V= xk 4 Bk — Xk,

xF+1 = arg min, {g(x)—l—(Vf(yk), x— yk)+ﬁ [l —y* ||2}7

where A is the stepsize on each iteration, and ﬂk(xk —xk=1y
is an extrapolation term. The previous iteration is called
the Proximal Gradient algorithm with Extrapolation (PGe),
which have been shown in [39] that converges and performs
quite well by setting parameters Bi properly. However, PGe
has one restriction on solving problem (1): it requires the
continuously differentiable part f to be globally Lipschitz
gradient continuous on R¢. In fact, this requirement cannot
often be satisfied for many practical problems, such as the
quadratic inverse problem in phase retrieve [25] and Poisson
linear inverse problems [5], that arise in many real world
applications.

In this paper, we propose a new algorithm —Bregman
Proximal Gradient algorithm with Extrapolation (BPGe)—
to solve problem (1) without requiring globally Lipschitz

gradient continuity of f for each k € N, from x~! = x¥:

Yo=xk + Bk — xk =1,

¥+ =arg min, {g(x)+<Vf(y"), x =)+ LDyt y")},
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where Dj, is a Bregman distance defined in Section II.
On the basis of Bregman distance theory, we utilize a smooth
adaptive condition introduced in [8], which generalizes Lip-
schitz gradient continuous condition. This smooth adaptive
condition was originally proposed to analyze Bregman Prox-
imal Gradient (BPG) algorithm in [8]. It can also be used
to analyze the convergence of BPGe, since BPGe algorithm
extends BPG one by performing extrapolation. In particular,
we have that:

(i) When Dp(x,y) = %Hx —y|I? and B = 0, BPGe reduces
to PG.
(i) When Dy(x,y) = %Hx — ylI?, BPGe reduces to PGe.
(iii)) When B = 0 forany k > 0, BPGe reduces to BPG
(no extrapolation).

Therefore, PG, PGe and BPG are particular cases of BPGe
algorithm.

From the convergence analysis (Section IV), the BPGe
algorithm has to satisfy the condition Dj(x*,y%) <
o Cx Dh(xk_l, xk) (where Cy, € (0, 1] and p € (0, 1) are two
parameters) to guarantee the convergence. In the Lipschitz
gradient continuous case Dp(x,y) = %Hx — y||%, and so this
condition is easily satisfied just by choosing infien{Br} <
+/p C. But when Dy, is general, computing a threshold of
infyen{Bx} directly may be hard and expensive. Therefore,
we modify this idea to achieve this condition through a line
search method (Algorithm 2 introduced in Section III).

In the convergence analysis, we prove that any limit point
of the sequence generated by BPGe is a stationary point under
very general conditions. Moreover, by adding some slightly
stronger assumptions and Kurdyka-t.ojasiewicz property,
we could guarantee the sequence generated by BPGe con-
verges to a stationary point.

The paper is organized as follows. We first introduce in
Section II some basic definitions in optimization, smooth
adaptive condition, relative weak convexity, and Kurdyka-
Lojasiewicz property. In Section III we introduce the new
BPGe algorithm. The convergence analysis is done in
Section IV, where under some assumptions of the smooth
adaptive condition and relative weak convexity of prob-
lem (1), we first show a descent-type lemma, from which
the fact that any limit point of the sequence generated by
BPGe is a critical point follows. Later, we prove that the
whole sequence generated by BPGe converges to a critical
point using Kurdyka-t.ojasiewicz property and some addi-
tional assumptions. Several numerical experiments are shown
in Section V to show the performance of the BPGe method
compared with the BPG one.

Il. PRELIMINARIES

Throughout the paper we will use the following basic nota-
tions. Let N := {0,1,2,...} be the set of nonnegative
integers. We will always work in the Euclidean space R?, and
the standard Euclidean inner product and the induced norm
on R¥ are denoted by (-, -) and || - ||, respectively. We denote
B,(x) = {x € R? : ||x — %|| < p} as the ball of radius
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p > 0around ¥ € RY, dist(x, S) := infyes [lx — y|l as the
distance from a point x € R¥ to a nonempty set S C R?. The
domain of the function f : RY — (—o0, +00] is defined by
domf = {x € R? : f(x) < +00}. We say that f is proper if
dom f # (. For other generalized notions and definitions we
refer to [8], [33], [34].

A. SMOOTH ADAPTABLE FUNCTIONS AND

RELATIVE WEAKLY CONVEXITY

In this subsection, we define the notion of smooth adaptable
condition for nonconvex f proposed in [8]. This property was
extended from the recent work [2] in which the differentiable
functions need to be convex. This condition is similar to
the relative smoothness condition introduced in [24], but the
relative smoothness is based on the fact that f is convex.
As we want also to deal with nonconvex functions, in our
paper we use the smooth adaptable condition to generalize
Lipschitz gradient continuity and to derive the related con-
vergence results of BPGe.

We first introduce the concept of Bregman distance needed
in the definition of smooth adaptable condition. Is is based
on the definition of kernel generating distance (also called
Bregman function). The standard definition of Bregman func-
tion was given by Censor and Lent [12] based on the work
of Bregman [10]. Other works on proximal algorithms with
Bregman functions are listed in [13], [15], [21].

Definition 1 (Kernel Generating Distance and Bregman
Distance [8]): Let S be a nonempty, convex and open subset
of R%. Associated with S, a function h : R? — (—o0, 00] is
called a kernel generating distance if it satisfies the following:

(i) h is proper, lower-semi-continuous and convex, with

dom h C S and dom dh = S.
(ii) hisC! onint dom h = S.
The function h is also called a Bregman function. We denote
the class of kernel generating distances by G(S). Given h €
G(S), the Bregman distance [10] is defined by Dy, : dom h x
int dom h — [0, +00)

Dy(x, y) := h(x) — h(y) — (Vh(y), x —y).
Many kinds of Bregman functions are illustrated in the

literature [8], [36], like the Energy r(x) = %xz with
dom r = R, the Shannon Entropy r(x) = xlogx with
dom r = [0, oo], the Burg r(x) = —logx with dom r =

(0, 00). Note that their derived Bregman distances are, obvi-
ously, proximity measures that measures the proximity of x
and y, and they are widely used in applications.

Next, we list some basic properties of the Bregman
distance [15], [36]:

(1) For any (x,y) € dom & x int dom &, Dy(x,y) > 0. If in
addition # is strictly convex, Dy(x, y) = 0 if and only if
x =y holds.

(ii) The three point identity: For any y, z € int dom 4 and
x € dom A,

Di(x, 2)=Di(x, y) =Dp(y, 2) = (Vh() = Vh(z), x — y).
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(iii) Linear Additivity: For any o, 8 € R, and any functions
hy and hy we have:

Doy +pny (X, ¥) = oD, (x, y) + BDp,(x, y),

for all couple (x,y) € (dom Ay N dom h2)? such that
both k1 and h, are differentiable at y.

