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ABSTRACT

We study the structural and dynamical consequences of damage in spatial neuronal networks. Inspired by real in vitro networks, we construct
directed networks embedded in a two-dimensional space and follow biological rules for designing thewiring of the system. As a result, synthetic
cultures display strongmetric correlations similar to those observed in real experiments. In its turn, neuronal dynamics is incorporated through
the Izhikevichmodel adopting the parameters derived fromobservation in real cultures.We consider two scenarios for damage, targeted attacks
on those neurons with the highest out-degree and random failures. By analyzing the evolution of both the giant connected component and the
dynamical patterns of the neurons as nodes are removed, we observe that network activity halts for a removal of 50% of the nodes in targeted
attacks,much lower than the 70%node removal required in the case of random failures. Notably, the decrease of neuronal activity is not gradual.
Both damage scenarios portray “boosts” of activity just before full silencing that are not present in equivalent random (Erdös–Rényi) graphs.
These boosts correspond to small, spatially compact subnetworks that are able to maintain high levels of activity. Since these subnetworks are
absent in the equivalent random graphs, we hypothesize that metric correlations facilitate the existence of local circuits su�ciently integrated
to maintain activity, shaping an intrinsic mechanism for resilience.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099038

Understanding the robustness of brain circuitry is of utmost
importance for tackling degenerative diseases such as Parkin-
son’s and Alzheimer’s. One avenue to address this challenge is
the study of neuronal cultures, as they are systems whose struc-
ture and dynamics can be controlled and monitored in real time,
thus providing useful insights into the collective functioning of
ensembles of brain neurons. Here, by taking advantage of the
current knowledge about the structural and dynamical patterns
of real neuronal cultures, we construct synthetic networks dis-
playing similar wiring patterns and study their behavior under
node removal, mimicking the damage experienced by neuronal
circuits under degenerative diseases. We compare the e�ects of
targeted attacks and random failures by monitoring the evolution
of the structural and dynamical patterns as neurons are sequen-
tially removed. In both cases, activity crisis occurs well before the

structural disintegration of the network. In addition, our numer-
ical results illustrate that activity changes occur sharply, pointing
out that, although the network can maintain activity for a large
fraction of neurons removed, at the vicinity of critical regions a
tiny fraction of neuron removal triggers network silence. Inter-
estingly, we observe that metric correlations facilitate neuronal
activity to be retained in small localized circuits before the whole
activity ceases. This result pinpoints amechanism thatmay be key
for explaining the resilience to damage of neuronal cultures.

I. INTRODUCTION

A fundamental aspect in the understanding of brain dam-
age is the impact of node centrality and network topology on the
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circuit structural integrity and activity �ow.1–3 It was observed that
Alzheimer’s and Parkinson’s cause a signi�cant loss of hubs and
deteriorate the small-world organization of the neuronal circuits,
altering synchronization patterns or the integration–segregation
balance.4–6

Given the complexity of brain circuits, and the inherent dif-
�culty to explore damage in a controlled manner, experimental
investigations have been combined in recent years with in silico
numerical models.3,7,8 The goal is to better comprehend the impact
of damage on the network structure, shed light on the importance of
node centrality, and make predictions on the dynamical alterations
at whole-network scale. These models have also underscored the
importance to distinguish between “targeted attack,” i.e., the dele-
tion of central nodes, and “failure,” i.e., the deletion of arbitrary
nodes.9 For instance, Joyce et al.8 applied these two damaging actions
to functional brain networks, explored the behavior of the networks
and their dynamics as damage progressed, and exposed resilience
features.

Despite these advances at the brain scale, there is a substantial
interest in the development of numerical models that approach dam-
age at a microcircuit level.10–12 The advantage of such models is that
they can incorporate diverse connectivity distributions and detailed
neuronal dynamics while accessing the entire neuronal population.
Then, the changes in network collective behavior can be explored
according to di�erent damage schemes, to �nally unveil the capac-
ity of the system to maintain fundamental traits such as network
integrability10 or large-scale synchronization.12

However, an aspect that is often disregarded when modeling
neuronal microcircuits is the inherent spatial embedding of neu-
rons and connections in biological neuronal networks. The brain
combines both two-dimensional and three-dimensional organiza-
tion; and neuronal cultures,13 one of the most celebrated exper-
imental model systems in neuroscience, are typically prepared
by growing neurons and connections on a �at two-dimensional
substrate.14–16 Recent studies showed that spatial embedding in
these systems naturally feature metric correlations that shape in
great measure the architectural and dynamic traits of the neuronal
network.14,16–18

