Accepted Manuscript

An efficient numerical method for singularly perturbed time dependent parabolic 2D convection-diffusion systems
C. Clavero, J.C Jorge

PII:	S0377-0427(18)30641-1
DOI:	https://doi.org/10.1016/j.cam.2018.10.033
Reference:	CAM 11979
To appear in:	Journal of Computational and Applied Mathematics

Received date: 4 May 2018
Revised date: 27 September 2018

Please cite this article as: C. Clavero and J.C. Jorge, An efficient numerical method for singularly perturbed time dependent parabolic 2D convection-diffusion systems, Journal of Computational and Applied Mathematics (2018), https://doi.org/10.1016/j.cam.2018.10.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

An efficient numerical method for singularly perturbed time dependent parabolic - : convection-diffusion systems

C. Clavero and J.C Jorge
Department of Applied Mathematics and IUMA, Jniv…sity of Zaragoza Zaragoza, Spain, clavero@unize . s
Department of Computational and Mathematicu' Erryoneering and ISC
Universidad Pública de Navarra, Pamplona, Spain, j jorge@unavarra.es

Abstract

In this paper we deal with solving efficien. ${ }^{\text {v }}$ 2D linear parabolic singularly perturbed systems of convection-diffusion type. We analyze only the case of a system of two equations where both of them f aturt the same diffusion parameter. Nevertheless, the method is easily extended syst ms with an arbitrary number of equations which have the same diffusior coefficinat. The fully discrete numerical method combines the upwind finite diff ren e sc leme, to discretize in space, and the fractional implicit Euler method, tr gethe. v th a splitting by directions and components of the reaction-convection- $1 L^{\text {n }}$ 'sion operator, to discretize in time. Then, if the spatial discretization is defined on an appropriate piecewise uniform Shishkin type mesh, the method is unifor aly onvergent and it is first order in time and almost first order in space. The use ${ }^{r}$ a fractional step method in combination with the splitting technique to disc atiz in ume, means that only tridiagonal linear systems must be solved at each ti. o e evel of the discretization. Moreover, we study the order reduction phenomer -1 ass ated with the time dependent boundary conditions and we provide a sin ple wa of avoiding it. Some numerical results, which corroborate the theoretical es hlist ed properties of the method, are shown.

Key \quad יnrds: parabolic systems, fractional implicit Euler, splitting by components, upwin` sr aeme, Shishkin meshes, uniform convergence, order reduction PACS: 6: N05, 65N12, 65M06, 65N06

1 Introduction

In this work we consider two dimensional time dependent singularly rerturbed convection-diffusion systems of type

$$
\left\{\begin{array}{l}
\mathcal{L}_{\varepsilon}(t) \mathbf{u} \equiv \frac{\partial \mathbf{u}}{\partial t}(\mathbf{x}, t)+\mathcal{L}_{\mathbf{x}, \varepsilon}(t) \mathbf{u}(\mathbf{x}, t)=\mathbf{f}(\mathbf{x}, t),(\mathbf{x}, t) \in Q \equiv \Omega \times(\mathrm{r}, T] \tag{1}\\
\mathbf{u}(\mathbf{x}, t)=\mathbf{g}(\mathbf{x}, t),(\mathbf{x}, t) \in \partial \Omega, \times[0, T], \mathbf{u}(\mathbf{x}, 0)=\boldsymbol{\varphi}(\mathbf{x}), \mathbf{x} \in \mathrm{s}^{\prime}
\end{array}\right.
$$

where $\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}, \mathbf{x} \equiv(x, y), \Omega=(0,1)^{2}$ and the spatiaı fi ferential operator $\mathcal{L}_{\mathbf{x}, \varepsilon}(t)$ is defined as

$$
\begin{equation*}
\left.\mathcal{L}_{\mathbf{x}, \varepsilon}(t) \mathbf{u} \equiv-\mathcal{D} \Delta \mathbf{u}+\mathcal{B}_{x}(\mathbf{x}) \frac{\partial}{\partial x} \mathbf{u}+\mathcal{B}_{y}(\mathbf{x}) \frac{\partial}{\partial y} \mathbf{1}+\therefore \mathbf{x} \mathbf{x}, t\right) \mathbf{u} \tag{2}
\end{equation*}
$$

with $\mathcal{D}=\operatorname{diag}(\varepsilon, \varepsilon), \mathcal{B}_{x}(\mathbf{x})=\operatorname{diag}\left(b_{x, 11}(\mathbf{x}), b_{x, 22}\left(\mathbf{x},, \mathcal{B}_{y}{ }^{\prime}\right.\right.$, $\left.{ }^{\prime}\right)=\operatorname{diag}\left(b_{y, 11}(\mathbf{x}), b_{y, 22}(\mathbf{x})\right)$ and $\mathcal{A}(\mathbf{x}, t)=\left(a_{k r}(\mathbf{x}, t)\right), k, r=1,2$.

We assume that $0<\varepsilon \leq 1$ and it can be very shin ll; moreover, the coefficients of the convection matrices satisfy $b_{z, k k}(\mathbf{x})-\mu>0, k=1,2, z=x, y$, and the reaction matrix \mathcal{A} is an M-matrix, i.e., it n ? ds

$$
\sum_{r=1}^{2} a_{k r} \geq 0, k=1,2, a_{k r} \therefore \text { n. } \quad \text { f } k \neq r, \forall(\mathbf{x}, t) \in \bar{Q}
$$

In order to assure that the exact solution $\mathbf{u} \in C^{4,2}(\bar{Q})$, we suppose that the data $\mathbf{f}(\mathbf{x}, t)=\left(f_{1}, f_{2}\right)^{T}, \mathbf{g}(\mathbf{x}, f)=\left(s, g_{2}\right)^{T}, \boldsymbol{\varphi}(\mathbf{x})=\left(\varphi_{1}, \varphi_{2}\right)^{T}$, the convection matrices $\mathcal{B}_{z}, z=x, y$ and the \perp actir a matrix \mathcal{A}, are composed by sufficiently smooth functions which, ', esi des, satisfy sufficient compatibility conditions among them (see [12] for a d tai ${ }^{1}$ d discussion.

The construction and na'-rsis of efficient numerical schemes to solve coupled systems of singularly ${ }^{\mathrm{r}}$ rturbed problems has received great interest in the recent years. For inst ncf, the case of systems of 1D convection-diffusion elliptic problems is consi lereu : $n[1,13,14,16]$, where a coupling in the reaction terms is considered fo pr olems with equal or different diffusion parameters at each equation of the sy.ar. In [18], a case of coupling in the convective terms, with equal diffusi m pa: meters was analyzed. For 2D problems, diffusion-reaction systems wer studi din $[2,6,10,11]$ for the case of equal diffusion parameters or in $\left[20^{1}\right.$ wr the case of different diffusion parameters. In [15], an elliptic 2D system f conv ction-diffusion type was considered. Nevertheless, up to our knowledge, ${ }^{\llcorner 1}$. parabolic coupled systems of convection-diffusion problems in
 numeric 1 time integration is the key for obtaining an efficient numerical algorithm. It is well known that the use of explicit methods is not suitable due
to the strong stiffness of the differential systems involved. On the other hand, classical implicit schemes are not optimal due to the computational cost involved in the advance in time, because the resolution of large and complicated linear systems must be faced. In $[7,8]$, an alternating direction mf hod was successfully studied and implemented for time dependent convectic $n-d_{1}{ }^{\text {r}} \cdot{ }^{r}$ sion problems. In such case, only tridiagonal linear systems must 'ue solved to advance in time, resulting that the implicit method was uncon. itir aally convergent and it has a very low computational cost per time sil. or he same computational complexity of any explicit method. If the sar in tech ique were adapted to the systems considered in this paper, the com sut Horal cost per time step is not optimal, specially in the case of considering n_{\star} nv equations in the system, because banded linear systems (with a bar dwidt. which depends on the number of components) should be solved. To a sid th s drawback, we consider here a multi-splitting technique, both in arertions and in components, in order to get that simple sets of tridiagoı. ${ }^{11}$ ine r systems must be solved to advance in time. In this way, we prese - tirc main feature of the algorithm proposed in [7] for scalar convection-diffusic n problems.

The paper is organized as follows. In section $亡$, ve describe the asymptotic behavior of the exact solution of the contiı 'nus problem, giving appropriate bounds for its derivatives which will be יused laver on to obtain the uniform convergence of the numerical method. In Se tion 3, we define the spatial discretization on a piecewise uniform $m_{1} h^{h}$ ot Shishkin type and we prove that the scheme is an almost first order unninnly convergent method. In section 4, we define the time discretizatio waus on the fractional implicit Euler method (see [4]) and a splitting by conıponents and we prove that it is first order uniformly convergent. $\mathrm{A}, \mathrm{wc}^{1}{ }^{1}$. we provide a simple technique to elude the order reduction related w .4 the tandard choice for the evaluations of the boundary data. In Section ', we s. sw the numerical results obtained for several test problems, which or sbc ate in practice the efficiency and the order of uniform convergence if the merical algorithm. Finally, in Section 6 some concluding remarks ar sen.

Henceforth, we der ote by $\|\mathbf{f}\|_{D}=\max \left\{\left\|f_{1}\right\|_{D},\left\|f_{2}\right\|_{D}\right\}$, where $\|\cdot\|_{D}$ is the maximum norm on \therefore, domain D, by $|\mathbf{v}|=\left(\left|v_{1}\right|,\left|v_{2}\right|\right)^{T}, \mathbf{v} \geq \mathbf{w}$ (analogously $\mathbf{v} \leq \mathbf{w}$) means,$_{i} \geq w_{i}$ tor all i. Finally, $\mathbf{C}=(C, C)^{T}$, where C is a generic positive constan shir 1 is independent of the diffusion parameter ε and the discretizatio parameters N and M.

2 Asy nptot ic behavior of the exact solution

In this s ction we give appropriate estimates for the derivatives of the solution \mathbf{u} of problem (1); from them, we deduce the existence of regular boundary
layer of width $\mathcal{O}(\varepsilon)$ at the outflow boundary defined by $\Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{1}=$ $\{(1, y), 0 \leq y \leq 1\}, \Gamma_{2}=\{(x, 1), 0 \leq x \leq 1\}$.

We introduce the scalar uncoupled differential operators

$$
\mathcal{L}_{k, \varepsilon} v(\mathbf{x}, t) \equiv v_{t}(\mathbf{x}, t)-\varepsilon\left(v_{x x}(\mathbf{x}, t)+v_{y y}(\mathbf{x}, t)\right)+b_{x, k k} v_{x}(\mathbf{x}, t)+b_{y, k k \iota_{s}}\left(\mathbf{x}, \iota, \vdash a_{k k} v(\mathbf{x}, t),\right.
$$

for $k=1,2$, which satisfy a maximum principle (see [17]) Fo^{\prime}.owing [19], the next uniform boundedness result can be proved.
Lemma 1. Let $w \in C(\bar{Q}) \cap C^{2}(Q)$ be such that $\mathcal{L}_{k, \varepsilon^{\prime}}=\psi$ on $Q, k=1,2$, $w=g$ on $\partial \Omega \times[0, T]$ and $w(\mathbf{x}, 0)=\varphi$ on Ω. Then, it $h .{ }^{l} d s$

$$
\begin{equation*}
\|w\|_{\bar{Q}} \leq \frac{1}{\beta}\|\psi\|_{\bar{Q}}+\|g\|_{\partial \Omega \times[0, T]}+\| \varphi_{=} . \tag{3}
\end{equation*}
$$

Following a similar reasoning to the used nno . [5], the following inverse positivity property is deduced for problem (1),
Lemma 2. Let $\mathbf{v} \in\left(C(\bar{Q}) \cap C^{2}(Q)\right)^{\ell} b$.h that $\mathcal{L}_{\varepsilon} \mathbf{v} \geq \mathbf{0}$ on Q and $\mathbf{v} \geq \mathbf{0}$ on $\partial \Omega \times[0, T] \cup \Omega \times\{0\}$. Then, $\mathbf{v} \geq \mathbf{0}$ or ${ }^{\text {' }}$ '.