Throughout the paper we will focus on the pair of functions
(f, h) that satisfies the smooth adaptable condition. Next we
present the definition introduced in [8].

Definition 2 (L-Smooth Adaptable [8]): A pair of func-
tions (f, h), such that h € G(S), f : R? - (—o00, +00] is
a proper and lower-semi-continuous function with dom h C
domf, which is continuously differentiable on S = int dom h,
is called L-smooth adaptable (L-smad) on S if there exists
L > 0 such that Lh — g and Lh + g are convex on S.

According to [8, Lemma 2.1], the pair of functions (f, i)
is L-smad on § if and only if ||f(x) — f(y) — (Vf(¥),x —
Wl < LDyx,y) for any (x,y) € int dom h. When
h(x) = %|lx||> and consequently Dy(x,y) = %|lx — y||?, the
L-smad condition of f would be reduced to Lipschitz gradient
continuity: |[f (x) — f(y) — (Vf (), x =y < 5llx — y||?* for
any (x,y) € dom h.

Next, we introduce the definition of a pu-relative weakly
convex function, given in [16]. This definition extends the
definition of weakly convexity [29], which was employed in
the analysis of nonconvex optimization methods.

Definition 3: f is called pu-relative weakly convex fo h on
S if there exists u > O such that f + ph is convex on S.

When f is convex, u = 0. When (f, k) is L-smad on S,
obviously f is L-relative weakly convex to h. So, by default,
u < L. Now, just to give an example of a relative weakly
convex function, we set f(x) = }TZ;”:l(xTA,-x — b)* and
h(x) = Llx]13 + %lx]13. Then, the pair (f, h) satisfies the L-
smad condition when L > Y7 | (3||A:* + |IA;ll|bi]) and f
is p-relative weakly convex h when > > 1| [|A;|b;l.

B. KURDYKA-tOJASIEWICZ PROPERTY

Finally, we introduce the definition of the Kurdyka—
Lojasiewicz property proposed in [7]. We need this property
to prove the global convergence of the whole sequences
generated by BPGe for solving (1).

Definition 4: (Kurdyka—L.ojasiewicz property [7]) Let f :
R? — (—o00, +00] be a proper lower-semi-continuous func-
tion.

(i) The function f is said to have the Kurdyka—f.ojasiewicz
(KL) property at x € dom df = {x € R? : 3f (x) # 0}
if there exist n € (0, +00], a neighborhood U of x and
a function ¥ : (0, n) = Ry satisfying:

Y(0)=0,¢ € clo, n) and continuous at 0,
foralls € (0,n) : ¥'(s) >0,

such that for all x € U N [f(x) < f(x) < f(X) + n],
the following inequality holds

Y (F(x) = () - dist(0, f (x)) = 1.
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(ii) If f satisfies the KL property at each point of dom of
then f is called a KL function.
The KL functions cover a large class of functions and some
examples have been listed in the Appendix of [7].

Ill. BREGMAN PROXIMAL GRADIENT ALGORITHM

WITH EXTRAPOLATION (BPGE)

Throughout this paper, we focus on the nonconvex problem
(1) of Section I, and we assume that the kernel generat-
ing distance function & € G(R?), (f,h) is L-smad and f
is p-weakly convex relative to 4 (see Definitions 2 and 3).
In addition, we also suppose the following general
Assumptions 1 and 2.

Assumption 1 is a quite standard condition [8] to guarantee
the existence of the solution to each step of the optimal
subproblem of Proximal Gradient (PG) algorithms.

Assumption 1: The function V is supercoercive, that is,

W(u)
im =
_ ull—o0 lull ) . .
Assumptions 2 is a general assumption used in the analysis
of Bregman Proximal-type algorithms [2], [15].

Assumption 2: 1) h is strictly convex.
2) If {xk}keN converges to some x in dom h then

Dy (x, xk ) — 0.
3) If {x*}ken, ¥ Jken defined in dom h are sequences such

that y* — x* € dom h, {x*};en is bounded, and if

Dp(x*, ¥y — 0, then x* — x*.

Algorithm 1 BPGe-Bregman Proximal Gradient

Algorithm With Extrapolation
Data: A function & defined in Definition 1 such that (f, &)
is L-smad holds and f is pu-weakly convex relative to s on
R4, Error tolerance: TOL.
Initialization: x° = x~! € intdom hand 0 < A; < 1/L.
General step:
Fork=0,1,2,..., kpu repeat

Vo= ok 4 Bk — Xk, 4))

where By is searched according to Line Search in
Algorithm 2.
Then compute

11 € arg min {g(x)+<x—yk, Vf(yk)>+iDh(x,yk)} )
xeRd Ak
2

until EXIT (TOL) received.

We are now ready to introduce our BPGe algorithm,
divided in two parts, Algorithm 1 and Algorithm 2.
Algorithm 1 is the whole framework for solving Problem (1).
And Algorithm 2 is a line search step, which is used
to search a proper parameter fB; at every iteration in
Algorithm 1. Throughout the whole paper, we make the
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following notations

A = sup{Ai},
keN

By default 0 < A < A < oo0.

A= inf{A;}.
A kllelN{k}

Algorithm 2 Line Search for Algorithm 1 at the k-th
Iteration
Data: A function / defined in Algorithm 1, fix 0 < n < 1,
Boel0,1),0<p<l1.

—1
Input: x*~!, x* € int dom &, C = j‘{‘ .
Ay i
General step:
B = Po, 5
While Dy(xk, xF 4 Bk —xk=1)) > p G DR(xF—1, x¥)
do

B =np.

Return: Set the feasible step size B = B for iteration k.

We remark that an important point on any iterative process
is to define suitable error control techniques. In this paper
we consider a quite simple strategy in order to determine the
EXIT conditions. On one hand we fix a maximum number
of iterations k;,,, (in most of our tests 5000 iterations) and
EXIT(TOL) = true if [xF — x*~1||/ max{1, |x¥||} <
TOL (in our tests TOL = 107° as in [39]). Other
option is to check the convergence using the objective
function, instead of the solution itself, that is ||W(xX) —
WD)/ max{1, W)} < TOL.

We first verify that (2) is well-defined using the following
Proposition 1. For all y € int dom % and stepsize 0 < A <
1/L, we define the Bregman proximal gradient mapping as:

T5.(y) := arg Helﬁl}[ {g@) + (VF ), u —y) + 27 Di(u. y)}.

In Proposition 1 we prove that T) (y) is well posed. Thus by
Proposition 1, x**! e Tj, (x*), and fixing inf{A} > 0, then
Step (2) in BPGe algorithm is well-defined.

Proposition 1: Suppose that Assumption 1 holds, lety €
int domhand0 < A < 1/L. Then, the set T)(y) is a nonempty
and compact set.