To the best of our knowledge, there exist no computational
studies for damage that take into account the spatial embedding
of biologically-realistic neuronal microcircuits. Thus, in the present
study, we aim at �lling this gap by introducing a detailed numeri-
cal exploration of the di�erences between targeted attack and fail-
ure in spatially-embedded networks. Our model is based on the
construction introduced by Orlandi et al.,14 which shapes a sponta-
neously active network. As major results, we show that the output
degree is the most important nodal property for targeted attack, and
that much less nodes are required to silence a network in a tar-
geted attack as compared to failure. Apart from these di�erences,
we also show that in both cases, the fall of activity is not gradual
but is characterized by sudden boosts that are not present in ran-
dom (Erdös–Rényi, ER) graphs with identical features but no metric
correlations. Our study pinpoints the importance of spatial embed-
ding in the analysis of damage in neuronal networks and aims at
providing a starting point to model resilience to insult in neuronal
cultures.

II. THE MODEL

In this study, we consider a two-dimensional network with
N = 500 nodes (neurons) uniformly spread over a surface of
2× 2 mm2. The structure of the network is grounded on a biolog-
ical construction governed by axonal length, size of the dendritic
tree, and neuron-to-neuron connectivity probability. In its turn, the
dynamics of the network is portrayed according to an Izhikevich
model that incorporates biological noise terms to facilitate sponta-
neous activity. In Secs. II A and II B, we describe in detail both
the structural and dynamical rules governing our synthetic neuronal
cultures.

A. Structural model

According to Graph Theory, complex networks can be de�ned
as a set of nodes V = {1, 2, . . . ,N} that represent the elements of our
system, and a set of edges L that describe the interactions between
these elements.19 In our case, nodes are excitatory neurons and links
are synaptic connections. Network structure is represented through
a binary adjacency matrix A, with Aij = 1 for the existence of a
connection between neurons i and j, and Aij = 0 otherwise.

Network construction follows biological principles derived
from the analysis of connectivity and dynamics in two-dimensional
neuronal cultures. Our construction follows the same steps as
Orlandi et al.14 as follows:

(i) N neurons are spread in a square surface set with periodic
boundary conditions to reduce �nite size e�ects. Neuronal spa-
tial arrangement is uniformwith density ρ = 125 neurons/mm2.

(ii) Each neuronal cell body (soma) is described as a circular object
with �xed diameter φs = 15µm, and its dendritic tree is repre-
sented as a concentric circular area with diameter φd [Fig. 1(a)].
Dendritic sizes in the network are Gaussian distributed with
mean µd = 300µm and standard deviation σ 2

d = 40µm.
(iii) Axons are incorporated as concatenated segments 1l = 10µm

long and full length l. The distribution of axonal lengths in
the network is given by a Rayleigh distribution with average
〈l〉 = 1.0mm and variance σ 2

l = 800µm. As shown in Fig. 1(a),
the �rst segment is placed at the end of the soma, andwith an ori-
entation that follows a uniform angular distribution. The ith seg-
ment is then placed at the end of the previous one and oriented
following a Gaussian distribution. To ensure that axons are qua-
sistraight �laments, the standard deviation of the distribution is
small, by σ 2

θ = 0.1 rad.
(iv) The connection among two neurons is analyzed after the place-

ment of a new segment. Two neurons may form a synaptic
connection when both a geometrical and a statistical conditions
are met [Fig. 1(b)]:
• Geometrical condition: the axon of a neuron intersects the
dendritic tree of another neuron.

• Statistical condition: the connection is established with prob-
ability α. This probability is independent of the overlapping
length between the axon and the dendritic tree that is inter-
sected.

(v) Valid connections are set in the adjacency matrix, and the pro-
cess repeated from step (iii) onward until all axons are set and all
interneuronal connections explored.
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FIG. 1. Representation of a neuron according to our model. φs is the diameter of
the soma. The average maximum length of the dendrites is the value we take as
the radius of the dendritic tree, φd/2.

Let us note that, in this construction scheme, the layout of
potentially connectable neurons is placed �rst, shaping the geo-
metrical constrains. Our method is biologically more realistic than
those purely statistical models in which connectivity is just distance-
dependent.20

The constructed networks can be characterized by their average
connectivity 〈k〉 and the size of the giant component G. As shown in
Fig. 2, these two quantities depend on the connectivity probability
α, The average connectivity 〈k〉 slowly increases with α, in contrast
with the giant component G that abruptly grows. This behavior indi-
cates that the constructed networks become globally connected with
α ≈ 0.02, i.e., with just a small fraction of available links. The addi-
tion of more links not only strengthens the backbone of the network
but also facilitates neuron-to-neuron communication that is central
for global network activity (GNA), as shown later.