Using this result joint to the barrier func ion technique, it can be proved that

$$
\begin{equation*}
\|\mathbf{u}\|_{\bar{Q}} \leq \frac{1}{\beta}\left\|_{\substack{\| \|_{\varphi}}}+\right\| \mathbf{g}\left\|_{\partial \Omega \times[0, T]}+\right\| \boldsymbol{\varphi} \|_{\bar{\Omega}} . \tag{4}
\end{equation*}
$$

Now, using the idea of $e^{2}{ }^{2}{ }^{-}$ded domains (see [7] for more details), we decompose the solution of (1) as $\boldsymbol{\iota}=\mathbf{v}+\mathbf{w}_{1}+\mathbf{w}_{2}+\mathbf{z}_{1}$, where \mathbf{v} is the regular component, $\mathbf{w}_{i}, i=1, L$ al the boundary layer functions and \mathbf{z}_{1} is the corner layer function associ a. d with the corner $(1,1)$.

The regular comr onenı an be described as the restriction on \bar{Q} of the solution of

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{v}^{*}}{\partial t}(:, t)-\supset \Delta \mathbf{v}^{*}+\mathcal{B}_{x}^{*}(\mathbf{x}) \frac{\partial}{\partial x} \mathbf{v}^{*}+\mathcal{B}_{y}^{*}(\mathbf{x}) \frac{\partial}{\partial y} \mathbf{v}^{*}+\mathcal{A}^{*}(\mathbf{x}, t) \mathbf{v}^{*}= \\
\mathbf{f}^{*}(\mathbf{x}, t),(\mathbf{x}, t) \in Q^{*} \equiv \Omega^{*} \times(0, T], \\
\mathbf{v}^{*}(\mathbf{r} t)=\mathbf{0}, \quad(\mathbf{x}, t) \in \partial \Omega^{*}, \times[0, T], \mathbf{v}^{*}(\mathbf{x}, 0)=\boldsymbol{\varphi}^{*}(\mathbf{x}), \mathbf{x} \in \Omega^{*}
\end{array}\right.
$$

where Ω^{*} is an extension of $\bar{\Omega}$ with smooth boundary and $B_{x}^{*}, B_{y}^{*}, A^{*}, \mathbf{f}^{*}, \boldsymbol{\varphi}^{*}$ are suitable smooth extensions (up to Ω^{*}) of $B_{x}, B_{y}, A, \mathbf{f}, \boldsymbol{\varphi}$ respectively. On
the other hand, \mathbf{w}_{1} (similarly \mathbf{w}_{2}) is the restriction on \bar{Q} of the solution of

$$
\left\{\begin{array}{l}
\frac{\partial \mathbf{w}_{\mathbf{1}}^{* *}}{\partial t}(\mathbf{x}, t)-\mathcal{D} \Delta \mathbf{w}_{1}^{* *}+\mathcal{B}_{x}^{*}(\mathbf{x}) \frac{\partial}{\partial x} \mathbf{w}_{\mathbf{1}}^{* *}+\mathcal{B}_{y}^{*}(\mathbf{x}) \frac{\partial}{\partial y} \mathbf{w}_{\mathbf{1}}^{* *}+\mathcal{A}^{*}(\mathbf{x}, t) \mathbf{w}^{* *}=\mathbf{0} \\
\quad(\mathbf{x}, t) \in Q^{* *} \equiv \Omega^{* *} \times(0, T] \\
\mathbf{w}_{\mathbf{1}}^{* *}(\mathbf{x}, t)=-\mathbf{v}^{*}(\mathbf{x}, t),(\mathbf{x}, t) \in \partial \Omega_{1}^{* *}, \times[0, T] \\
\mathbf{w}_{\mathbf{1}}^{* *}(\mathbf{x}, t)=\mathbf{0},(\mathbf{x}, t) \in \partial \Omega_{2}^{* *}, \times[0, T] \\
\mathbf{w}_{\mathbf{1}}^{* *}(\mathbf{x}, 0)=\mathbf{0}, \mathbf{x} \in \Omega^{* *},
\end{array}\right.
$$

where $\Omega^{* *} \subset \Omega^{*}$ is a small extension of Ω, only around \dagger^{\prime} e cornt: $(1,1)$, whose boundary $\partial \Omega_{1}^{* *}$ is smooth near it and it contains the s gment $\{(1, y) \mid 0 \leq y \leq$ $1+\delta\}$, for a sufficiently small $\delta>0$; we denote $\partial \Omega_{*}^{* *}={ }^{\circ} \Omega^{*} \backslash \partial \Omega_{1}^{* *}$. Finally, the corner layer function is the solution of

$$
\left\{\begin{array}{l}
\left.\frac{\partial \mathbf{z}_{\mathbf{1}}}{\partial t}(\mathbf{x}, t)-\mathcal{D} \Delta \mathbf{z}_{\mathbf{1}}+\mathcal{B}_{x}(\mathbf{x}) \frac{\partial}{\partial x} \mathbf{z}_{\mathbf{1}}+\mathcal{B}_{y}(\mathbf{x}) \frac{\partial}{\partial y} \mathbf{z}_{\mathbf{1}}+\mathcal{A}_{(-)}, t\right) \mathbf{z}_{\mathbf{1}}=\mathbf{0},(\mathbf{x}, t) \in Q \\
\mathbf{z}_{\mathbf{1}}(\mathbf{x}, t)=\mathbf{u}(\mathbf{x}, t)-\left(\mathbf{v}(\mathbf{x}, t)+\mathbf{w}_{\mathbf{1}}(\mathbf{x}, t)+\mathbf{w}_{\mathbf{2}}(t)\right),(\mathbf{x}, t) \in \partial \Omega \times[0, T] \\
\mathbf{z}_{\mathbf{1}}(\mathbf{x}, 0)=\mathbf{0}, \mathbf{x} \in \Omega
\end{array}\right.
$$

Then, following a similar process to the o.r which was used in [7], we obtain the following estimates for the derival $\because o_{1}$ these components:

$$
\begin{align*}
& \left|\frac{\partial^{k+k_{0}}}{\partial x^{k_{1}} \partial y^{k_{2}} \partial t^{k_{0}}} \mathbf{v}(\mathbf{x}, t)\right| \leq \mathbf{C} \quad(\mathbf{x}, t) \in \bar{Q}, \tag{5}\\
& \left|\frac{\partial^{k+k_{0}}}{\partial x^{k_{1}} \partial y^{k_{2}} \partial t^{k_{0}}} \mathbf{w}_{1}(\mathbf{x}, t)\right| \leq \mathbf{C}^{-k} e^{-\frac{\beta(1-x)}{\varepsilon}}, \quad(\mathbf{x}, t) \in \bar{Q}, \tag{6}\\
& \left|\frac{\partial^{k+k_{0}}}{\partial x^{k_{1}} \partial y^{k_{2}} \partial t^{k_{0}}} \mathbf{w}_{2}(y, t)\right| \leq r, \varepsilon^{-k_{2}} e^{-\frac{\beta(1-y)}{\varepsilon}}, \quad(\mathbf{x}, t) \in \bar{Q}, \tag{7}\\
& \left.\left\lvert\, \frac{\partial^{k+k_{0}}}{\partial x^{k_{1}} \partial y^{k_{2}} \partial t^{k_{0}}} \tau \mathbf{x}\right., t\right) \left\lvert\, \leq \mathbf{C} \varepsilon^{-k} \min \left\{e^{-\frac{\beta(1-x)}{\varepsilon}}, e^{-\frac{\beta(1-y)}{\varepsilon}}\right\}\right., \quad(\mathbf{x}, t) \in \bar{Q}, \tag{8}
\end{align*}
$$

with $0 \leq k+2 k, \leq \frac{1}{t}$ and $k=k_{1}+k_{2}$.

3 The spe tial riscretization

In this st.tin_t we propose a spatial semidiscretization of problem (1). To do th. t , \sim ase the classical upwind scheme defined on a piecewise uniform rectang ${ }^{\prime}$ 'ar mesh $\bar{\Omega}^{N}=\bar{I}_{x}^{N} \times \bar{I}_{y}^{N}$, being $\bar{I}_{x}^{N}, \bar{I}_{y}^{N}$ 1D meshes of Shishkin type. From the results of the previous section we know that the exact solution of

ACCEPTED MANUSCRIPT

the continuous problem has a regular boundary layer at the outflow boundary $\Gamma_{1} \cup \Gamma_{2}$; therefore, for the variable x (and similarly for the variable y) the grid points of $\bar{I}_{x}^{N} \equiv\left\{0=x_{0}<x_{1}<\ldots<x_{N}=1\right\}$ are defined as follows (see [3]). Let N be a positive even number and define the transition parame ${ }^{\dagger}$ ir

$$
\begin{equation*}
\sigma=\min \left\{1 / 2, \sigma_{0} \varepsilon \ln N\right\} \tag{9}
\end{equation*}
$$

with σ_{0} a constant to be fixed later. Then, the grid points are oive. by

$$
x_{i}= \begin{cases}i H, & i=0, \ldots, N / 2, \\ x_{N / 2}+(i-N / 2) h, & i=N / 2+1, \ldots, N\end{cases}
$$

where $h=2 \sigma / N, H=2(1-\sigma) / N$. We denote by $h_{x, i}=x_{\imath} \stackrel{r}{r}-1, i=1, \ldots, N$, and $\bar{h}_{x, i}=\left(h_{x, i}+h_{x, i+1}\right) / 2, \quad i=1, \ldots, N-1$.