Proof: Fixanyy € intdomhand0 < A < 1/L. For any
u € RY, we define

W) = g(w) +f () + (u— y, VF)) + A~ Dy(u, ),

so that T (y) = argmin,gs W5(u), It can also be repre-
sented as

W) = W) — fu) + O +{u =y, V) + A~ Dp(u, y)
> W(u)+L Dp(u, y) — [fw) — f@) — [ —y, V)]
> W(u).

where the second inequality is obtained by taking into
account A~! > L and in the last inequality that (f,h)
is L-smooth adaptable. According to Assumption 1, i.e.
limyj ) 00 W(u) = 00, there is

lim WY,(m) > lim Y(u) = oo.
llull—oc0 [luel| o0
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Since W, is also proper and lower-semi-continuous, invok-
ing the modern form of Weierstrass’ theorem (see, e.g.,
[33, Theorem 1.9, page 11]), it follows that the value infps W),
is finite, and the set arg min,, cgs W5 (1) = T (y) is nonempty
and compact. 0

Secondly, we add an extrapolation step to the BPGe algo-
rithm to choose a suitable S at each iteration step through the
line search Algorithm 2. On this step it is hard to guarantee
directly the decrease of the function value W(x¥). Therefore,
we focus on guaranteeing sufficient decrease of the Lyapunov
sequences defined in Section IV in the convergence analysis.
However, it still requires an extra condition Dy(xk, x* +
Bk — x*h) < p G DRG* ! x5 When b = Ix],
BPGe is reduced to the PGe algorithm [39] and this condition
is easily satisfied by setting 0 < S < /pL%ﬂ. But when &
is more general and complex, computing the threshold of B
directly may be hard and expensive. So, we try to reach this
condition by a line search method introduced in Algorithm 2.
Thus, our next step is to verify that Algorithm 2 is well-
defined, as the following proposition 2 shows.

Proposition 2 (Finite Termination of Algorithm 2): Cons-

ider Algorithm 1 and fixk e N. Let0 < n < 1,0 < p < 1,
~ _ A;l
B €10, D), C/i— PR
that By := 1/ B satisfies

Di(x*, xF 4 Br(x* — XK < p € DRGETT x5

> 0. Then, there exists J € N such

foranyj>J.
Proof: This result is proved by contradiction. Suppose
that

Dy, X+ B — 1) > o Cp DRGRT! X5

holds for any j € N. y
When x*¥ = x¥~!, Algorithm 2 terminates with gy = B
directly.
When x* 7+ x*=1 since
e =@ Bk =)= Bl = =0, j— oo,

according to Assumption 2(2), Dy (xk x4y ,5(xk -
xkfl)) — 0. Thus for any ¢ > 0, there exist a number J € N

such that
Dk, x* + Bk — Xkl <6, forallj > J.

Since x* # x¥~!, and due to the strictly convexity of % in
Assumption 2(1),

Dy(x*=1 k) > 0.
If we set ¢ = %p Cr Dh(xk_1 , xk), then
P Ci DA x5y < Dy (6, x4 Bt — x4 )
< 3P CDE b,
for j > J, which is a contradiction. O
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IV. CONVERGENCE ANALYSIS OF BPGE

In this section we provide the main convergence results of
the BPGe algorithm. First of all, following the analysis of
Remark 4.1(ii) in [8], we obtain the following Lemma 1.
We find that after adding an extrapolation term, it is hard to
justify monotonicity of the objective function W directly. But
for a special auxiliary sequence, defined by

Him = V&5 + MDD X%, M >0, VkeN

the monotone property will be presented in our settings.
Lemma 1: For any x € int dom h, and let be a sequence
{x*}xen produced by BPGe, then

(i) Forany k € N, we have

W — W) < O+ ) Dix, ¥ — A7 Dpx, x5
— O = LDy 3)

(ii) Forany k € N, we have
Hipi — Hiw < (M — 20" Dy, x4
— (M — pxk—l) Dl X6, @)

Moreover, assuming there exists some M such that

oAl < M < Xﬁl, then the sequence {Hy p} is

nonincreasing and convergent for the fixed M.

Proof: (i) According to the first order condition of (2),
we get

k+1 k —1 k+1 k

0€dg(x* ™ H+Vf()+rr (VAT —=Vh(")), VkeN.
Combining with the convexity of g, there is
g0 — gt
> (—VF0H =2 (VA = VRGP, x = x441),

for all k € N. Together with the three point identity of
Bregman distance

! (Vh(xk+1) —VhG), x — xk+1>
= 3 (Dae, ) = D, D = D) ()
we have that
g(x) — g + £ (0) —f(*
> f(x) —f(h = <Vf(y"), x - xk“>
=2 (Dax ) = Dyt A = Dyt 30) L ©)

for all k € N. If we take the p-relative weakly convex prop-
erty and L-smad property of (f, ) (see Definitions 2 and 3),

FG) = FOA) = (VrOh), x — 441
@) =R = (VR x = 3F) +£ 05 = pt+
_ <Vf@k)’ N _xk+1>

—nDy(x, ) = LDy ),

v

Vk € N. 7
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Thus
WOk —wr) < ()»k_l + ) Dp(x, y*) — )»k_th(x,XkH)
— Ot = L) DyF TV,

(i1) For any k € N, taking x = x¥ into (3), together with
L< Ak_l, Dp(x**+1,y%) > 0 we get

W) W) < g o) DRGK, Y — A Dk, xF .

If ¥ = x*! we get y¥ = x*, thus Du(xk, b)) =
Dy(x*¥=1, x*y = 0 and

\.I/(ka) + )»k_th(xk,ka)
< WER) + Ot ) p Ce DL XN, (8)

If xX¥ # x*1, according to Algorithm 2, we have
Dy(xk, y%) < p Cx Dp(x*=1, x¥), thus

Wk 4+ )L/:th(xk: Xk

<V + 0+ wp GO 9)
Combining these two cases, we obtain
Wk 4 )‘k_th(xkvka)

< WM FOT ) p G DRGF LX), Yk e N

From the definition of Hy s, we see that
Hiw1.m = Her < (M = 2 DD 21
= (M= pa ) Dut b, ke,
Furthermore, assuming there exists some M such that
prl <ot <M <3 <ag
and fixing one of such values of M, we find that

Hiyim —Hem <0, VkeN,

that is, {Hy m }ren 1S nonincreasing for the fixed value of M.

Recall that Hy y > infW > —oo and Hj p is nonin-
creasing. This implies that {Hy p} is convergent for some
fixed M. O

The next corollary is an obvious result based on Lemma 1.
We analyze the boundness of the sequences produced by
BPGe algorithm. Since Hy p is nonincreasing according
to Lemma 1(ii), it is easy to verify that the sequence
(K en generated by BPGe is bounded according to
Assumption 1. The boundness would act as a tool in the
following analysis, so we present this result as the auxiliary
Corollary 1.

Corollary 1: Assume there exists some M such that
pr <M < X_l, then the sequence {x*}icn generated
by BPGe is bounded.