FIG. 2. Dependence of the size of the giant component G and average connec-
tivity 〈k〉 on the connectivity probability between two neurons α. Both quantities
increase with α, but G grows much faster, reaching a maximum by α ≈ 0.02.
Data are an average on n = 20 network realizations. The inset shows a compar-
ison between the degree distribution of the spatial synthetic cultures (α = 0.1)
and that of random ER graphs with similar average connectivity 〈k〉 = 45.

B. Dynamical model

Neuronal dynamics is incorporated through the Izhikevich
model,21 an e�cient yet biologically plausible model for a spiking
neuron. The model considers the integration of stimuli in the neu-
ronal somas and the transmission of the electrical signal among
neurons through their synapses.

1. Soma dynamics

Following Refs. 21 and 22, the Izhikevich model is constructed
as an integrate-and-�re system with adaptation, and given by two
coupled nonlinear ordinary di�erential equations of the form

τc
dvj

dt
= k(v j − vr)(v

j − vt)− uj + Ij + η, (1)

τa
duj

dt
= b(v j − vr)− uj, (2)

if v j > vp −→

{

vj ←− vc,
uj ←− uj + d.

(3)

Here, Eq. (1) describes the evolution of the jth soma’s membrane
potential vj(t), where τc is the leaky capacitance, vr is the resting
potential, vt is the threshold potentials, Ij is the total synaptic cur-
rent from the rest of the network that stimulates the j-neuron, and η

a noise term. Equation (2) describes the evolution of the jth soma’s
inhibitory currents uj(t), where τa is the main time-scale of the
inhibitory current, b is its sensitivity to subthreshold �uctuations of
the membrane potential, and d is a parameter that accounts for the
adaptation and recovery of the neurons.

The dynamics of the soma is governed by the resting vr and
threshold vt potentials of Eq. (1). Since they are, respectively, sta-
ble and unstable �xed points, insu�cient stimulation maintains the
membrane potential below the threshold condition, relaxing toward
its resting value vr in the absence of any stimulus. Repeated stim-
ulation brings the membrane potential v over the threshold, which
grows rapidly up to its peak value vp and triggering the generation of
a spike. The potential is thereafter reset to vc.

2. Synaptic dynamics

The synaptic dynamics describes the interaction between neu-
rons. The generation of a spike by the ith neuron at time tm induces
a postsynaptic current in the jth neuron. Thus, the total synaptic
current Ij received by the jth neuron reads

Ij(t) =

N
∑

i=1

∑

tm<t

AijEi(t, tm), (4)

Ei(t, tm) = gADi(tm) exp

(

−
t − tm

τA

)

2(t − tm). (5)

Here, Ei(t, tm) is the current induced by the ith neuron at time t as a
result of the spikes elicited at time tm, gA is the strength of the synapse,
and τA is the characteristic decay time of the postsynaptic current.
Di(t) is the short-term depression that accounts for the e�ciency of
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the neuron presynaptic terminals and is given by22–24

dDi

dt
=

1− Di

τD
− (1− β)Diδ(t − tm), (6)

where τD is the characteristic recovery time associated to vesicle
recycling and β is a dimensionless coe�cient related to the pro-
gressively loss of e�ciency of the presynaptic terminals (β < 1).25

Consequently, using the initial conditionsDi(t = 0) = 1 and assum-
ing that two spikes are generated by the ith neuron at times t(1)m and
t(2)m , with t(1)m < t(2)m , the evolution of Di(t) reads

D(t) =











1−
[

1− D(t(1)m )
]

exp

(

−
t − t(1)m

τA

)

t(1)m < t < t(2)m ,

βD(t→ t(2)−m ) = βD(t(2)m − δt) t = t(2)m .

(7)

The term η of Eq. (1) accounts for noise in the neuronal net-
work. Two sources of noise are considered. The �rst one is a Gaussian
white noise associated to �uctuations in themembrane potential. The
second one is a shot noise that accounts for the spontaneous release of
neurotransmitters in the presynaptic terminals. These spontaneous
releases lead to small currents (termed “minis”) in the postsynaptic
terminals that are integrated in the soma. Minis are, therefore, anal-
ogous to evoked synaptic currents, only di�ering in their intensity.

Both noise terms are important. They facilitate the spontaneous
activation of neurons and the ampli�cation of small signals by the

network, and ultimately help orchestrating whole-network coherent
activations.14

III. RESULTS

Once the basic dynamical and structural building blocks of the
synthetic cultures are introduced, we now report the main numer-
ical �ndings, namely, (i) the emergence of spontaneous coherent
dynamics (Sec. III A), (ii) the analysis of di�erent attack strate-
gies (Sec. III B), and (iii) the structural and dynamical e�ects of
intentional and random damages (Sec. III C).