Let us denote by Ω^{N} the subgrid of $\bar{\Omega}^{N}$ composed u. ${ }^{1} \mathrm{v}$ by the interior points of it, i.e., by $\bar{\Omega}^{N} \cap \Omega, \partial \Omega^{N} \equiv \bar{\Omega}^{N} \backslash \Omega^{N}$, by $[\mathbf{v}]_{\Omega^{N}}$ 'anal ,gously $[v]_{\Omega^{N}}$ for scalar functions) the restriction operators, applied to rector functions defined in Ω,
 restriction operators, applied to vector functiv a defined on $\partial \Omega$, to the mesh $\partial \Omega^{N}$. For all $\left(x_{i}, y_{j}\right) \in \Omega^{N}$, we introa ce semidiscretization $\mathbf{U}^{N}(t) \equiv$ $\mathbf{U}_{i j}^{N}(t), i, j=1, \ldots N-1$, with $\left.\mathbf{U}_{i j}^{N /+}\right) \approx \mathbf{1}\left(x_{i}, y_{j}, t\right)$, as the solution of the following Initial Value Problem

$$
\left\{\begin{array}{l}
\frac{d \mathbf{U}^{N}}{d t}(t)+\mathcal{L}_{\varepsilon}^{N}(t) \overline{\mathbf{U}}^{N}(t)=[\mathbf{1}(\mathbf{x}, t)]_{\Omega^{N}}, \text { in } \Omega^{N} \times[0, T], \tag{10}\\
\overline{\mathbf{U}}^{N}(t)=\left[\mathbf{g}(\mathbf{x}, t)^{1}{ }_{\Omega^{N}}, \text { in } \partial \Omega^{N} \times[0, T],\right. \\
\mathbf{U}^{N}(0)=\left[\varphi \left(\mathbf{x}_{\lrcorner \Omega^{N}}^{\prime}\right.\right.
\end{array}\right.
$$

where $\overline{\mathbf{U}}^{N}(t)$ is the nat ral exu nsion to $\bar{\Omega}^{N} \times[0, T]$ of the semidiscrete functions $\mathbf{U}^{N}(t)$, defined $\mathrm{n} \mathrm{\lrcorner}^{N} \times[0, T]$, by adding the corresponding boundary data. As well, $\mathcal{L}_{\varepsilon}^{N}\left(f_{,}, \dot{\sim}\right.$ the discretization of the operator $\mathcal{L}_{\mathbf{x}, \varepsilon}(t)$ using the upwind scheme. i.c

$$
\begin{align*}
& \left(\mathcal{L}_{\varepsilon}^{N}\left(t, \overline{\mathrm{~J}}^{N}\right)_{i j, k}=c_{i j, l, k} U_{i-1 j, k}^{N}+c_{i j, r, k} U_{i+1 j, k}^{N}+c_{i j, d, k} U_{i j-1, k}^{N}+\right. \tag{11}\\
& c_{i j,, k} U_{i j \nmid \cdots}^{N} \cdot k+c_{i j, c, k} U_{i j, k}^{N}+a_{k 1}(t) U_{i j, 1}^{N}+a_{k 2}(t) U_{i j, 2}^{N}, \quad k=1,2,
\end{align*}
$$

with

$$
\begin{align*}
c_{j, l, k} & =\frac{-\varepsilon}{h_{x, i} \bar{h}_{x, i}}-\frac{b_{x, k k}\left(x_{i}, y_{j}\right)}{h_{x, i}}, c_{i j, r, k}=\frac{-\varepsilon}{h_{x, i+1} \bar{h}_{x, i}}, \\
c_{i j, d, k} & =\frac{-\varepsilon}{h_{y, j} \bar{h}_{y, j}}-\frac{b_{y, k k}\left(x_{i}, y_{j}\right)}{h_{y, j}}, c_{i j, u, k}=\frac{-\varepsilon}{h_{y, j+1} \bar{h}_{y, j}}, \tag{12}\\
c_{i j, c, k} & =-\left(c_{i j, l, k}+c_{i j, r, k}+c_{i j, d, k}+c_{i j, u, k}\right)
\end{align*}
$$

where we denote $a_{k r}(t)=a_{k r}\left(x_{i}, y_{j}, t\right), k, r=1,2$ for $i, j=1, \ldots N-1$.
The uniform well-posedness of (10) is a consequence of the following semidiscrete maximum principle (see [6]).
Theorem 1. Under the assumption $[\mathbf{f}(\mathbf{x}, t)]_{\Omega^{N}}, \leq \mathbf{0}$, it holds that $\overline{\mathbf{U}}^{\top}(t)$. aches its maximum componentwise value at the boundary $\partial \Omega^{N} \times[0, T\rceil \mathcal{J}^{\top} \times\{0\}$.

The proof of this result is similar to the proof of the semidis nete .'aximum principle stated in [5]. From Theorem 1, the next result foll- s .
Theorem 2. If $[\mathbf{f}(\mathbf{x}, t)]_{\Omega^{N}} \geq \mathbf{0}$, $[\mathbf{g}(\mathbf{x}, t)]_{\partial \Omega^{N}} \geq \mathbf{0}$ and $\left[/ \nu\left(\mathbf{x}_{\lrcorner \Omega^{N}} \geq \mathbf{0}\right.\right.$, then $\overline{\mathbf{U}}^{N}(t) \geq \mathbf{0}$.

Using now a well known barrier-function technique, see '3,19] or instance, the following result can be proved.
Theorem 3. (Uniform stability for (10)). The ini , ue olution of problem (10) satisfies the uniform bound

$$
\begin{aligned}
& \left\|\overline{\mathbf{U}}^{N}(t)\right\|_{\bar{\Omega}^{N} \times[0, T]} \leq \\
& \max \left\{\left\|[\boldsymbol{\varphi}(\mathbf{x})]_{\Omega^{N}}\right\|_{\Omega^{N}},\left\|[\mathbf{g}(\mathbf{x}, t)]_{\partial \Omega^{N}}\right\|_{\left.\partial \Omega^{N} \wedge_{,}^{\prime}, T\right]}, \dot{\bar{\beta}}\left\|[\mathbf{f}(\mathbf{x}, t)]_{\Omega^{N}}\right\|_{\Omega^{N} \times[0, T]}\right\} .
\end{aligned}
$$

The last result in this section proves $\because \mathrm{u}$. iform convergence of the spatial discretization.
Theorem 4. Under the previous nouiness assumptions for \mathbf{u}, the error associated with the spatial discretization on the Shishkin mesh satisfies

$$
\begin{equation*}
\| \overline{\mathbf{U}}^{N}(t)-\left[\mathbf{u}(\mathbf{x},)_{\bar{\sigma}^{N}} \|_{\Gamma} v \leq C N^{-1} \ln N, t \in[0, T]\right. \tag{13}
\end{equation*}
$$

where C is independent o. ε r nd \checkmark, and therefore the spatial discretization is an almost first order ur form 'a': onvergent scheme.

Proof. To analyze ${ }^{+}$ne iniform convergence of the spatial discretization, we decompose the senı ${ }^{\text {dir }}$ rete solution in the form

$$
\begin{equation*}
\overline{\mathbf{U}}^{N}(t)=\overline{\mathbf{V}}^{N}(t)+\sum_{i=1}^{2} \overline{\mathbf{W}}_{i}^{N}(t)+\overline{\mathbf{Z}}_{1}^{N}(t), \tag{14}
\end{equation*}
$$

where these \quad id f.nctions are the solution of the semidiscrete problems

$$
\left\{\begin{array}{l}
\frac{d \backslash}{d}{ }^{N}(t)+\mathcal{L}_{\varepsilon}^{N}(t) \overline{\mathbf{V}}^{N}(t)=\left[\mathcal{L}_{\varepsilon}(t) \mathbf{v}\right]_{\Omega^{N}}, \text { in } \Omega^{N} \times[0, T], \\
\left\{\overline{\mathbf{V}}^{N}(t)=[\mathbf{v}(\mathbf{x}, t)]_{\partial \Omega^{N}}, \text { in } \partial \Omega^{N} \times[0, T],\right. \\
\mathbf{V}^{N}(0)=[\mathbf{v}(\mathbf{x}, 0)]_{\Omega^{N}},
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\frac{d \mathbf{W}_{i}^{N}}{d t}(t)+\mathcal{L}_{\varepsilon}^{N}(t) \overline{\mathbf{W}}_{i}^{N}(t)=[\mathbf{0}]_{\Omega^{N}}, \text { in } \Omega^{N} \times[0, T], \\
\overline{\mathbf{W}}_{i}^{N}(t)=\left[\mathbf{w}_{i}(\mathbf{x}, t)\right]_{\partial \Omega^{N}}, \text { in } \partial \Omega^{N} \times[0, T], \\
\mathbf{W}_{i}^{N}(0)=\left[\mathbf{w}_{i}(\mathbf{x}, 0)\right]_{\Omega^{N}},
\end{array}\right.
$$

for $i=1,2$ and

$$
\left\{\begin{array}{l}
\frac{d \mathbf{Z}_{1}^{N}}{d t}(t)+\mathcal{L}_{\varepsilon}^{N}(t) \overline{\mathbf{Z}}_{1}^{N}(t)=[\mathbf{0}]_{\Omega^{N}}, \text { in } \Omega^{N} \times[0, T] \\
\overline{\mathbf{Z}}_{1}^{N}(t)=\left[\mathbf{z}_{1}(\mathbf{x}, t)\right]_{\partial \Omega^{N}}, \text { in } \partial \Omega^{N} \times[0, T] \\
\mathbf{Z}_{1}^{N}(0)=\left[\mathbf{z}_{1}(\mathbf{x}, 0)\right]_{\Omega^{N}}
\end{array}\right.
$$

 $\left(\tau_{1}^{N}(t), \tau_{2}^{N}(t)\right)^{T}$, is given by

$$
\tau^{N}(t)(\mathbf{u}) \equiv\left[\left(\frac{\partial}{\partial t}+\mathcal{L}_{\mathbf{x}, \varepsilon}(t)\right) \mathbf{u}(\mathbf{x}, t)\right]_{\Omega^{N}}-\left(\frac{d}{d t}[\mathbf{u}(\mathbf{x}, t)]_{\Omega^{+}}+\mathcal{L}_{\varepsilon}^{N}(t)[\mathbf{u}(\mathbf{x}, t)]_{\bar{\Omega}^{N}}\right)
$$

For the regular component, at the grid $\mathrm{pc} \cdot \bullet\left(x_{i}, y_{j}\right), i, j=1, \ldots, N-1$, the truncation error satisfies

$$
\begin{aligned}
& \left|\tau_{i j}^{N}(t)(\mathbf{v})\right| \leq \mid \mathcal{D}\left(\Delta \mathbf{v}\left(x_{i}, y_{j}, t\right)-\left(\varepsilon^{2}+\delta_{y}^{\prime}, \mathbf{v}\left(x_{i}, y_{j}, t\right)\right) \mid\right. \\
& +\mathbf{C}\left|\frac{\partial}{\partial x} \mathbf{v}\left(x_{i}, y_{j}, t\right)-D_{x}^{-} \mathbf{v}\left(x_{i}, y_{j}+\right)\right|+\bar{\zeta}\left|\frac{\partial}{\partial y} \mathbf{v}\left(x_{i}, y_{j}, t\right)-D_{y}^{-} \mathbf{v}\left(x_{i}, y_{j}, t\right)\right|,
\end{aligned}
$$

where δ_{x}^{2} and δ_{y}^{2} are the discret:-ation on a nonuniform mesh of the second derivatives respect to x and y nd $L_{;}^{-}$and D_{y}^{-}are the backward discretization on a nonuniform mesh of the fis ${ }^{2}$ o der derivatives respect to x and y.