If the stepsize A; and parameter p in Algorithm 2 satisfy
p <% '/x~! = A/%, then we could get sufficient decrease
of the auxiliary sequence {Hj a}ken for the fixed M given
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in Lemma 1. As a consequence, we can bound the sum of
Bregman distance between two iteration points generated by
BPGe. Moreover, adding stronger assumptions than Assump-
tion 2 on the kernel generating distance A, such as strong
convexity, we could get that limy_, oo lx* — x¥=1|| = 0 for
the sequence {x*}cn in R? by BPGe. In this paper, we just
consider the set of weaker blanket Assumptions 1 and 2,
that permit us to prove that any limit point of the sequence
(K ren generated by BPGe, if exists, is a stationary point of
the objective function W.

Assume that {xF}ien is generated from a starting

point x°. The set of all limit points of {x*};ey is
denoted by
a)(xo) := {X : an increasing sequence of integers {k;};cN

such that x — ¥ as i — 00}.

The next technical lemma shows, among other results, that
for any x0 e RY, a)(xo) C crit ¥ holds.

Lemma 2: Suppose p < M/A and let {x*}ien be a
sequence generated from x° by BPGe. Then the following
statements hold:

(i) 3520 Dn(x* =1 xk) < 00 and limy—, 00 Dp(x* =1, x%) =

0.
(ii) Any limit point of {x’}en is a critical point of W
(w(x®) C crit W).
(iii) ¢ = limg_ 0o W(x¥) exists and ¥ = ¢ on w(x°).
Proof: (i) Since p < A/, we have that pi; ' <
o7l < %', and we choose M e (,o&‘l,x_l]. From
(4), together with the nonnegativeness of Dy (x¥, xk*1y and
M < A,:l, we have Vk € N

(M _ p&q) DuE X6y < (M — p)\’:1>Dh(xk71’xk)
< Hym — Hit1,m5 (10)

which implies, VK € N, that

K
OEZ (M—p&fl) Dp(x* =1 x*Y<Hop — Hyx 414, (11)
i=0

by summing both sides of (10) from O to K. Since {Hj a} is
convergent by Lemma 1(ii), letting K — oo, we conclude
that the infinite sum exists and is finite, i.e.,

K
Z (M — p&71> Dh(xkfl,xk) < Q.
i=0

Since M — pr~! > 0, we obtain directly that YK , D,
(F=1 x%) < 00 and limg— o0 Dp(xF 1, x%) = 0.

(i) Let X be a limit point of {x*};en. Let {x} be a subse-
quence such that lim;_, o xki = x. Since Dh(xki =1 xki )— 0,
and we know {x¥~1},c is bounded according to Corollary 1,
Assumption 1(ii) implies x5! — . Similarly, we get
xki=2 - . By the representation of yki—! = xk—1 4
,Bk,'fl (xk,-—l _ xki—Z) or yk,-—l — xk,-—l (if xk,——l — xk,——2)’
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we obtain

ki—1 _xk,'” < ”xk,-—l _xki” + ”xki—l _xki—2||

< b — F| 42057 =)+ x5 2 -3 — 0.
(12)

Ily

On one hand, we prove that there exists vhi e 8\IJ(xki ) such
that v6i — 0. By using the first-order optimality condition of
the minimization problem (2), we obtain

0 € 1y 188GH) + A VOGR4 V() — VARG,

for all k; € N. Therefore, we observe that

Vf(xki)_vf(yki_l)_)‘/:il—l (VA" —Vh(A—h) e 0w (x),
(13)

for all k; € N. Taking limits on the left hand in (13) we have
that

IV M) = VO™ = 2 L (VRGN — VARG )|
< IVFEE) =R +A7 I VRGE) - VRS = 0,
(14)

as k; — oo. where the limit can be got according to (12)
and the continuity of Vf and V. Thus, we get that there exist
vki e 9W(xki) such that |V5i|| — 0 as k; — 0.

On the other hand, we derive that W(x) — W),
ki — oo. From the lower-semi-continuity of W, we have

W(T) < lim inf W(xk). (15)
11— 00

According to the iteration step (2) of BPGe, for k; > 1,
we have

Ma—1 gk + <xk" —X, )»k,-flvf(yki_l)> + Db, YR
< M—18() + DX, Y571
Adding Ag,—1f (x%) to both sides, we have
Mmt W) (6 =, g, VS ORT) + i, 35
< Mg 18() + hig— 1f N + Dy E YT, (16)

for all k; € N. After rearranging terms, for all k; € N,
it follows

V) < WE + () — @ - (=%, vrekh)
Ly Dy A Du Y. ()

L-smad property and p-relative weakly convexity of (f, h)
imply that for all k; € N

R = @) = (5 =% vFoRh)
< LDy, ) + (6 - %, @ — vrehh)
= L Dy, %)+ Dy (x", Y5~ = Dp (x4, %) — Dp (%, y ).
< LDy, ) + LDy(M, 3571 4 Dy, %)
+pu Dy(x, ¥ (18)
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Plugging (18) in (17), passing to the limit, together with
the relationship A < Ay, < A, we have

lim W (xk)

I—> 00
< W@+ lim [(—2 "+ LDy, yh
11— 00
+ QT DyE, YT+ 4 w)Du(x, 3]
= W@+ lim @7 + ) [DE D + Dy )|
I—> 00
where the second inequality is based on L < X_l < &_1

in BPGe. From (12), together with the continuity of Vh,
we obtain

1im Dy (x, Y51 4+ Dy(xhi, %)
1— 00

< lim Dy, YD 4+Dp(h 1, ®)+Dy(xh, %) + Du(x, x*)
11— 00

IA

lim [VAGS™Y — va@)|Iy ! - |
11— 00

+ [ VAG") — VA1 - x|
=0.
Hence we have
lim sup W(x") < WU(x). (19)
i— 00
Combining (15) and (19) yields W (x%) — ¥ (x), k; — ooc.

Thus, according to these results, and the closedness of oW
(see, Exercise 8 in Page 80 [9]), we have 0 € 0V (X).

(iii) In view of Lemma 1 and (i), the sequence {H p} is
convergent and Dp(x*=1, x¥) — 0. These, together with the
definition of Hy 7, implies limg_ o0 \IJ(xk) exists, denoted as
¢. According to the last part of the proof in (ii), and taking

¥ € w(x% with a convergent subsequence {x¥1} such that
lim;_, o0 x5 = X, we know that

¢ = lim Uk = w(x).

Thus the conclusion is completed since ¥ is arbitrary. ]

Next, we prove a global (’)(%) sublinear convergence
rate for the sequence mingcy Dy (x*=1 xkY of the algorithm.
In fact, the linear convergence rate can also be got if we
add more assumptions, like KL property and concrete KL
exponent (we refer to [22]), based on similar deductions as
in [8, Theorem 6.3].

Corollary 2: Suppose p < AJA and {x*}en be a
sequence generated from x° by BPGe. Then for all K > 1,
ming<x<g Dh(xk_l, xk) converges with a sublinear rate as
O(#).