A. Emergence of coherent activity

We start the analysis of our in silico networks by exploring
their capacity to exhibit collective behavior, a fundamental trait of all
living neuronal circuits. This property will be used later to quantify
the impact of damage.

We �rst explore the dynamical behavior for di�erent connec-
tivity probabilities α. Figure 3 depicts representative raster plots for
4 values of α, which were selected to cover the typical dynamic
scenarios of our simulations, ranging from weak, uncorrelated activ-
ity to very strong coherent activity. For α = 0.01, neurons activate
in a sporadic and random manner. Although the giant component
almost comprises the entire system, the connectivity is not su�cient
to support synchronized dynamics. Rich activity starts to emerge at
α = 0.025, which corresponds to a fully connected network,

FIG. 3. Representatives raster plots
of network activity for gradually higher
connectivity probability α. (a) Sporadic
random activity. (b) Abundant random
activity. (c) Beginning of coherent activ-
ity. (d) Strong coherent activity. The yellow
band in (c) indicates the window of 50ms
for avalanche detection.
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although coherent activity is di�cult to appraise. Synchronized activ-
ity shows up for α = 0.05 and strengthens as α grows.

The transition from erratic activity to full coherence as α

increases resembles a (smooth) second order phase transition. To
shed light on this transition, we quantify the size and duration of neu-
ronal coordinated activations as a function of α. For this analysis, we
study the avalanches of activity as de�ned by Beggs and Plenz,26,27 in
which an avalanche exists when at least two neurons activate together
in a short time window. By analyzing the raster plots, we are able to
detect the initiation of activity of any neuron, and then ascribe this
and subsequent �rings as an avalanche when the time-delay between
neuronal coactivations is lower than 50ms.

We consider two major descriptors for avalanches, namely,
“activation core” and “avalanche size.” The activation core corre-
sponds to the average number of neurons that have �red in every time
bin within an avalanche, and portrays a characteristic size of coac-
tive neurons. The activation core of an avalanche intuitively depicts
the subset of strongly connected neurons. Indeed, we have numer-
ically checked that the directed clustering coe�cient of activation
cores is (on average) three times larger than that of the underlying
network. Avalanche size corresponds to the fraction of the neurons
in the network that participated in a given avalanche.

Figure 4(a) shows the size of the avalanche core and avalanche
duration as a function of α. In general, the size of the avalanche core
comprises about 2%–3% of the network for α . 0.01 to gradually
increase afterward. A value of α ' 0.02 signals the onset of su�cient
connectivity for large-scale neuronal coordination, in which the core
of active neurons is 5% of the network or higher. Avalanche dura-
tion shows a di�erent trend. Although long lasting avalanches are
observed for α ' 0.01, they correspond to a large amount of small
avalanches that overlap in time. Truly long lasting avalanches, i.e.,
chained activations of neurons, are observed forα ' 0.1. Around this
value and above, neuronal intercommunication is su�ciently strong
to facilitate synchronous behavior and, therefore, the avalanche core
can easily reach 25% of the network. This strong connectivity and
intercommunication facilitates the formation of network-spanning
activations. This is revealed by the avalanche size, as shown in
Fig. 4(b), which reaches 1 forα & 0.1, i.e., the cascade of chained acti-
vations encompasses the entire network, in accordance to the raster
plot of Fig. 3(d).

We note that the avalanche size and duration shown in Fig. 4(b)
exhibit a rich variability for α in the range 0.01–0.1. We under-
stand this behavior in the context of the complex interplay between
network structure and neuronal dynamics in spatial networks, as
exposed by Orlandi et al.14 An avalanche may in principle start in
several regions of the network, but its capacity to recruit more neu-
rons and to grow depends on local and nonlocal network traits as
well as activity-facilitation mechanisms such as noise ampli�cation.
Thus, a network at the edge of full connectivity with α ' 0.02 may
exhibit a rich variety of avalanche sizes and durations depending on
the avalanche initiation point and propagation pattern.

From these analyses, we conclude that α = 0.1 is an adequate
choice for the connectivity probability since it renders a dynamical
regime of abundant coordinated activity that comprises the entire
network. This regime also re�ects well the characteristic activity of in
vitro, living neuronal cultures grown on �at surfaces,14,15 in which the
whole network �res coherently in a periodic manner as in Fig. 3(d).

FIG. 4. Dependence of the avalanche size and avalanche core on the connection
probabilityα. Each point corresponds to an avalanche event, and 104 events were
analyzed.