We analyze the first comp ' ent of local error in detail; the same reasoning applies directly to the second component. From Taylor expansion, it easily follows that

$$
\left|\tau_{i j, 1}^{N}(t)(\mathbf{v})\right| \leq C\left(\varepsilon_{\int_{x_{i-1}}^{x_{i-1}}}\left(\left|\frac{\partial^{3} v_{1}}{\partial x^{3}}(s)\right|+\left|\frac{\partial^{3} v_{1}}{\partial y^{3}}(s)\right|\right) d s+\int_{x_{i-1}}^{x_{i}}\left(\left|\frac{\partial^{2} v_{1}}{\partial x^{2}}(s)\right|+\left|\frac{\partial^{2} v_{1}}{\partial y^{2}}(s)\right|\right) d s\right)
$$

Then, from the t. ims ves (5) it holds

$$
\left|\tau^{N}(t)(\mathbf{v})\right| \leq \mathbf{C} N^{-1}
$$

Then, t] e sem discrete comparison principle allows to establish that

$$
\begin{equation*}
\left|\left(\mathbf{V}^{N}-\mathbf{v}\right)\left(x_{i}, y_{j}, t\right)\right| \leq \mathbf{C} N^{-1} \tag{15}
\end{equation*}
$$

Next, we analyze the error associated with the boundary layer functions $\mathbf{w}_{i}, i=$

1,2 . We give some details only for \mathbf{w}_{1}, and in a similar way the other one can be obtained. The analysis depends on the location of grid point x_{i}.

First, we assume that $0<x_{i} \leq 1-\sigma$. We define the barrier func ${ }^{+}$on $\boldsymbol{\Psi}=$ $(\Psi, \Psi)^{T}$ with $\Psi=S_{x, i}(\beta)$, where

$$
S_{x, i}(\beta)=\left\{\begin{array}{l}
\prod_{s=i+1}^{N}\left(1+h_{x, i} \beta / \varepsilon\right)^{-1}, i \neq N \\
1, i=N
\end{array}\right.
$$

Then, using the barrier function $\boldsymbol{\Psi}$, and taking into accoי \because t tı` estimates (6) and using that $S_{x, i}(\beta) \leq C N^{-1}$, for $0<x_{i} \leq 1-\sigma$, ve have

$$
\begin{equation*}
\left|\left(\mathbf{W}_{1}^{N}-\mathbf{w}_{1}\right)\left(x_{i}, y_{j}, t\right)\right| \leq \mathbf{C} \tag{16}
\end{equation*}
$$

For the grid points $\left(x_{i}, y_{j}\right) \in(1-\sigma, 1) \times(0,1)$, un ing th bounds (6), we find that the local error satisfies

$$
\left|\tau_{i j}^{N}(t)\left(\mathbf{w}_{1}\right)\right| \leq \mathbf{C} \varepsilon^{1} \zeta
$$

and taking into account that $h \leq C \varepsilon N^{-1} \ln \Lambda^{\top}$ we obtain

$$
\begin{equation*}
\mid\left(\mathbf{W}_{1}^{N}-\mathbf{w}_{1}\right)\left(x_{i}, y_{i}, t\right)_{1}=\mathbf{C} N^{-1} \ln N . \tag{17}
\end{equation*}
$$

Finally, we analyze the error associatea whoh the corner layer function \mathbf{z}_{1}. If $0<x_{i} \leq 1-\sigma, 0<y_{j} \leq 1-\sigma, \neg r \cup<x_{i} \leq 1-\sigma, 1-\sigma<y_{j}<1$ or $1-\sigma<x_{i}<1,0<y_{j} \leq 1-\sigma$, using that \mathbf{z}_{1} decays exponentially from $y=1$ and the definition of the trans; son, oint σ, proceeding in the same way as for the analysis of \mathbf{w}_{1}, it follows

$$
\left|\left(\begin{array}{rl}
r_{1}^{N} & \mathbf{z}_{1} \tag{18}
\end{array}\right)\left(x_{i}, y_{j}, t\right)\right| \leq \mathbf{C} N^{-1} .
$$

At last, for the grid puints ín, $\left.y_{j}\right) \in(1-\sigma, 1) \times(1-\sigma, 1)$, the error estimates are deduced using a ila sical truncation error analysis (see $[9,19]$) and making use that the mesh . fi ie in both spatial directions; in this case, it holds

$$
\begin{equation*}
\left|\left(\mathbf{Z}_{1}^{N}-\mathbf{z}_{1}\right)\left(x_{i}, y_{j}, t\right)\right| \leq \mathbf{C} N^{-1} \ln N . \tag{19}
\end{equation*}
$$

From (15)-(${ }^{1} y$), the required result follows.

4 The fully discrete scheme: uniform convergence

The sec nd step to find the fully discrete method, consists in to apply an appropriate time integrator to the semidiscrete problems (10). To simplify the
notations, we introduce the difference operators

$$
\begin{align*}
& \mathcal{L}_{x, 1}^{N}(t) v^{N} \equiv-\varepsilon \partial_{x x} v^{N}+b_{x, 11} \partial_{x} v^{N}+a_{x, 11}(t) v^{N}, \\
& \mathcal{L}_{y, 1}^{N}(t) v^{N} \equiv-\varepsilon \partial_{y y} v^{N}+b_{y, 11} \partial_{y} v^{N}+a_{y, 11}(t) v^{N}, \tag{20}\\
& \mathcal{L}_{x, 2}^{N}(t) v^{N} \equiv-\varepsilon \partial_{x x} v^{N}+b_{x, 22} \partial_{x} v^{N}+a_{x, 22}(t) v^{N}, \\
& \mathcal{L}_{y, 2}^{N}(t) v^{N} \equiv-\varepsilon \partial_{y y} v^{N}+b_{y, 22} \partial_{y} v^{N}+a_{y, 22}(t) v^{N},
\end{align*}
$$

being $\partial_{x x}$ and $\partial_{y y}$ the classical second order central differe 'ces, and $\partial_{x}, \partial_{y}$ the forward approximation of first derivatives, on the correcnoning one dimensional Shishkin meshes, with $a_{x, k k}(x, y, t)+a_{y, k k}\left(x, y, t=a_{k k}{ }^{\prime} x, y, t\right), k=1,2$ We will choose that $a_{z, k k}(x, y, t) \geq 0, k=1,2, z=u$. inalogously, we decompose the non diagonal coefficients of the re ctic- matrix in the form $a_{x, k r}(x, y, t)+a_{y, k r}(x, y, t)=a_{k r}(x, y, t), k, r=1, L, k \leq r$, choosing that $a_{z, k r}(x, y, t) \leq 0, k, r=1,2, k \neq r, z=x, y$, and $\sum_{r=1}^{2} a_{z, r}(x, y, t) \geq \alpha_{z}>0, k=$ $1,2, z=x, y\left(\alpha_{x}+\alpha_{y}=\alpha\right)$. Notation $a_{z, k r}\binom{\wedge}{,}^{N} \cdots t$ be understood as follows: $\left(a_{z, k r}(t) v^{N}\right)_{k l} \equiv a_{z, k r}\left(x_{i}, y_{j}, t\right) v_{k l}^{N}$; as well, w. decompose the right-hand side $\mathbf{f}(\mathbf{x}, t) \equiv\left(f_{1}, f_{2}\right)^{T}$, in the form $\mathbf{f}_{x}+\mathbf{f}_{y} \doteq\left(f_{x, 1}, f_{x, 2}\right)^{T}+\left(f_{y, 1}, f_{y, 2}\right)^{T}$.

Then, the fully discrete scheme is given b_{v}.
0) (initialize) $\mathbf{U}^{N, 0}=[\boldsymbol{\varphi}]_{\Omega^{N}}$,

where $\tau \equiv T /{ }^{\wedge}{ }^{r}$ is the time step, $t_{m}=m \tau, m=0, \ldots, M$ are the intermediate times wh re tre semidiscrete solution $\overline{\mathbf{U}}\left(t_{m}\right)$ is approximated as $\mathbf{U}^{N, m}, \Omega_{x}^{N} \equiv$ $I_{x}^{N} \times{ }^{-N}{ }_{y},{ }_{y}^{n} \equiv \bar{I}_{x}^{N} \times I_{y}^{N}$,

$$
\begin{equation*}
F_{z, k}^{m+1} \equiv\left[f_{z, k}\left(\mathbf{x}, t_{m+1}\right)\right]_{\Omega_{z}^{N}}, k=1,2, z=x, y \tag{22}
\end{equation*}
$$

and the discrete boundary data are given by

$$
\begin{align*}
\mathbf{G}_{0}^{N, m+1 / 2}= & \left(\left(I+\tau \mathcal{L}_{y, 1}^{N}\left(t_{m+1}\right)\right)\left[g_{1}\left(0, y, t_{m+1}\right)\right]_{\bar{I}_{y}}-\tau\left[f_{y, 1}\left(0, y, t_{m+1}\right)\right]_{I_{y}}+\right. \\
& {\left[\tau a_{y, 12}\left(0, y, t_{m+1}\right) g_{2}\left(0, y, t_{m+1}\right)\right]_{I_{y}}, } \\
& \left.\left(I+\tau \mathcal{L}_{y, 2}^{N}\left(t_{m+1}\right)\right)\left[g_{2}\left(0, y, t_{m+1}\right)\right]_{\bar{I}_{y}}-\tau\left[f_{y, \cdot}, \cup,, t_{m+1}\right)\right]_{I_{y}}+ \\
& {\left.\left[\tau a_{y, 21}\left(0, y, t_{m+1}\right) g_{1}\left(0, y, t_{m+1}\right)\right]_{I_{y}}\right)^{T}, } \\
\mathbf{G}_{N}^{N, m+1 / 2}= & \left(\left(I+\tau \mathcal{L}_{y, 1}^{N}\left(t_{m+1}\right)\right)\left[g_{1}\left(1, y, t_{m+1}\right)\right]_{\bar{I}_{y}}-\tau\left[f_{y, 1}\left(1, y \iota_{m,+1}\right)\right]_{I_{y}}+\right. \\
& {\left[\tau a_{y, 12}\left(1, y, t_{m+1}\right) g_{2}\left(1, y, t_{m+1}\right)\right]_{I_{y}}, } \\
& \left.\left(I+\tau \mathcal{L}_{y, 2}^{N}\left(t_{m+1}\right)\right)\left[g_{2}\left(1, y, t_{m+1}\right)\right)_{\digamma_{y}}-\tau_{l} f_{y, 2}\left(1, y, t_{m+1}\right)\right]_{I_{y}}+ \\
& {\left.\left[\tau a_{y, 21}\left(1, y, t_{m+1}\right) g_{1}\left(1, y, t_{m+1}\right)\right]_{I_{y}}\right)^{T}, }
\end{align*}
$$

Note that in the half steps of (21), only tric: agon - ${ }^{-1}$ linear systems must be solved to obtain $\mathbf{U}^{N, \bullet}$. Therefore, the computatir, al cost of our algorithm is similar to the cost of any one step explicit n othod; for the same reason, the method has a computational cost consid ...hlver smaller than the one of implicit classical schemes.