Proof: SetM = X‘l, recall (11), now for K > 1,

K
——1 — —
0= (A" = pa7") Dutk x5 < Hiws — Hicrrn.
i=1

Hence we obtain

Hypm — Hg+1,m

min Dy (et !, xk) < LM TKELM
K (A - pyl)

20
1<k<K - 20

O
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Next, we focus on performing a global convergence analy-
sis. We aim to prove that the sequence {x*};cn generated by
BPGe converges to a critical point of the objective function W
defined in (1). In order to prove global convergence, we use
the proof methodology introduced in [1]. This proof method-
ology proves global convergence result for several types of
nonconvex nonsmooth problems. Other similar forms were
referred in many works [30, Section 3.2], [32, Section 4],
[8, Section 4.2].

For the reader’s convenience, we firstly describe the proof
methodology summarized in [30, Theorem 3.7] with a few
modifications and then we apply it to prove the convergence
of BPGe in Theorem 2.

Theorem 1: [30, Theorem 3.7] Let F R2d
(—00,00] be a proper lower-semi-continuous function.
Assume that {Z}ren = {(x%, x¥* " D)ren is a sequence gen-
erated by a general algorithm from 2° = (x° x%), for
which the following three hypotheses are satisfied for any
k eN.

(H1) For each k € N, there exists a positive ‘a’ such
that

F(Zk+1) +a ”xk _xk—l ”2 < F(Zk), Vk e N.

(H2) Foreachk € N, there exists a positive ‘b’ such that
for some VFt1 € 3F (K1) we have

b kil k ko k-1

2(||x X 1 =X ),

Vk € N.

k+1
IV <

(H3) There exists a subsequence (25 )jeN such that i —
Zand F(Z) — F(3).
Moreover, if F have the Kurdyka-Lojasiewicz property at the
limit point 7 = (x, X) specified in (H3), then, the sequence
{xk}keN has finite length, i.e., Z,fil ||xk —xk_1|| < 00, and
converges to X = X as k — 00, where (X, X) is a critical
point of F.

In our paper, what we need is to verify that the hypotheses
given in Theorem 1 are satisfied for F(x,y) = W(x) +
MDy(y, x) and the sequence (xk, xk_l)keN e R generated
by the BPGe algorithm.

In order to guarantee the three hypotheses of the Theo-
rem hold, we need another extra assumption (the following
Assumption 3). Note that the first two requirements of the
assumption were also required in [8, see Assumption D(ii)],
and the third assumption is easily verified.

Assumption 3: 1) his o-strongly convex on R4,

2) Vh,Vf are Lipschitz continuous on any bounded

subset of RY.

3) There exists a bounded u such that u € 9% h on any
bounded subset of R?.

In fact, Assumption 3(1-2) can guarantee that

Assumption 1(2-3) hold for the bounded sequence {x }xenN.
The next task is to verify the three hypotheses one by one.
Then, together with Theorem 1, we obtain the result that,
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under proper parameter selection, the whole sequence gener-
ated by BPGe converges to a critical point of the objective
function.

Theorem 2: Suppose p < AJ. Let {x*}ren be a sequence
generated from x° by BPGe. If F(x,y) = W(x) +
MDy(y, x)(Where M € (p A‘l, Xﬁl]) satisfies the Kurdyka—
Lojasiewicz property at some limit point 7 = (¥,%) € R*?
and Assumption 3 holds, then

(i) The sequence {x*}ren has finite length, i.e. Z,fi 1
[k — A=) < oo,
(ii) x* — X as k — o0, and % is a critical point of W.
Proof: We first verify the three hypotheses of the
Theorem 1 for function H and BPGe algorithm.
(H1) According to Assumption 3, since £ is strongly convex,
assume that & is o-strongly convex, that is Dy(x, y) >
Zlx — y||? for any x, y € RY. We denote a = 5(M —
p 2~ 1. For any k € N,

F(xk+1’xk) + a”xk _xk—1||2
< FML x5 + M — pa~ HDp(F 1 xb)
< F(xk—t-l’xk)_’_ M — pA;l)Dh(xk—l’xk)
= Hir1m + M — pi HDR(* 1 xF)
< Him + (M — 27" Dy, XK
< Hyy = F(5 x50,

where the first inequality is based on the strongly con-
vexity of &, the second inequality is based on A < Ay,
the third and the last equality is from the definitions of
Hj p and F, the fourth inequality is from Lemma 1(ii),
and the fifth inequality is according to the nonneg-
ativeness of (M — Az ") Dy(x, x*+1). Thus (HI) is
verified.

(H2) From the optimal condition (2), there exists —Vf (yk )+
A(VROR) — VRGETY) e g(xF*t!). Due to
Corollary 1, {x*};en generated by BPGe is bounded,
and so also {y*}ren is bounded. Thus, according
to Assumption 3(iii), there exists a bounded u; €
32h(x%), and

Vk+1

= (Vf(x"“) — VFOF) — g H(VRGETY) — VRGE))
— M (g, x* 1 — XKy, M(VAGF) - Vh(xk+1))>,

such that vg 41 € AF (xk+1, xk). According to Assump-
tion 3, there exist Ly, Ly, 8 such that for any k € N,
VAT = VRGN < Lyl =41, 1V * ) —
VIO < Ll =y fluel) < 6.

Hence

kil < (Lr + 27 L) It =55

+M(S + Ly)||x*T — X
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< (Lf + O+ ML, + MS) K+ — K|
(1 + 2 1) I =

= (b + 0"+ ML+ M8) (14! =24

k_ k=1
+ [l =X 7)),

And so, (H2) is satisfied.
(H3) Hypothesis (H3) follows naturally from Lemma 2(ii).

According to Theorem 1, combining the three hypotheses
given in Theorem 1 and KL property at z could guarantee
that conclusion (i) holds. Conclusion (ii) is followed by
Theorem 2(i). Thus {xk }ken 1s a Cauchy sequence of R? and
converges to its limit point X. From Theorem 1 X is the critical
point. 0

V. NUMERICAL RESULTS

In this section we perform several numerical tests in order to
show the behaviour and the convergence speed up obtained
when using the BPGe algorithm. We consider two important
optimization problems in which the differentiable part of
the objective does not admit a global Lipschitz continuous
gradient: a convex Poisson linear inverse problem and a
nonconvex quadratic inverse problem (and so the PG and
PGe algorithms cannot be applied to these problems). It is
important to remark that for cases where the differentiable
part of the objective admits a global Lipschitz continuous
gradient the BPG and BPGe algorithms become the PG and
PGe algorithms, respectively. That is, the BPG and BPGe
methods can be applied but the performance in these cases
it was already shown in [39].

The main parameters in BPGe algorithm are the step-
sizes Ar in Algorithm 1, and the parameter p that gives the
extrapolation coefficients By in the line search method of
Algorithm 2. In our tests we consider fixed stepsizes Ay = A.
The influence of both parameters {X, p} in order to fix suit-
able values is studied below in the tests.