Thus, we take α = 0.1 from here onward to generate our networks
and deepen on the activity–connectivity relationship.

B. Identification of central nodes

Now, we turn our attention to di�erent types of node centrali-
ties for the sake of analyzing the sensitivity of neuronal dynamics and
network topology to the removal of particular nodes. Our �nal goal
is to pinpoint themost damaging attack strategy. To this aim, we gen-
erated networks with α = 0.1 and explored which local topological
measuremost strongly facilitated the initiation of network activity. To
quantify this facilitation, we introduced the “initiation probability” p,
de�ned as the probability that a neuron belongs to the �rst group of
strongly correlated neurons that trigger an avalanches event.

Orlandi et al.14 showed that the initiation of spontaneous activ-
ity in neuronal networks is grounded on two mechanisms, namely,
(i) the ampli�cation of noise by the circuitry and (ii) the convergence
of activity toward basins of attraction where an avalanche �nally
initiates. In this context, those local network topological measures
that promote signal propagation and whole-network communicabil-
ity are the most attractive candidates to expose central nodes. Thus,
of all possible topological measures, we concentrated our exploratory
e�orts in the four following ones:

• In-degree,19 kini : number of links converging toward a particu-
lar node i. Biologically, it corresponds to the number of neurons
whose axons connected with the dendritic tree of a particular
neuron.

• Out-degree,19 kouti : number of links diverging from a particular
node i. Biologically, it is the number of dendritic trees that the axon
of a particular neuron connects to.

• Clustering coe�cient,19 cci: de�ned as the probability that two
neighbors of a particular node i are also linked among themselves.
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FIG. 5. Dependence of the avalanche
initiation probability p on 4 major topolog-
ical measures. The out-degree kout is the
measure that better portrays the sensitiv-
ity of a nodal property with dynamics.

Biologically, it quanti�es the average probability to observe trian-
gles of mutually connected neurons.

• Communicability,28Ci: it accounts for all walks between node i and
all the nodes in the network (node i included), weighting walks of
length h by a penalty factor of 1/h!.

The analysis of these measures is shown in Fig. 5. The initiation
probability decreases with the in-degree kin of nodes, their clustering
coe�cient cc, and their communicability C, while the out-degree kout

exhibits the opposite trend.
A plausible explanation behind the increasing trend of p with

kout is that high out-degree nodes amplify activity with their neigh-
borhood, thus boosting the probability to start an avalanche. In its
turn, high kin nodes receive several inputs from potentially activated
neighbors that are not necessarily transmitted to a large number of
neighbors, thus restraining the activity of the network. This expla-
nation is strengthened by the observation that, at a network level, a
group of neurons shape the seed of an avalanche event when they can
transmit pulses to as many neighboring neurons as possible.

Based on these results, we take the out-degree kout as the
most relevant network property related to activity initiation. In the
following, we investigate the implications that the gradual removal
of the nodes with largest kout has on the collective dynamics of the
cultures.

C. Targeted attack and failure

To assess the damage caused by the sequential deletion of nodes
in decreasing order of kout, we compare with the results obtained
under random failures, i.e., when neurons are removed randomly.
We disregarded depression mechanisms, i.e., we took Di = 1 ∀ i in
Eq. (5). The rationale of this simpli�cation is that we are primordially
interested in the direct impact of central nodes removal on activity.
The inclusion of depression would render memory e�ects, in which
the removal of a neuron and subsequent dynamic alterations would
be in�uenced by the past dynamical state of the network.

In Fig. 6(a), we evaluate the structural and dynamical conse-
quences of targeted attack and random failure in our spatial networks.
To this aim, we consider the “degree of activity” A, de�ned as the
number of avalanches detected in 10 s and comprising at least 10% of
the network. The 10% threshold is used to prevent small avalanches
to dominate the statistics of activity. We then follow the evolution of
A as neurons in the network are removed, taking as control parame-
ter the fraction of lost neurons in the network q. Network evolution is
then plotted togetherwith the giant component sizeG as a function of
q to compare dynamical and structural disintegration. We note that,
although these degradation diagrams correspond to α = 0.1, slightly
larger (smaller) values of the connection probabilityαwould shift the
diagrams toward larger (smaller) values of q.
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FIG. 6. Targeted attack and failure
in spatial networks. (a) Dependence of
network activity A (symbols) and giant
component size G (lines) on the fraction
of removed neurons q. Targeted attack
(red) progressively deletes neurons with
the highest kout. Failure (blue) deletes
arbitrary neurons. Arrowheads highlight
points of interest along disintegration.
(b) Probability distribution function
of avalanche initiation points for key
values of q in a representative network
realization. Avalanche data comprise all
observed avalanches in 10min of simula-
tion. The brighter the color, the higher the
probability for activity to initiate in a partic-
ular location. The number of avalanches
used for statistics in each contour is
indicated as nA. Black dots show the
location of each particular avalanche. λ

indicates the degree of aggregation of
initiation points and is calculated as the
gini coefficient of their spatial distribu-
tion. The higher the λ, the higher the
aggregation.
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As a �rst result, we observe that dynamic alterations appear
much earlier than structural ones. Indeed, the capacity of the network
to �re and recruit activity has already decreased by q ' 0.3− 0.5
in both damage scenarios, even though the giant component is still
G = 1.