With respect to the proposed boundary daca, we wish remark that our proposal provides solutions that are mu.` acuurate than those ones obtained with the simpler and, arguably, more obvious formulation

$$
\begin{align*}
& \mathbf{G}_{0}^{N, m+1 / 2}=\left[\mathbf{g}\left(0, y, \iota_{\prime}^{\prime}, 1\right)\right]_{\bar{j}}, \mathbf{G}_{N}^{N, m+1 / 2}=\left[\mathbf{g}\left(1, y, t_{m+1}\right)\right]_{\bar{I}_{y}}, \tag{24}\\
& \mathbf{G}_{0}^{N, m+1}=\left[\mathbf{g}\left(x, \prime, t_{r+1}\right)_{r_{x}} \text { and } \mathbf{G}_{N}^{N, m+1}=\left[\mathbf{g}\left(x, 1, t_{m+1}\right)\right]_{I_{x}} .\right.
\end{align*}
$$

which provokes a red tion in the order of consistency. This reduction in the order of consistency ma-es difficult to complete the analysis of uniform convergence of this ho se.

Let us study no the a a_{1} proximation properties of our proposal. Firstly, we state an invers D^{\prime} siti ity result for our fully discrete scheme, which is the discrete analrwie $\mathrm{o}_{i}{ }^{-\pi}$ heorem 2 of the previous section.
Theorem !. If $a_{\iota}{ }^{\prime}$ of the data $\left(\mathbf{G}, \mathbf{F}_{1}, \mathbf{F}_{2},[\boldsymbol{\varphi}]_{\Omega^{N}}\right.$ in (21), have non-negative components, hen he solutions $\mathbf{U}^{N, m}$ of (21) have non-negative components.

The pro of tl is result uses an induction principle on the fractional steps of (21) which is similar to the used one in [4].

To com ${ }_{\perp}$ 'ete the analysis of the uniform convergence of our algorithm, now we rewrite it in such a way that the fractional implicit Euler method is clearly
involved:

$$
\begin{align*}
& \text { (initialize) } \mathbf{U}^{N, 0}=[\boldsymbol{\varphi}]_{\Omega^{N}}^{N}, \\
& \left\{\begin{array}{l}
\left(I+\tau L_{\varepsilon, k}^{N}\left(t_{m+1}\right)\right) \mathbf{U}^{N, m+k / 4}=\mathbf{U}^{N, m+(k-1) / 4}+\tau \mathbf{F}^{m+k / 4}, \text { in } \Omega_{j}^{N} \\
\mathbf{U}^{N, m+k / 4}=\mathbf{G}^{N, m+k / 4}, \text { in } \partial \Omega_{k}^{N}, \\
k=1,2,3,4, \\
m=0, \ldots, M-1,
\end{array}\right. \tag{25}
\end{align*}
$$

where $\Omega_{1}^{N}=\Omega_{2}^{N} \equiv \Omega_{x}^{N}, \Omega_{3}^{N}=\Omega_{4}^{N} \equiv \Omega_{y}^{N}$, and

$L_{\varepsilon, 3}^{N}\left(t_{m+1}\right) \equiv\left(\begin{array}{cc}I & 0 \\ a_{y, 21}\left(t_{m+1}\right) & \mathcal{L}_{y, 2}^{N}\left(t_{m+1}\right)\end{array}\right), L_{\varepsilon, 4}^{N}\left(t_{m \cdot \cdot}\right) \equiv\left(\begin{array}{cc}\mathcal{L}_{y, 1}^{N}\left(t_{m+1}\right) & a_{y, 12}\left(t_{m+1}\right) \\ 0 & I\end{array}\right)$,
$\mathbf{F}^{m+1 / 4} \equiv\binom{F_{x, 1}^{m+1}}{0}, \mathbf{F}^{m+2 / 4} \equiv\left(\begin{array}{c}0 \\ F_{x, 2}^{m}\end{array}\right\rangle^{,},^{m+3 / 4} \equiv\binom{0}{F_{y, 2}^{m+1}}, \mathbf{F}^{m+1} \equiv\binom{F_{y, 1}^{m+1}}{0}$,
$\mathbf{G}^{N, m+1 / 2}, \mathbf{G}^{N, m+1}$ are given in $\left(2 \mathcal{L}, \beth^{N, \cdot+1 / 4} \equiv\left(\mathbf{G}_{1}^{N, m+1 / 2},\left[U_{2}^{N, m}\right]_{\partial \Omega_{1}^{N}}\right)^{T}\right.$ and $\mathbf{G}^{N, m+3 / 4} \equiv\left(\left[U_{1}^{N, m+1 / 2}\right]_{\partial \Omega_{3}^{N}}, \mathbf{G}_{2}^{N, m+1}\right)^{T}$, veing $\partial \Omega_{1}^{N}=\partial \Omega_{2}^{N} \equiv\{0,1\} \times \bar{I}_{y}$ and $\partial \Omega_{3}^{N}=\partial \Omega_{4}^{N} \equiv \bar{I}_{x} \times\{0,1\}$.

Using this rewriting, comb; ed $\mathrm{w}_{1}{ }^{\prime}$. the previous inverse positivity result, we are ready to state the ur for $n s^{\dagger}$ ability and the uniform consistency of our time integration process.
Corollary 1. (Contr caity of the time integrator). If $\mathbf{G}=0, \mathbf{F}_{1}=0$ and $\mathbf{F}_{2}=0$, it holds

$$
\begin{equation*}
\left\|\mathbf{U}^{N, \ldots} \cdot\right\|_{\Omega_{N}} \leq\left\|\mathbf{U}^{N, m}\right\|_{\Omega_{N}}, m=0,1, \ldots, M-1 . \tag{26}
\end{equation*}
$$

The proof of sins res at requires the use of the barrier function technique in a similar way as in [2].

To anal ze the uniform consistency, we introduce the local errors in time, as usual:

$$
\mathbf{e}^{N, m+1} \equiv \overline{\mathbf{U}}^{N}\left(t_{m+1}\right)-\widehat{\mathbf{U}}^{N, m+1},
$$

where $\bar{\iota}^{\bar{v}, m+1}$ is the result which is obtained with the step m of scheme (25) if we change $\mathbf{U}^{N, m}$ by $\overline{\mathbf{U}}^{N}\left(t_{m}\right)$.

Theorem 6. (Uniform consistency of the time integrator). Assuming that $\mathbf{u} \in C^{4,2}(\bar{Q})$, it holds

$$
\begin{equation*}
\left\|\mathbf{e}^{N, m+1}\right\|_{\bar{\Omega}_{N}} \leq C M^{-2}, \quad \forall \tau \in\left(0, \tau_{0}\right] \quad \text { and } \forall m=0,1, \ldots, M- \tag{27}
\end{equation*}
$$

Proof. We make use of the following Taylor expansion for $\mathbf{U}_{i}^{N}\left(\iota_{1}\right), i, j=$ 1...N-1

$$
\mathbf{U}_{i j}^{N}\left(t_{m}\right)=\mathbf{U}_{i j}^{N}\left(t_{m+1}\right)-\tau \frac{d \mathbf{U}_{i j}^{N}}{d t}\left(t_{m+1}\right)+\mathcal{O}\left(\tau^{2}\right)
$$

$$
\sum_{k=1}^{4}\left(L_{\varepsilon, k}^{N}\left(t_{m+1}\right) \overline{\mathbf{U}}^{N}\left(t_{m+1}\right)-\mathbf{F}^{m+k / 4}\right)_{i_{j}}
$$

to deduce

$$
\prod_{k=1}^{4}\left(I+\tau L_{\varepsilon, k}^{N}\left(t_{m+1}\right)\right) \overline{\mathbf{U}}^{N}\left(t_{m+1}\right)=\mathbf{U}^{N}\left(t_{m}\right)+\tau \sum_{k=1}^{4}{\underset{1}{1}}_{\mathbf{1}_{1}^{k-1}}^{\left(I+L_{\varepsilon, l}^{N}\left(t_{m+1}\right)\right) \mathbf{F}^{m+k / 4}+\mathcal{O}\left(\tau^{2}\right), ~, ~}
$$

in Ω^{N}. On the other hand, for the values or $\mathbb{T}^{N}\left(t_{m+1}\right)$ at the boundaries Ω_{j}^{N}, it is obvious that $\overline{\mathbf{U}}^{N}\left(t_{m+1}\right)=\mathbf{G}^{m+1}$ in $\iota_{4}^{N} \cdots$ well, the remaining boundary data given by (23) have been chosen in su ' 1 a way that

$$
\prod_{k=4-l+1}^{4}\left(I+\tau L_{\varepsilon, k}^{N}\left(t_{m+1}\right)\right) \overline{\mathbf{U}}^{N}\left(t_{r,},-\mathbf{G}^{m+1-l / 4} \text { in } \partial \Omega_{4-l}^{N} ; l=1,2,3 .\right.
$$

Therefore, $\overline{\mathbf{U}}^{N}\left(t_{m+1}\right)$ can be r^{\prime} escrib d as the solution of

$$
\begin{align*}
& \overline{\mathbf{U}}^{N, m}=\mathbf{U}^{N}\left(t_{m}\right)+\mathcal{O}(\tau), \\
& \left\{\begin{array}{l}
\left(I+\tau L_{\varepsilon, k}^{N}\left(t_{m+1}\right)\right)^{\boldsymbol{T}},^{N, m} \cdot \cdots / 4=\overline{\mathbf{U}}^{N, m+(k-1) / 4}+\tau \mathbf{F}^{m+k / 4}, \text { in } \Omega_{k}^{N}, \\
\overline{\mathbf{U}}^{N, m+k / 4}=\mathbf{G}^{N, m+k / 4}, \ldots \partial \Omega_{k}^{N}, \\
k=1,2,3,4 .
\end{array}\right. \tag{28}
\end{align*}
$$

Subtracting this s her ae and the corresponding one which defines $\widehat{\mathbf{U}}_{N}^{m+1}$, it is immediate t 1 at $\mathbf{e}^{N, m \uparrow-1}$ is the solution of a problem of the form

$$
\begin{align*}
& \mathbf{e}^{N, \ldots}=\mathcal{O}\left(\tau^{2}\right), \\
& \left\{\begin{array}{l}
\left.I+\tau L_{\varepsilon, k}^{N}\left(t_{m+1}\right)\right) \mathbf{e}^{N, m+k / 4}=\mathbf{e}^{N, m+(k-1) / 4}, \text { in } \Omega_{k}^{N}, \\
\mathbf{e}^{N, m+k / 4}=\mathbf{0}, \text { in } \partial \Omega_{k}^{N}, \\
k=1,2,3,4,
\end{array}\right. \tag{29}
\end{align*}
$$

Using now (26), the required result follows.

A classical combination of (27) and (26), allows to establish that the time integration process is uniformly convergent of first order (see [4, 5^{\top} for more details), i.e.

$$
\begin{equation*}
\left\|\overline{\mathbf{U}}^{N}\left(t_{m}\right)-\mathbf{U}^{N, m}\right\|_{\bar{\Omega}^{N}} \leq \sum_{s=1}^{m}\left\|\mathbf{e}^{N, s}\right\|_{\bar{\Omega}^{N}} \leq C M^{-1} \tag{30}
\end{equation*}
$$

Joining now (13) and (30), the main uniform convergence in lt of this paper is deduced (see [4] for more details).
Theorem 7. (Uniform convergence) Assuming that $\mathbf{v} \in C^{4}{ }^{\prime}(\bar{Q})$, the global

$$
\begin{equation*}
\max _{0 \leq m \leq M}\left\|\mathbf{U}^{N, m}-\left[\mathbf{u}\left(\mathbf{x}, t_{m}\right)\right]_{\bar{\Omega}^{N}}\right\|_{\bar{\Omega}^{N}} \leq C\left(N^{-} \ln N^{N}+M^{-1}\right), \tag{31}
\end{equation*}
$$

 discretization parameters N and M.