All the numerical experiments have been performed in
Matlab 2013a on a PC Intel(R) Xeon(R) CPU E5-2697
(2.6 GHz).

A. APPLICATION TO POISSON LINEAR

INVERSE PROBLEMS (PLIP)

Poisson Linear Inverse Problems (that is, linear inverse
problems in presence of Poisson noise) emerged in many
fields, like astronomy, nuclear medicine (e.g., Positron
Emission Tomography), inverse problems in fluorescence
microscopy [2], [5], [19]. Therefore, the design of methods
and estimators for such problems has been studied intensively
over the last two decades (for a review, see [5], [19]). Often
these problems can be represented as a minimization problem
like

min {d(b, Ax) + 0g(x) : x € R%} (PLIP)
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where 6 > 0 is used to weigh matching the data fidelity
criteria and its regularizer g, and d(-, -) denotes a convex
proximity measure between two vectors.

A very well-known measure of proximity of two non-
negative vectors Ax and b is based on the Kullback-Liebler
divergence:

m bl
d(b, Ax) : ; {b, log e + (Ax); b,}.
which corresponds to noise of the negative Poisson log-
likelihood function. It is easy to find that f := d(b, Ax) has
no globally Lipschitz continuous gradient [2], but satisfies
L-smad condition with a kernel generating distance called
Burg’s entropy, denoted as

d
h(x) = — Zlong, dom i = RY,
j=1

and so now the Bregman distance is given by
d

Dy(x,y) = Z {ﬁ — log <ﬁ) — 1}.
o Wi Yi
Therefore, we have that
(i) (f,h) is L-smad, where L > |b||; (according to
Lemma 7 in [2]), and f is O-relative weakly convex to &
since f is convex;
(i) Assumptions 1 and 2 hold, but Assumption 3 does not
hold.
So, from the convergence Section IV, we can solve this prob-
lem using the BPGe algorithm and it is guaranteed that any
limit point of the sequence generated by BPGe is a stationary
point of the objective function W.

An important point in any iterative method is to define
suitable error control techniques. As discussed in Section III,
EXIT conditions of the experiments are set when iterations
exceed 5000 times or [x€ — x¥=1||/ max{1, ||x¥|} < 107°
(as in [39]).

In the tests, the entries of A € R’fx‘i and x € R‘i are
generated following independent uniform distributions over
the interval [0, 1]. We consider the case g(x) = 0, i.e., we
solve the inverse problem without regularization, so now the
minimization problem is the standard Poisson type maximum
likelihood estimation problem (modulo change of sign to pass
to a minimization problem).

As these methods (BPG and BPGe) can be applied to both,
overdetermined (m > d) and underdetermined (im < d)
problems, we have performed numerical tests on both cases.
First, we present the results obtained in the overdetermined
case. As commented before, the main parameters in BPGe
algorithm are the stepsize A and the parameter p. In order to
study briefly the most suitable set of parameters, we analyze
the influence of both parameters {A, p} in Figure 1. In all the
pictures we show the evolution of | W(xz) — W(x™*)| (being
x* the approximate solution obtained at termination of each
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FIGURE 1. Poisson Linear Inverse Problems tests (overdetermined case
m > d): evolution of the difference || ¥(xy) — ¥(x*)| vs. iteration number,
changing the parameters {1, p} and for several problem sizes
(measurements m) with fixed vector dimension d = 100.

respective algorithm) with respect to the iteration number k.
With this figure we can study the influence of the parame-
ters with respect to the size of the problem (measurements 1)
with fixed dimension d = 100. Globally, we observe that
the value p = 0.99 has the best results, even if for some
cases, the set of initial conditions gives rise to a very fast
convergence (as in the cases of using A = 1/(2L) for
m = 5000 and p = 0.95, where we have a fast linear conver-
gence instead of sublinear). Note that this kind of differences
can be observed on other situations, but the average behaviour
tells us that the best performance occurs when we take
p = 0.99. On the other hand, similar comments can be said
with respect to the stepsize parameter 1. The general situation
also recommends us to take the highest value A = 1/L (also
for both algorithms BPGe and BPG).

m=1000, d=100 m=5000, d=100 m=10000, d=100

16 6 20
14 14 18
= = =
512 512 > 16f
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10 10 k 1S
N semEmE==s=A
8 8 12
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FIGURE 2. Poisson Linear Inverse Problems tests (overdetermined case
m > d): evolution of the objective function ¥(xy ) vs. iteration number,
using the parameter values {A = 1/L, p = 0.99} and for several problem
sizes (measurements m) with fixed vector dimension d = 100.

In Figure 2, now with the fixed parameter values {A =
1/L, p = 0.99} and for the overdetermined (m > d) case,
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FIGURE 3. Poisson Linear Inverse Problems tests (overdetermined case
m > d): evolution of the difference || ¥(xy) — ¥(x*)| vs. iteration number,
using the parameter values {» = 1/L, p = 0.99} and for several problem
sizes (measurements m and vector dimensions d).

we show the evolution of the objective function W (x; ) vs. iter-
ation number and for several problem sizes (measurements 1)
with fixed vector dimension d = 100. We observe that always
the BPGe algorithm is much faster than the BPG one. In order
to observe more clearly the faster convergence, we present
in Figure 3 much more simulations but now showing the
evolution of || W(x;) — W(x*)||. We note that the differences
of both methods are bigger for low dimension d problems,
in fact for the most overdetermined problems m > d.

— BPGe, .=1/L
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FIGURE 4. Poisson Linear Inverse Problems tests (underdetermined case
m < d): evolution of the difference || ¥(xy) — ¥(x*)| vs. iteration number,
changing the parameters {1, p} and for several problem sizes
(measurements m) with fixed vector dimension d = 5000.

In the underdetermined case we also analyze the influence
of both parameters {)\, p} in Figure 4 with respect to the
size of the problem (measurements m) with fixed dimension
d = 5000. Now, we observe that the value of the parameter
p seems to not affect too much on the global performance of
the method, so we will take the value p = 0.99 when we fix
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TABLE 1. Poisson Linear Inverse Problems tests: CPU-time and number of iterations for different cases of m (number of data) and d (dimension) for two
different values of the 1 parameter for overdetermined (top) and underdetermined (bottom) cases. Tgpg. and Tgpc denote the CPU-time of BPGe and
BPG algorithms, and Ngpge and Ngpg the number of iterations to reach the EXIT criteria. Superscript —a- points out discordant cases related with a fast

linear convergence.