As a second result, targeted attack clearly a�ects more strongly
network activity than failure. Targeted attack just requires about 30%
of network removal to begin compromising activity, while failure
requires double damage, by 60%. The result of removing large out-
degree nodes in targeted attacks outlines their pivotal role in activity
initiation. Indeed, as already exposed by Orlandi et al,14 a central
mechanism governing the initiation of spontaneous activity is the
ampli�cation and propagation of activity throughout the network, a
mechanism that is facilitated by out-degree nodes since neurons can
send their pulses toward their neighborhood.

As a third result, the fall of network activity is not gradual but
displays strong oscillations. The most prominent change occurs at
q ' 0.4 for attack and q ' 0.6 for failure [Fig. 6(a), encircled arrow-
heads]. Here, almost silent networks suddenly “boost” in activity for
a short range of q until full collapse manifests. We hypothesize that
the transition from quasisilence to activity raise is grounded on the
change of a dynamic scenario from a network-spanning activity to a
fragmented one.We denote by q̃ the critical fraction of removed neu-
rons that separates the two scenarios. Thus, following our hypothesis,

large-scale avalanches shape activity for q < q̃ and die out for q ' q̃;
small avalanches then emerge in local yet abundant regions for q > q̃.

To verify this hypothesis, we carried out additional analyses. In
a �rst analysis [Fig. 6(b)], we considered a representative network
realization and studied the distribution of initiation points, i.e., the
location in the x− y space of a particular avalanche. In the panels,
each black dot corresponds to the focus of avalanche initiation. For
weak damage (left panels of the �gure), the avalanches’ probability
distribution function show peaks at speci�c areas, which appear as
bright yellow in the panels. This compactness in the initiation proba-
bility is a trait of network-spanning avalanches in spatially-embedded
networks.14 The strong concentration of initiation points in a single
spot is quanti�ed through the gini coe�cient λ. A value of λ = 0
would correspond to an ensemble of homogeneously distributed ini-
tiation points, while λ = 1 would correspond to the concentration of
all points in a single spot. The relative large value of λ indicates that
concentration is indeed strong. However, λ drops by 35% at q ' q̃
(central panels) and keeps decreasing as damage accentuates (right
panels). Thus, the distribution of initiation points is markedly sparse
for q & q̃, with no distinctive initiation areas, and reveals a spatially
fragmented dynamics.

In a second analysis (Fig. 7), we computed the distribution of
avalanche sizes at the vicinity of q̃.We compared the avalanche distri-
butions at two q values, termed qA and qB (Fig. 7, insets). The former
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FIG. 7. Fragmentation of activity in spa-
tial networks upon damage. (a) Avalanche
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values, a first one corresponding to the
peak of boosted activity and that ren-
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equivalent that renders whole-network
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corresponds to the peak of “boosted” activity, and the latter corre-
sponds to the �rst q < q̃ value that renders the same activity. For
both targeted attack and failure [Figs. 7(a) and 7(b)], avalanche sizes
at moderate damage qB encompass either very small events of size
s . 0.05 (measured as network fraction) or quasi-whole-network
activations of s ' 0.85. No avalanches are observed in between
these extrema, re�ecting the existence of su�cient network cohesion
for whole-network communication. By contrast, avalanche sizes at
strong damage qA substantially shift toward lower values. The biggest
avalanches encompass s ' 0.6, but a wide spectrum of avalanche
sizes exist for s . 0.6. Thus, these results show that strong dam-
age breaks the network apart into two or more dynamically isolated
regions. Further suppression of nodes gradually shrinks these regions
even further until no activity is possible.

To illustrate the contrasting dynamics between qA and qB,
Figs. 7(c) and 7(d) show the evolution of activity for a representa-
tive network, comparing both damage scenarios and q values. In the
plots, global network activity (GNA) is the fraction of neurons in the
network that �re together in a time bin of 50ms and provides a quick
overviewof the typical avalanches along the simulation.Qualitatively,
the transition from moderate damage at qB to strong damage at qA
drops network coactivations in both targeted attack and failure, with
practically no coactivations bigger than 10% of the network.