5 Numerical results

In this section we show the nume rian sults obtained with the algorithm proposed here to solve successfully somı problems of type (1).

Example 1. The matrices of the fir t example are given by

$$
\begin{align*}
\mathcal{A} & =\left(\begin{array}{cc}
4+(x-y) t^{2} & -\left(x+y^{2}\right)\left(1-e^{-t}\right) \\
-\sin (x y) t^{2} & 1-e^{-t(x+y)}
\end{array}\right), \tag{32}\\
\mathcal{B}_{x} & =\operatorname{diag}\left(3-x u .2+t^{-x y}\right), \mathcal{B}_{y}=\operatorname{diag}\left(3-x^{2}-y^{2}, 3-x-y\right),
\end{align*}
$$

and the rest of data a defined by

$$
\left.\mathbf{f}(\mathbf{x}, t)=\left(\sin (x-y)\left(1-e^{-t}\right),-10\left(x^{2}+y^{2}\right) t^{2}\right)\right)^{T}, \mathbf{g}=\left((x+y) t^{2}, x y\left(e^{t}-1\right)\right)^{T}, \varphi=\mathbf{0} .
$$

Figure 1 di plays the numerical solution at $T=1$ for $\varepsilon=10^{-4}$. From it, we clearly see $t_{1} \odot$ regi lar boundary layers at the outflow of the spatial domain.

As the (xact st lution is unknown we cannot calculate exactly the errors; instead of 1 c, wr estimate them by using a variant of the double-mesh principle (see $1 \% .7$ se estimated maximum errors are given by

$$
\mathbf{d}_{\varepsilon}^{N, M}=\max _{0 \leq m \leq M} \max _{0 \leq i, j \leq N}\left|\mathbf{U}_{i j}^{N, m}-\widehat{\mathbf{U}}_{2 i 2 j}^{2 N, 2 m}\right|,
$$

Fig. 1. Components u_{1} (left) and u_{2} (right) at $T=1$ for $\varepsilon=10^{-4}$ with $N=32, M=32$

where $\left\{\widehat{\mathbf{U}}_{i j}^{2 N, m}\right\}$ is the numerical solution on a finer mee $\mathrm{h}\left\{\left(\hat{x}_{i}, \hat{y}_{j}, \hat{t}_{m}\right)\right\}$, which has the mesh points of the coarse mesh and their midp: ints from the maximum two-mesh differences $\mathbf{d}_{\varepsilon}^{N, M}$, we obtain the ε-ur forr . 'wo-mesh differences by

$$
\mathbf{d}^{N, M}=\max _{\boldsymbol{\varepsilon}} \mathbf{d}_{\boldsymbol{\varepsilon}}^{N, M} .
$$

From $\mathbf{d}_{\varepsilon}^{N, M}$, the numerical orders of convergence , ve alculated by

$$
\mathbf{q}_{\varepsilon}^{N, M}=\log \left(\mathbf{d}_{\boldsymbol{\varepsilon}}^{N, M} / \mathbf{d}_{\boldsymbol{\varepsilon}}, \ldots \ldots\right) / \log 2,
$$

and from $\mathbf{q}^{N, M}$, the numerical uniform on ${ }^{l} \mathrm{e}^{-}$s of uniform convergence are calculated by

$$
\mathbf{q}^{N, M}=\log \left(\mathbf{d}^{N, \Lambda}, \mathbf{d} \quad V, 2 M\right) / \log 2 .
$$

As the algorithm requires a suitable smooth partition of the reaction matrix, for simplicity, here we have cl ssen

$$
\begin{equation*}
a_{x, k r}(x, y, t)=r_{y, k r}\left(x, y_{y}, t\right)=a_{k r}(x, y, t) / 2, k, r=1,2 . \tag{33}
\end{equation*}
$$

Moreover, we have tak (see [3,7])

$$
\begin{align*}
& f_{y, k}\left(x y, t=f_{k}(x, 0, t)+y\left(f_{k}(x, 1, t)-f_{k}(x, 0, t)\right),\right. \tag{34}\\
& f_{x, \prime}, x, \nu, t \jmath=f_{k}(x, y, t)-f_{y, k}(x, y, t), k=1,2
\end{align*}
$$

to decompose the $\Lambda_{-}^{-1} . t$-hand side of the differential equation.
Tables 1 and ${ }^{\cap}$ sho the results for some values of ε for the first and the second componf ats respectively, taking $\sigma_{0}=1.2$ in (9). From them, we clearly deduce the unif rm co ivergence of the algorithm of almost first order according to the theoretivar results.

Examp e 2. In order to show the influence of the chosen boundary data on the errors, we have chosen another example. The matrices of this example are

ACCEPTED MANUSCRIPT

Table 1

Maximum errors and orders of convergence in Example 1 for u_{1}

ε	$\begin{gathered} \mathrm{N}=16 \\ \mathrm{M}=8 \end{gathered}$	$\begin{aligned} & \mathrm{N}=32 \\ & \mathrm{M}=16 \end{aligned}$	$\begin{aligned} & \mathrm{N}=64 \\ & \mathrm{M}=32 \end{aligned}$	$\begin{aligned} & \mathrm{N}=128 \\ & \mathrm{M}=64 \end{aligned}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 1.4137 \mathrm{E}-1 \\ 0.5602 \end{gathered}$	$\begin{gathered} 9.5876 \mathrm{E}-2 \\ 0.6339 \end{gathered}$	$\begin{gathered} 6.1784 \mathrm{E}-2 \\ 0.6954 \end{gathered}$	$\begin{gathered} 3.8154 \mathrm{E}-2 \\ 0.7503 \end{gathered}$	$2.2682 \mathrm{E}-2$
2^{-8}	$\begin{gathered} 1.3562 \mathrm{E}-1 \\ 0.5997 \end{gathered}$	$\begin{gathered} 8.9498 \mathrm{E}-2 \\ 0.6135 \end{gathered}$	$\begin{gathered} 5.8496 \mathrm{E}-2 \\ 0.6810 \end{gathered}$	$\begin{gathered} 3.6486 \mathrm{E}-2 \\ 0.7415 \end{gathered}$	2.1823 E
2^{-10}	$\begin{gathered} 1.3601 \mathrm{E}-1 \\ 0.6676 \end{gathered}$	$\begin{gathered} 8.5626 \mathrm{E}-2 \\ 0.6099 \end{gathered}$	$\begin{gathered} 5.6106 \mathrm{E}-2 \\ 0.6690 \end{gathered}$	$\begin{gathered} 3.5287 \mathrm{E}-2 \\ 0.7249 \end{gathered}$	2.13 ¢nE-2
2^{-12}	$\begin{gathered} 1.3610 \mathrm{E}-1 \\ 0.6903 \end{gathered}$	$\begin{gathered} 8.4342 \mathrm{E}-2 \\ 0.6133 \end{gathered}$	$\begin{gathered} 5.5135 \mathrm{E}-2 \\ 0.6682 \end{gathered}$	$\begin{gathered} 3.4697 \mathrm{E}-2 \\ 0.6860 \end{gathered}$	2.1c E-2
\ldots	\ldots	\cdots	\cdots		
2^{-22}	$\begin{gathered} 1.3613 \mathrm{E}-1 \\ 0.6987 \end{gathered}$	$\begin{gathered} 8.3872 \mathrm{E}-2 \\ 0.6144 \end{gathered}$	$\begin{gathered} 5.4786 \mathrm{E}-2 \\ 0.6697 \end{gathered}$	$\begin{array}{r} 3.440 \mathrm{E} \\ \checkmark 6704 \end{array}$	$\therefore 1640 \mathrm{E}-2$
$\begin{aligned} & d_{1}^{N, M} \\ & q_{1}^{N, M} \\ & \hline \end{aligned}$	$\begin{gathered} 1.4137 \mathrm{E}-1 \\ 0.5602 \end{gathered}$	$\begin{gathered} 9.5876 \mathrm{E}-2 \\ 0.6339 \end{gathered}$	$\begin{gathered} 6.1784 \mathrm{E}-2 \\ 0.6954 \\ \hline \end{gathered}$	$\begin{array}{r} 3.8154 \mathrm{\llcorner } ? \\ 750 ? \end{array}$	$2.2682 \mathrm{E}-2$

Table 2
Maximum errors and orders of convergencf in Exaınple 1 for u_{2}

ε	$\begin{aligned} & \mathrm{N}=16 \\ & \mathrm{M}=8 \end{aligned}$	$\begin{aligned} & \mathrm{N}=32 \\ & \mathrm{M}=16 \end{aligned}$	$\begin{aligned} & \mathrm{N} .64 \\ & M=3 \end{aligned}$	$\begin{aligned} & \mathrm{N}=128 \\ & \mathrm{M}=64 \end{aligned}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 2.7063 \mathrm{E}-1 \\ 0.6218 \end{gathered}$	$\begin{gathered} 1.7587 \mathrm{E}-1 \\ 0.8137 \end{gathered}$	$\begin{gathered} \text { 1. } 705\llcorner-1 \\ \text { u.u-15 } \end{gathered}$	$\begin{gathered} 5.3191 \mathrm{E}-2 \\ 0.7936 \end{gathered}$	$3.0687 \mathrm{E}-2$
2^{-8}	$\begin{gathered} 3.1378 \mathrm{E}-1 \\ 0.6413 \end{gathered}$	$\begin{gathered} 2.0118 \mathrm{E}-1 \\ r .029_{\perp} \end{gathered}$	$\begin{gathered} 1.1324 \mathrm{E}-1 \\ 0.9228 \end{gathered}$	$\begin{gathered} 5.9733 \mathrm{E}-2 \\ 0.9600 \end{gathered}$	$3.0707 \mathrm{E}-2$
2^{-10}	$\begin{gathered} 3.2690 \mathrm{E}-1 \\ 0.6345 \end{gathered}$	$\begin{gathered} -\quad{ }^{1} 058 \mathrm{E}-1 \\ 0.844 \end{gathered}$	$\begin{gathered} 1.1728 \mathrm{E}-1 \\ 0.9273 \end{gathered}$	$\begin{gathered} 6.1672 \mathrm{E}-2 \\ 0.9598 \end{gathered}$	$3.1708 \mathrm{E}-2$
2^{-12}	$\begin{gathered} 3.3040 \mathrm{E} \\ 0.63 \mathrm{~J} \end{gathered}$	$\begin{gathered} 1328-1 \\ \varsigma_{4} 95 \end{gathered}$	$\begin{gathered} \hline 1.1836 \mathrm{E}-1 \\ 0.9278 \end{gathered}$	$\begin{gathered} 6.2219 \mathrm{E}-2 \\ 0.9598 \end{gathered}$	$3.1988 \mathrm{E}-2$
\ldots			\cdots		\ldots
2^{-22}	$\begin{gathered} 3.315 \text { E-1 } \\ \text { ᄂ. } 203 \end{gathered}$	$\begin{gathered} \hline 2.1422 \mathrm{E}-1 \\ 0.8481 \end{gathered}$	$\begin{gathered} \hline 1.1900 \mathrm{E}-1 \\ 0.9309 \end{gathered}$	$\begin{gathered} 6.2420 \mathrm{E}-2 \\ 0.9598 \end{gathered}$	$3.2092 \mathrm{E}-2$
$\begin{aligned} & d_{2}^{N, \Gamma} \\ & q_{2}^{N, \ldots} \end{aligned}$	$\begin{aligned} & .3159 \mathrm{E}-1 \\ & 0 .{ }^{\prime} 303 \end{aligned}$	$\begin{gathered} 2.1422 \mathrm{E}-1 \\ 0.8481 \end{gathered}$	$\begin{gathered} 1.1900 \mathrm{E}-1 \\ 0.9309 \end{gathered}$	$\begin{gathered} 6.2420 \mathrm{E}-2 \\ 0.9598 \end{gathered}$	$3.2092 \mathrm{E}-2$