Overdetermined case

A=1/L A=1/(3L)
| m | d TBpGe —?:;GGQ NBpce —%II’;’;%E Tsprae —TT‘;;GGE NBpae —%I]il;cée
1000 | 10 0.08 0.07 74 0.07 0.21 0.22 279 0.21
50 0.40 0.15 336 0.15 0.14 0.16 155 0.15¢
100 | 1.13 0.41 574 0.40 0.32 0.10 187 0.09¢
200 ] 1.68 0.63 665 0.49 0.44 0.07 226 0.07
5000 | 10 0.77 0.24 605 0.23 0.83 0.22 745 0.21
50 3.32 0.26 1291 0.26 4.16 0.34 1353 0.32
100 | 7.50 0.53 2602 0.52 13.97 0.96 4460 0.89
200 | 13.43 0.72 3577 0.72 20.26 1.12 5000 1.00
10000 10 2.53 0.18 699 0.17 0.50 0.03 141 0.03%
50 6.68 0.33 1543 0.31 15.36 0.68 3255 0.65
100 | 16.75 0.70 3441 0.69 23.90 1.02 5000 1.00
200 | 30.32 0.99 4770 0.95 30.20 1.05 5000 1.00
Underdetermined case
A=1/L A=1/(3L)

ENE Tppce 7229« Nppoe fkoe| Topee 9= Nppge EEGe
100 | 1000 | 0.60 0.15 369 0.14 2.19 0.25 1314 0.26
200 5.03 0.89 1754 0.67 3.56 0.29 1298 0.26
300 4.50 0.78 1760 0.67 2.81 0.26 1315 0.26
500 | 5000 | 9.17 0.23 1085 0.22 70.00 1.49 5000 1.00
700 12.85 0.28 1378 0.28 115.16 1.34 5000 1.00
1000 27.51 0.32 1565 0.31 345.13 1.18 5000 1.00
1000 10000 210.06 0.66 3284 0.66 549.52 1.03 5000 1.00
200¢ 643.71 0.89 4271 0.85 886.94 1.07 5000 1.00
300¢Q 967.90 1.02 5000 1.00 1084.821.04 5000 1.00

the parameter. On the other hand, similar comments as in the
overdetermined case can be said with respect to the stepsize
parameter A. Now the behaviour is quite regular, and no cases
of very fast convergence have been observed, and the fastest
convergence is obtained for the highest value . = 1/L (also
for both algorithms BPGe and BPG). Therefore, in the rest
of tests on this paper we fix the parameter values {A = 1/L,
p = 0.99}.

In Figure 5, now with the fixed parameter values {A
1/L, p = 0.99} and for the underdetermined (m < d) case,
we observe that always the BPGe algorithm is much faster
than the BPG one. But, similarly as in the overdetermined
case, the differences are bigger when we use the methods
for larger ratios d/m, that is, for the most underdetermined
problems m < d.

Finally, in Table 1 we give the CPU-time and number of
iterations for different sizes of problems (number of data m
and dimension d) for two values of the A parameter (A = 1/L
and 1/(3L)) for overdetermined (top) and underdetermined
(bottom) cases. From the simulations we observe that when
the problem has not a very big size (probably because in these
other cases longer simulations are needed) the ratios among
both methods provide an interesting speed-up, and in most
cases the EXIT strategy stops the BPGe algorithm before the
maximum number of iterations is reached. On the other hand,
we observe that the CPU-time and iteration number ratios are
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FIGURE 5. Poisson Linear Inverse Problems tests (underdetermined case
m < d): evolution of the difference || ¥(xy) — ¥(x*)| vs. iteration number,
using the parameter values {» = 1/L, p = 0.99} and for several problem
sizes (measurements m and vector dimensions d).

quite similar, and so there are little differences between them.
Note that the BPGe algorithm has an extra step, the line search
method of Algorithm 2, but it increments quite a few the final
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CPU-time. On the table we have remarked three discordant
cases (superscript —a—) related with a fast linear convergence,
instead of sublinear. This is illustrated, for example, on the
left bottom plot of Figure 1 (p = 0.99, m = 1000) where the
green curve, corresponding to A = 1/(3L) converges faster
than the other colours (as it also occurs in other plots of the
same figure). Note that for an overdetermined problem with
random data some initial conditions and data may be led to
a faster convergence. For the underdetermined problem there
is a regular behaviour in all the simulations.

Therefore, in the Poisson Linear Inverse Problems tests
the BPGe algorithm presents a faster performance compared
with the BPG algorithm, giving an interesting option for real
problems.

B. APPLICATION TO QUADRATIC INVERSE PROBLEMS
In the second test (taken from [8]) we show that BPGe
algorithm can deal with a nonconvex Quadratic Inverse Prob-
lem (QIP) in which the differentiable term has no globally
gradient Lipschitz continuous property. This problem is a
natural extension of the linear inverse problem, but now using
quadratic measurements. It appears in many popular applica-
tions, such as signal recovery [3] and phase retrieve [25] from
the knowledge of the amplitude of complex signals.

A general description of the Quadratic Inverse Problem is
to find the vector x € R¥ that solves the system

xTAx ~b;, i=1,...,m

being {A; € RAxd i =1,..., m}asetof symmetric matrices
that describes the model, and b = (by, ..., b,,) € R™ a vector
of usually noisy measurements.

Following the formalism given in [8, section 5.1], this
problem can be formulated as a nonconvex minimization
problem as:

1 m
min { W(x) := 2 Z(xTA,-x — bi)2 +0gx):x € RYY
i=1

(QIP)

where 6 > 0 is used to weigh matching the data fidelity crite-
ria and its regularizer g. In our experiments, we take a convex
l1-norm regularization function g(x) = ||x||1. Note that the
first function f(x) is a nonconvex differentiable function but
that does not admit a global Lipschitz continuous gradient.

The main quality of the BPG and BPGe algorithms
(as noted to the BPG in [8]) is that these methods can solve the
broad class of problems (QIP). To apply BPG and BPGe on
the QIP model properly, we first need to identify a suitable
function A (Definition 1). In [8], a proper choice has been
given as:

o) = 2 Il + 5 13
X) = 4 Xl ) Xll2,
and so now the Bregman distance is given by
Dy(x, y) = {h(x) = h(y) = (I¥I°y +»" (= ).
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When L is chosen such that L > Y"1 | (3[|A;[1* + |A;ll|bi])
then by [8, Lemma 5.1], L-smad condition (Definition 2)
holds for the selected functions f(x), g(x) and h(x).
Besides, according to the same analysis in [8, Lemma 5.1],
we could derive the relative weakly convex parameter as
"> Z;”:l lA;]l|b;|. In conclusion, we have that:

(1) (f, h)is L-smad, f is u-relative weakly convex to 4.

(i) Assumptions 1 and 2 are easily verified.

(iii) f, g, Dy are all semi-algebraic, (see for example [7]).
One can show inductively that Hy(x,y) = W(x) +
MDy(x, y) is semi-algebraic, thus it has KL property
(Definition 4) at any point (x, x). Besides, we could
verify that Assumption 3 holds.

It means, from the convergence Section IV, that the sequences
generated by BPGe algorithm converge to a critical point of
the objective function W.