D. Effects of spatial embedding

Finally, we investigate the evolution of network activity A as
a function of q in equivalent Erdös–Rényi (ER) random networks
to gain further insight into the importance of spatial embedding in
damage (Fig. 8). The ER networks are constructed preserving the
same number of nodes N and mean degree 〈k〉 as our synthetic
neuronal cultures (see inset in Fig. 2). As expected, no signi�cant
di�erences show up between targeted attacks and random failures
since the degree heterogeneity of ER is small. In addition, the ER
topology e�ectually shapes long range connections among neurons
that strengthen the giant component, which starts decaying at much
higher values of q than in the spatial construction. This cohesive-
ness indicates that network-wide communication among neurons is
always maintained. By comparing the spatial network subjected to
random failures with the behavior of the ER graph, we observed
that for q . 0.5, the activity of the latter is lower than that in spa-
tial networks. However, the activity loss at q > 0.5 occurs in a more
gradually manner. Indeed, no �uctuations or boosted activity are
observed at high q values since activity in the ER networks always
encompasses the whole system up to full collapse, i.e., the character-
istic fragmentation of activity observed in the spatial construction is
not present here.

To better understand the origin of the sudden boost of activity
in spatial networks, we now investigate the “e�ective connectivity”
of the networks before the boost and at the peak of it. The e�ec-
tive connectivity helps identifying characteristic patterns of coor-
dinated activity among neurons and therefore allows to pinpoint
spatiotemporal alterations in network dynamics.

E�ective connectivity was analyzed as follows. We �rst consid-
ered the raster plots of spontaneous activity corresponding to about
10min of activity, and resampled the data in 50ms bins to consider
time series of tractable size. We then used Transfer Entropy (TE)
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as in Refs. 29 and 18 to determine causal relationships among �r-
ing neurons. An e�ective connection between neurons i and j was
deemed signi�cant whenever their TEij score exceeded the mean +2
standard deviations of the joint distribution. Each inferred e�ective
networkwas directed andweighted.We observed that typically a sub-
set of 100 neurons contained the strongest links. We, therefore, used
this subset as a representation of the network, thresholded the adja-
cency matrix values to {0, 1} and analyzed its statistical properties.
Speci�cally, we investigated the existence of communities using a fast
implementation of the Louvain’s algorithm on the largest connected
component.30 In our case, communities signal groups of neurons that
tend to �re independently within microcircuits. We quanti�ed the
degree of fragmentation through the “community statistic”M, which
was calculated using the Brain Connectivity Toolbox.31 M intuitively
portrays the degree of fragmentation of the network into communi-
ties. A value M = 0 indicates no communities, and gradually larger
M values indicate a higher segregation.

The results are shown in Fig. 9(a). For both failure and attack,
q values before the boost show a strongly connected network from a
dynamical perspective (M = 0.07), indicating that all neurons par-
ticipate in the same avalanches. However, at the q values of the
boost, both actions lead to a dynamically segregated network. For
failure, two communities are observed (M = 0.41), pointing out that
two groups of neurons are �ring with di�erent dynamical struc-
tures. For attack, a largerM = 0.60 ismeasured, indicating a stronger
fragmentation that shapes four communities. The high number of
communities during attack strengthens the message that this action
is muchmore aggressive in destroying the dynamical cohesiveness of
the network than failure. Notably, ER graphs [Fig. 9(a), right panels]
do not exhibit this fragmentation of the dynamics into communities,
with the networks maintaining a coherent activity until it ceases.
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Data correspond to the “preboost” and “boost” q points of Fig. 6. The commu-
nity statistic M indicates the tendency of the effective network to segregate into
communities. The higher M, the higher the segregation. Spatial networks exhibit
segregation during the episodes of boosted activity. Both the number of communi-
ties and the degree of segregation are higher in the attack scenario. ER graphs do
not segregate upon damage and remain activating as a global system. The color
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tion in the below spatial maps. (b) Spatial distribution of the inferred communities,
portraying those groups of neurons that distinctively coactivate together, shaping
dynamical microcircuits that are practically independent. Circles are neurons and
arrows are effective links.

To demonstrate that the dynamical fragmentation in spatial
networks was also physical, i.e., that it involved the concentra-
tion of activity into speci�c areas of the network, we analyzed
the spatial location of the inferred communities. As shown in
Fig. 9(b), the above inferred communities correspond to com-
pact, distinct regions of activity in the network with weak overlap
between themselves, thus shaping clear spatial subnetworks with rich
dynamics.