given by

$$
\left.\mathcal{A}: \begin{array}{cc}
10 & -2^{16}\left(10 x^{4}(1-x)^{4} y^{4}(1-y)^{4}\right) \tag{35}\\
\mathcal{B}_{x}=\operatorname{diag}(1,1), \mathcal{B}_{y}=\operatorname{diag}(1,1), & 20
\end{array}\right),
$$

and the rest of data are defined by

$$
\begin{gathered}
\mathbf{f}(\mathbf{x}, t)=\left(\left(1-e^{-5 t}\right)(x+y)+5 x y,\left(1-e^{-10 t}\right)(x+y)+10 x y\right)^{T} \\
\mathbf{g}=\left(x y\left(1-e^{-5 t}\right), x y\left(1-e^{-10 t}\right)\right)^{T}, \varphi=\mathbf{0} .
\end{gathered}
$$

and $T=1$.
Figure 2 displays the numerical solution at $T=1$ for $\varepsilon=\pi^{-4}$. F \circ om it, we clearly see the regular boundary layers at the outflow of tie s atial domain.

Fig. 2. Components u_{1} (left) and u_{2} (right) at $T=1$ for : $=10^{-4}$ with $N=32, M=32$

We estimate the numerical errors and the orders of convergence using the same double mesh principle as in trı nrevous example. We use again the decomposition given in (33) and (34) for the reaction matrix and the right-hand side of the differential equatio , rta , eectively. Tables 3,4 show the results for some values of ε for first an. secon 1 component respectively. These results correspond to the use of th : impru ed boundary data given in (23). Tables 5, 6 show the results when he star lard boundary data (24) are chosen. From them, we see that, in th cast ${ }^{\wedge}$ using the standard boundary data, the maximum errors are large ats $^{\text {d }}$ the orders of convergence are lower for all values of ε.

Example 3. To sho, that our ideas are easily extended to systems with more componer is, ve ronsider an example which has three equations. Now the matrices are of ver by

$$
\begin{align*}
& \mathcal{A}=\left(\begin{array}{ccc}
e^{x+y}(++t) & -t(x+y) & -t x \\
-(x+\jmath) & (1+t)(3+x+y) & -t \sin (y) \\
-x y^{2} & -t(\sin (x)+\sin (y)) & e^{t}(2+\cos (x+y))
\end{array}\right), \\
& \mathcal{B}_{x}=\mathrm{d} \cdot \mathrm{~g}\left(1+x y / 2,5+x^{2} y, 3-x y\right), \mathcal{B}_{y}=\operatorname{diag}\left(e^{x^{2} y}, 3+\sin (x+y), 1+x+y\right), \tag{36}
\end{align*}
$$

ACCEPTED MANUSCRIPT

Table 3
Maximum errors and orders of convergence in Example 2 for u_{1} with improved boundary conditions

ε	$\begin{gathered} \mathrm{N}=16 \\ \mathrm{M}=8 \end{gathered}$	$\begin{aligned} & \mathrm{N}=32 \\ & \mathrm{M}=16 \end{aligned}$	$\begin{aligned} & \mathrm{N}=64 \\ & \mathrm{M}=32 \end{aligned}$	$\begin{gathered} \mathrm{N}=128 \\ \mathrm{M}=64 \end{gathered}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 5.4353 \mathrm{E}-2 \\ 0.5682 \end{gathered}$	$\begin{gathered} 3.6659 \mathrm{E}-2 \\ 0.6862 \end{gathered}$	$\begin{gathered} 2.2783 \mathrm{E}-2 \\ 0.7956 \end{gathered}$	$\begin{gathered} 1.3125 \mathrm{E}-2 \\ 0.8796 \end{gathered}$	$7.1339 \mathrm{E}-3$
2^{-8}	$\begin{gathered} 5.6112 \mathrm{E}-2 \\ 0.5278 \end{gathered}$	$\begin{gathered} 3.8920 \mathrm{E}-2 \\ 0.6586 \end{gathered}$	$\begin{gathered} 2.4656 \mathrm{E}-2 \\ 0.7497 \end{gathered}$	$\begin{gathered} 1.4664 \mathrm{E}-2 \\ 0.8444 \end{gathered}$	$8.1668^{\text {¢,-3 }}$
2^{-10}	$\begin{gathered} 5.5969 \mathrm{E}-2 \\ 0.5021 \end{gathered}$	$\begin{gathered} 3.9518 \mathrm{E}-2 \\ 0.6446 \end{gathered}$	$\begin{gathered} 2.5278 \mathrm{E}-2 \\ 0.7356 \end{gathered}$	$\begin{gathered} 1.5181 \mathrm{E}-2 \\ 0.8325 \end{gathered}$	$8,247 \mathrm{~F}$
2^{-12}	$\begin{gathered} 5.5863 \mathrm{E}-2 \\ 0.4943 \end{gathered}$	$\begin{gathered} 3.9657 \mathrm{E}-2 \\ 0.6402 \end{gathered}$	$\begin{gathered} 2.5444 \mathrm{E}-2 \\ 0.7330 \end{gathered}$	$\begin{gathered} 1.5308 \mathrm{E}-2 \\ 0.8285 \end{gathered}$	$8.6204 \mathrm{E}-\mathrm{s}$
\ldots	\cdots	\cdots	\cdots		
2^{-22}	$\begin{gathered} 5.5821 \mathrm{E}-2 \\ 0.4916 \end{gathered}$	$\begin{gathered} 3.9702 \mathrm{E}-2 \\ 0.6387 \end{gathered}$	$\begin{gathered} 2.5500 \mathrm{E}-2 \\ 0.7322 \end{gathered}$	$\begin{gathered} 1-350 \mathrm{E}-2 \\ 0.82 \mathrm{~b} \end{gathered}$. $66534 \mathrm{E}-3$
$\begin{aligned} & \hline d_{1}^{N, M} \\ & q_{1}^{N, M} \\ & \hline \end{aligned}$	$\begin{gathered} 5.6112 \mathrm{E}-2 \\ 0.4991 \\ \hline \end{gathered}$	$\begin{gathered} 3.9702 \mathrm{E}-2 \\ 0.6387 \\ \hline \end{gathered}$	$\begin{gathered} 2.5500 \mathrm{E}-2 \\ 0.7322 \\ \hline \end{gathered}$	$\begin{gathered} -350 \mathrm{E} ~ \& ~ \\ -\mathrm{n} .8269 \\ \hline \end{gathered}$	$8.6534 \mathrm{E}-3$

Table 4
Maximum errors and orders of convergens in Example 2 for u_{2} with improved boundary conditions

ε	$\begin{aligned} & \mathrm{N}=16 \\ & \mathrm{M}=8 \end{aligned}$	$\begin{aligned} & \mathrm{N}=32 \\ & \mathrm{M}=16 \end{aligned}$	$\mathrm{N}=64$ ${ }^{\top}=3$	$\begin{aligned} & \mathrm{N}=128 \\ & \mathrm{M}=64 \end{aligned}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 7.3169 \mathrm{E}-2 \\ 0.3935 \end{gathered}$	$\begin{gathered} 5.5703 \mathrm{E}-_ \\ 0.6377 \end{gathered}$	$\begin{gathered} 3.0 u \cup 3 \mathrm{E}-2 \\ \text { u. } 7864 \end{gathered}$	$\begin{gathered} 2.0759 \mathrm{E}-2 \\ 0.8759 \end{gathered}$	$1.1312 \mathrm{E}-2$
2^{-8}	$\begin{gathered} 7.3168 \mathrm{E}-2 \\ 0.3935 \end{gathered}$	$\begin{aligned} & 5 .\ulcorner\cdot 02 \mathrm{\leftarrow} \\ & \cap 6377 \end{aligned}$	$\begin{gathered} 3.5803 \mathrm{E}-2 \\ 0.7864 \end{gathered}$	$\begin{gathered} 2.0759 \mathrm{E}-2 \\ 0.8759 \end{gathered}$	$1.1311 \mathrm{E}-2$
2^{-10}	$\begin{gathered} 7.3374 \mathrm{E}-2 \\ 0.3927 \end{gathered}$	$\begin{gathered} 5.589 U_{\perp} \\ 0.633^{\circ} \end{gathered}$	$\begin{gathered} 3.6048 \mathrm{E}-2 \\ 0.7845 \end{gathered}$	$\begin{gathered} 2.0928 \mathrm{E}-2 \\ 0.8756 \end{gathered}$	$1.1406 \mathrm{E}-2$
2^{-12}	$\begin{gathered} 7.322 ¢ ~-2 \\ 0 . J 3 \end{gathered}$	$\begin{gathered} \overline{-7} 2 \mathrm{E}-2 \\ 0.6361 \end{gathered}$	$\begin{gathered} 3.5880 \mathrm{E}-2 \\ 0.7850 \end{gathered}$	$\begin{gathered} 2.0823 \mathrm{E}-2 \\ 0.8743 \end{gathered}$	$1.1359 \mathrm{E}-2$
\ldots			$\begin{gathered} \cdots \\ \ldots \end{gathered}$		\ldots
2^{-22}	$\begin{gathered} 7.0 .^{`} \mathrm{E}-2 \\ 0.3935 \end{gathered}$	$\begin{gathered} 5.5702 \mathrm{E}-2 \\ 0.6377 \end{gathered}$	$\begin{gathered} 3.5803 \mathrm{E}-2 \\ 0.7864 \end{gathered}$	$\begin{gathered} 2.0759 \mathrm{E}-2 \\ 0.8759 \end{gathered}$	$1.1311 \mathrm{E}-2$
$\begin{aligned} & d_{2}^{N}, \\ & q_{2}^{\sim v}, M \end{aligned}$	$\begin{gathered} 7.3 F \quad .9 \mathrm{E}-2 \\ u .3930 \end{gathered}$	$\begin{gathered} 5.6072 \mathrm{E}-2 \\ 0.6338 \end{gathered}$	$\begin{gathered} 3.6136 \mathrm{E}-2 \\ 0.7880 \end{gathered}$	$\begin{gathered} 2.0928 \mathrm{E}-2 \\ 0.8756 \end{gathered}$	$1.1406 \mathrm{E}-2$

and the rest • f $^{\text {da^ }}$ a are defined by

$$
\begin{aligned}
& \left.\mathbf{f}_{(} \cdot t\right)=\left(10 t^{2} \sin (x+y),-5\left(1-e^{-t}\right)\left(x^{2}+y^{2}\right),-4 t e^{t} \cos (x y)\right)^{T}, \\
& \left.\mathbf{g}-\dot{t}(x+y) \sin (t), x y t^{2}, 3 e^{x y}\left(1-e^{t}\right)\right)^{T}, \varphi=\mathbf{0} .
\end{aligned}
$$