Here, we perform several numerical tests to compare the
behaviour of the BPGe and BPG algorithms. As we did
with the previous problem (PLIP), we have designed two
main families of experiments, considering overdetermined
(m > d) and underdetermined (m < d) cases. To that goal
we set different values of m and d, and we generate m random
rank-1 matrices A; = a,-aiT in R9%4 where the entries of
the vectors a; are generated following independent Gaussian
distributions with zero mean and unit variance. The accurate
x* ;= argmin{W(x) : x € R4} is chosen as a sparse vector
(the sparsity is 5%) and b; = xTAx*, i = 1,..., m. We set
the weight parameter 6 = 1 as default.

As a first performance comparison, in Table 2 we give
the CPU-time and number of iterations for different sizes
of problems (number of data m and dimension d) for two
values of the A parameter (A = 1/L and 1/(3L)) for the
overdetermined case. The values Tgpg. and Tgpg denote the
CPU-time of BPGe and BPG algorithms, and Nppg. and
Nppg the number of iterations to reach the EXIT criteria,
respectively. From the simulations we observe that the ratios
among both methods provide an interesting speed-up, and the
EXIT strategy stops the BPGe algorithm before the max-
imum number of iterations (k. = 5000 in this case) is
reached. On the other hand, we observe that the CPU-time
and iteration number ratios are quite similar, and so there are
little differences between them. Therefore, we note again that
although the BPGe algorithm has an extra step (the line search
method of Algorithm 2), it increments quite a few the final
CPU-time. Also, from the data we observe that although the
ratio for the BPGe and BPG algorithms for A = 1/(3L) is
quite good, the option BPGe with A = 1/L performs many
fewer iterations, and so it is the recommended option.

In Figure 6, with the fixed parameter values {A =
1/L, p = 0.99} and for the overdetermined (m > d)
and underdetermined (m < d) cases, we show the evolu-
tion of |W(x;) — W(x™)||. In this problem we observe that
the performance of the accelerated BPGe algorithm for the
overdetermined case is quite good, giving a linear conver-
gence. In the underdetermined case the behaviour seems to
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TABLE 2. Quadratic Inverse Problems tests: CPU-time and number of iterations for different cases of m (number of data) and d (dimension) for two
different values of the 1 parameter for the overdetermined case. Tgpge and Tgpg denote the CPU-time of BPGe and BPG algorithms, and Ngpg. and

Npgpg the number of iterations to reach the EXIT criteria.

A= (1/L) A=1/(3L)
T, e NI e T - NT B
| m | d Tspge S Nppge FPESe| Tprge F2EEe Nppge Tfloe
10000 10 0.29 0.53 146 0.35 0.48 0.28 248 0.20
50 0.57 0.14 271 0.14 4.41 0.10 480 0.10
100 | 1.16 0.10 339 0.08 8.73 0.19 655 0.13
200 | 10.15 0.15 608 0.12 17.24 0.31 1668 0.33
20000] 10 0.24 0.34 143 0.34 0.39 0.26 304 0.26
50 4.09 0.14 266 0.14 6.80 0.16 465 0.09
100 | 1.79 0.09 323 0.09 9.39 0.16 605 0.12
200 | 66.97 0.18 602 0.12 40.74 0.28 1413 0.28
30000 10 0.40 0.44 145 0.35 3.22 0.27 231 0.20
50 1.48 0.15 261 0.15 10.42 0.10 472 0.10
100 | 32.79 0.09 331 0.09 15.06 0.12 594 0.12
200 | 153.17 0.12 554 0.11 487.62 0.27 1341 0.27
[m>d (overdetermined case)}—————— For the underdetermined case we also show the evolution
m=10000, d=10 m=10000, d=50 m=10000, d=100 of the objective function W(xx) vs. iteration number to see
g ... s 17~ that in this case the obje.ctive function takes large valpes,
z Sl . T~ . S.. and therefore, when applying the EXIT strategy the required
g? s Y “. precision is obtained (a relative error < 10~°) giving not too
T - - small absolute values.
0 250 500 0 1000 2000 0 2000 4000 . . .
| leratons | leratons | eations Therefore, again in the Quadratic Inverse Problems tests
= sho s sf~ o the BPGe algorithm presents a faster performance compared
Té Se. RO DRI with the BPG algorithm, giving an interesting option for real
2o O 0 Ss. 0 AN problems.
2 % ' .
T s -5 -5
0 25.0 500 [ 1090 2000 0 20.00 4000
me30000, d=10 me30000, d=50 me30000, d=100 VI. CONCLUSION
O sU~ ] NN We have introduced a new accelerated Bregman proximal
;l, Thal T~ TN gradient algorithm (BPGe) useful for nonconvex and nons-
%’ BN ’ Y ’ N mooth minimization problems. This algorithm combines two
2 1 ' . e .
s = - powerful methods to solve large-scale minimization prob-
0 250 500 0 1000 2000 .
Iterations Iterations ’ erations " lems. On one hand, we have taken the BPG algorithm [2]
{m<d (underdetermined case)l——————— able to deal with non-globally Lipschitz continuous gradi-
b e N ent problems (firstly defined for the convex case [2] and
T \‘\\ 4 T~ 4 BEREN 5 later extended to the nonconvex case by [8]). And on the
§ 2 ! 2 ) 2 = other hand, the accelerated extrapolation algorithm (used for
g ° 0 0 instance in the PG algorithm [39]). The use of the Bregman
"“0 5000 10000 1500020000 0 5000 10000 1500020000 0O 5000 10000 15000 20000 distance paradigm permits to enlarge the number of prob-
Iterations Iterations Iterations .
10" mez00 a=s000 110" _mes00, =500 10" meioo, aesooo lems to work with, because we do not need the assump-
v tion of global Lipschitz gradient continuity. And with the
= %, =* S extrapolation technique the convergence of the method is
- > -, = accelerated.
e N L \ T The convergence of the new method is studied, and we

0
0 5000 10000 15000 20000 0
Iterations
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Iterations
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FIGURE 6. Quadratic Inverse Problems tests (overdetermined case

m > d) and (underdetermined case m < d): evolution of the difference
[ (xg) — ¥(x*)|| vs. iteration number, using the parameter values

{» = 1/L, p = 0.99} and for several problem sizes (measurements m and
vector dimensions d) and evolution of the objective function ¥(x,).

be sublinear, and it needs more iterations to reach the desired
value (in this simulations k;,;x = 20000). In both cases the
BPGe algorithms performs much better than the BPG one.
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have proven that any limit point of the sequence generated
by BPGe algorithm is a stationary point of the problem by
choosing parameters properly. Besides, assuming Kurdyka-
Lojasiewicz property, we have proven the whole sequences
generated by BPGe converges to a stationary point.

Finally, we have applied it to two important practical prob-
lems that arise in many fundamental applications (and that
not satisfy global Lipschitz gradient continuity assumption):
Poisson linear inverse problems and quadratic inverse prob-
lems, for both, overdetermined and underdetermined cases.
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In these tests the BPGe algorithm has shown faster
convergence results than the BPG algorithm, and so the new
BPGe algorithm seems to be an interesting methodology.
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