The e�ective connectivity analysis, together with the compar-
ison between spatial and ER graph, supports the message that spa-
tial embedding facilitates local connectivity among neurons, which
translates into: (i) a balance between local dynamic ampli�cation and
large-scale communication that fosters whole-network activity and
(ii) the preservation of su�ciently connected local circuits that, even
for strong damage, are able to maintain high levels of activity.

IV. DISCUSSION AND CONCLUSIONS

The analysis of damage in neuronal circuits is important to
understand their resilience to the loss of neurons or connections.
The study presented here is an e�ort to model the impact of
spatial embedding—an intrinsic feature of biologically neuronal
circuits—on the degradation of neuronal activity as neurons are
removed. The important di�erences in the degradation process
between ER and spatial networks already advocate for paying closer
attention to spatially-inherited features and their relevance in the
structure–dynamics relationship.

Our work illustrates the complex interplay between structural
circuitry and intrinsic neuronal dynamics. The neuronal circuitry
shapes the backbone for the transfer of information between neu-
rons and delineates the communication �ows. However, dynamics
may be evenmore important as shown by the large values of the giant
component when the network was already at the verge of silencing.
Thus, topological properties such as degree, hubs, or small-worldness
are important, but they may be irrelevant if the network cannot �re.
Indeed, the combination of both structure and dynamics, together
with noise, orchestrates spontaneous activity, which is a fundamen-
tal feature of all living neuronal circuits and whose alteration may
cause substantial de�cits, particularly in the brain.32

Targeted attack and failure were very di�erent, with the former
compromising activity for a much lower fraction of deleted nodes.
We used targeted attack based on out-degree nodes removal. This
choice is in agreement with other studies.3,7,10 We note, however, that
given the complex coupling between structure and dynamics, one
could de�ne multiattack features by combining topological damage
with dynamical one. The latter could be designed as the deletion of
activity initiation points. We hypothesize that such an action could
substantially deplete activity, since both the ampli�cation of activity
and its convergence toward speci�c areas would be obstructed.

The exploration of spatial features and their impact in structure
and dynamics can go beyond the analysis shown here. As a �rst con-
sideration, we used in the simulations a homogeneous distribution of
neurons, but living neuronal networks often exhibit strong neuronal
aggregation that shapes locality strongly coupled communities.33,34

As a second consideration, we used a relatively short axonal length
in all neurons based on biological observations in neuronal cultures.
Axonal lengths, however, can potentially be very di�erent in the same
system, thereby a�ecting the balance between short and long range
connections.

In this direction, Hernández-Navarro et al.17 investigated the
importance of these two spatial features—aggregation and axonal
length—on network response and observed that themetric-inherited
correlations could shape very di�erent dynamic regimes and even
rule out details such as the distribution of connections. For instance,
they showed that spatial embedding became irrelevant when the
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average axonal length was on the order of the system size. Translated
to our simulations, these results indicate that the response to dam-
age could vary depending on neuronal positions and axonal lengths.
We observed that much longer axonal lengths would shape damage
scenarios closer to ER. The perspectives that our analysis opens are,
therefore, very enlightening.We could, for instance, investigate dam-
age in di�erent stages of growing axons and pinpoint the impact of
damage during development.

An important strength of our work is that it lays the foun-
dation for mimicking the structure of living circuits, in particular,
neuronal cultures, and study their behavior upon damage. Recent
studies35 have shown the potential of neuroengineering to prepare
speci�c con�gurations such asmodular circuits. Thus, we can use our
approach to predict the vulnerability of certain designs and explore
possible recovery mechanisms of the living networks.

The spatial networks are more resilient to failure than their
equivalent random graphs. The reason is that, for the spatial con-
struction, the network breaks apart into localized microcircuits that
maintain rich activity, which does not occur in ER networks. Thus,
spatial embedding enhances resilience at the price of losing long
range communication. In the context of highly modular architec-
tures, this long range loss turns into a favorable mechanism that
allows the maintenance of activity in localized regions. We also note
that, if damage is viewed as a controlled silencing of neurons, spatial
features provide direct mechanisms to dynamically couple micro-
circuits, allowing to tune the dynamical state of the system from
whole-network activation to segregated activity, in the same fashion
as observed in the functional organization of engineered neuronal
cultures35 and brain networks.36,37

In a nutshell, our work sheds light on two central results. First,
the dynamical patterns are as important as the structural ones for
understanding the e�ects of damage and the resilience of com-
plex networks. Thus, dynamics should not be disregarded. Second,
although spatial networks seem less resilient, they have an impor-
tant advantage, as they facilitate activity to be retained in localized
circuits. This property shapes an intrinsic mechanism for resilience
that may be pivotal for survival of biological networks.
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