To obtain numerical solutions, we have used the same ideas that in [5] for

ACCEPTED MANUSCRIPT

Table 5
Maximum errors and orders of convergence in Example 2 for u_{1} with standard boundary conditions

ε	$\begin{gathered} \mathrm{N}=16 \\ \mathrm{M}=8 \end{gathered}$	$\begin{aligned} & \mathrm{N}=32 \\ & \mathrm{M}=16 \end{aligned}$	$\begin{aligned} & \mathrm{N}=64 \\ & \mathrm{M}=32 \end{aligned}$	$\begin{aligned} & \mathrm{N}=128 \\ & \mathrm{M}=64 \end{aligned}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 5.7604 \mathrm{E}-2 \\ 0.1362 \end{gathered}$	$\begin{gathered} 5.2413 \mathrm{E}-2 \\ 0.4040 \end{gathered}$	$\begin{gathered} 3.9613 \mathrm{E}-2 \\ 0.6342 \end{gathered}$	$\begin{gathered} 2.5523 \mathrm{E}-2 \\ 0.7545 \end{gathered}$	$1.5129 \mathrm{E}-2$
2^{-8}	$\begin{gathered} 6.0507 \mathrm{E}-2 \\ 0.5278 \end{gathered}$	$\begin{gathered} 5.7951 \mathrm{E}-2 \\ 0.6586 \end{gathered}$	$\begin{gathered} 4.3880 \mathrm{E}-2 \\ 0.7497 \end{gathered}$	$\begin{gathered} 2.7898 \mathrm{E}-2 \\ 0.8444 \end{gathered}$	$1.597{ }^{\text {¢5.-2 }}$
2^{-10}	$\begin{gathered} 6.1712 \mathrm{E}-2 \\ 0.0476 \end{gathered}$	$\begin{gathered} 5.9708 \mathrm{E}-2 \\ 0.3946 \end{gathered}$	$\begin{gathered} 4.5419 \mathrm{E}-2 \\ 0.6510 \end{gathered}$	$\begin{gathered} 2.8924 \mathrm{E}-2 \\ 0.8083 \end{gathered}$	$1,517 \mathrm{~F}$
2^{-12}	$\begin{gathered} 6.2029 \mathrm{E}-2 \\ 0.0432 \end{gathered}$	$\begin{gathered} 6.0201 \mathrm{E}-2 \\ 0.3920 \end{gathered}$	$\begin{gathered} 4.5876 \mathrm{E}-2 \\ 0.6495 \end{gathered}$	$\begin{gathered} 2.9246 \mathrm{E}-2 \\ 0.8075 \end{gathered}$	$1.6711 \mathrm{E}-2$
\ldots	\cdots	\cdots	\cdots		
2^{-22}	$\begin{gathered} 6.2137 \mathrm{E}-2 \\ 0.0416 \end{gathered}$	$\begin{gathered} 6.0372 \mathrm{E}-2 \\ 0.3910 \end{gathered}$	$\begin{gathered} 4.6039 \mathrm{E}-2 \\ 0.6487 \end{gathered}$	$\begin{gathered} 2^{\wedge} 267 \mathrm{E}-2 \\ 0.80 \mathrm{\iota} \end{gathered}$	1.6787E-2
$\begin{aligned} & d_{1}^{N, M} \\ & q_{1}^{N, M} \\ & \hline \end{aligned}$	$\begin{gathered} 6.2137 \mathrm{E}-2 \\ 0.0416 \\ \hline \end{gathered}$	$\begin{gathered} 6.0372 \mathrm{E}-2 \\ 0.3910 \\ \hline \end{gathered}$	$\begin{gathered} 4.6039 \mathrm{E}-2 \\ 0.6487 \\ \hline \end{gathered}$	$\begin{gathered} -{ }^{n} 367 \mathrm{E} \\ \quad \text { 」 } \\ \hline \end{gathered}$	$1.6787 \mathrm{E}-2$

Table 6
Maximum errors and orders of convergen 'mample 2 for u_{2} with standard boundary conditions

ε	$\begin{gathered} \mathrm{N}=16 \\ \mathrm{M}=8 \end{gathered}$	$\begin{aligned} & \mathrm{N}=32 \\ & \mathrm{M}=16 \end{aligned}$	$\begin{aligned} & \text { 1. }-64 \\ & \text { N. }=32 \end{aligned}$	$\begin{aligned} & \mathrm{N}=128 \\ & \mathrm{M}=64 \end{aligned}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 7.2865 \mathrm{E}-2 \\ 0.3232 \end{gathered}$	$\begin{gathered} 5.8239 \mathrm{E}-2 \\ 0.0492 \end{gathered}$	$\begin{gathered} \text { - } 6286 \mathrm{E}-2 \\ 0.4059 \end{gathered}$	$\begin{gathered} 4.2482 \mathrm{E}-2 \\ 0.6540 \end{gathered}$	$2.6997 \mathrm{E}-2$
2^{-8}	$\begin{gathered} 7.4212 \mathrm{E}-2 \\ 0.2096 \end{gathered}$	$\begin{gathered} 6 \quad \pm 178 \mathrm{E}-亡 \\ \iota^{-} \quad 110 \end{gathered}$	$\begin{gathered} 6.2380 \mathrm{E}-2 \\ 0.4251 \end{gathered}$	$\begin{gathered} 4.6460 \mathrm{E}-2 \\ 0.6765 \end{gathered}$	$2.9069 \mathrm{E}-2$
2^{-10}	$\begin{gathered} 7.3945 \mathrm{E}-2 \\ 0.1623 \end{gathered}$	$\begin{gathered} \hline 6 . r 976 \mathrm{E}-2 \\ 0.0 \text { ? } 0 \end{gathered}$	$\begin{gathered} 6.4628 \mathrm{E}-2 \\ 0.4232 \end{gathered}$	$\begin{gathered} 4.8198 \mathrm{E}-2 \\ 0.6814 \end{gathered}$	$3.0055 \mathrm{E}-2$
2^{-12}	$\begin{gathered} 7.379 \mathrm{E}-2 \\ 0 . .476 \end{gathered}$	$\begin{gathered} 6.6 \cup 13 \mathrm{E}-2 \\ 0.0287 \end{gathered}$	$\begin{gathered} 6.5304 \mathrm{E}-2 \\ 0.4218 \end{gathered}$	$\begin{gathered} 4.8749 \mathrm{E}-2 \\ 0.6807 \end{gathered}$	$3.0412 \mathrm{E}-2$
\ldots		...			\ldots
2^{-22}	$\begin{gathered} 7 . 3 7 \longdiv { - 3 } - 2 \\ 0.1 / 24 \end{gathered}$	$\begin{gathered} 6.6800 \mathrm{E}-2 \\ 0.0273 \end{gathered}$	$\begin{gathered} 6.5547 \mathrm{E}-2 \\ 0.4210 \end{gathered}$	$\begin{gathered} 4.8956 \mathrm{E}-2 \\ 0.6802 \end{gathered}$	$3.0554 \mathrm{E}-2$
$\begin{aligned} & d^{N, M} \\ & q_{2}^{N, M} \end{aligned}$	$\begin{gathered} -4 . \overline{12 \mathrm{E}-2} \\ 0.1518 \end{gathered}$	$\begin{gathered} 6.6800 \mathrm{E}-2 \\ 0.0273 \end{gathered}$	$\begin{gathered} 6.5547 \mathrm{E}-2 \\ 0.4210 \end{gathered}$	$\begin{gathered} 4.8956 \mathrm{E}-2 \\ 0.6802 \end{gathered}$	$3.0554 \mathrm{E}-2$

splitting systems with more components. Figure 3 displays the numerical solution at $T=1$ for $\varepsilon=10^{-4}$. Again, we clearly see the regular boundary layers at tuc utflow of the spatial domain.

The ma imum errors and the numerical orders of convergence are calculated in the same way as for the first example and we use again the decomposition

Fig. 3. Components u_{1} (left top), u_{2} (right top) and u_{2} (bottom) at $T=1$ for $\varepsilon=10^{-4}$ with $N=M=32$

given in (34) for the right-hand side of the diticential equation. Tables 7,8 and 9 show the results for some values or $=f$ sr irst, second and third component respectively. These results corre and to the use of improved boundary conditions according to (23). From the n, we clearly observe the uniformly convergent behavior of the present nevianm which is almost first order and supports the theoretical results.

Table 7
Maximum errors and orders $r{ }^{\kappa}$ cont \sim, ence in Example 3 for u_{1}

ε	$\begin{aligned} & \mathrm{N}=16 \\ & \mathrm{M}= \end{aligned}$	$\begin{aligned} & \mathrm{N}=3^{\circ} \\ & \mathrm{M}=16 \end{aligned}$	$\begin{aligned} & \mathrm{N}=64 \\ & \mathrm{M}=32 \end{aligned}$	$\begin{aligned} & \mathrm{N}=128 \\ & \mathrm{M}=64 \end{aligned}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 4.58^{5} \\ 0.4907 \end{gathered}$	$\begin{gathered} 3.2635 \mathrm{E}-1 \\ 0.6254 \end{gathered}$	$\begin{gathered} 2.1155 \mathrm{E}-1 \\ 0.7025 \end{gathered}$	$\begin{gathered} 1.3000 \mathrm{E}-1 \\ 0.7690 \end{gathered}$	$7.6284 \mathrm{E}-2$
2^{-8}	$\begin{gathered} .584 \mathrm{E}-1 \\ o 16 \end{gathered}$	$\begin{gathered} 3.3291 \mathrm{E}-1 \\ 0.6099 \end{gathered}$	$\begin{gathered} \hline 2.1813 \mathrm{E}-1 \\ 0.6997 \end{gathered}$	$\begin{gathered} 1.3431 \mathrm{E}-1 \\ 0.7681 \end{gathered}$	7.8863E-2
2^{-15}	$\begin{gathered} 45655 \mathrm{t}-1 \\ 0.4,39 \end{gathered}$	$\begin{gathered} 3.3331 \mathrm{E}-1 \\ 0.6024 \end{gathered}$	$\begin{gathered} 2.1954 \mathrm{E}-1 \\ 0.6977 \end{gathered}$	$\begin{gathered} 1.3536 \mathrm{E}-1 \\ 0.7674 \end{gathered}$	$7.9518 \mathrm{E}-2$
2	$\begin{gathered} \text { 4. } .591 \mathrm{E}-1 \\ 0.4521 \end{gathered}$	$\begin{gathered} 3.3325 \mathrm{E}-1 \\ 0.6005 \end{gathered}$	$\begin{gathered} 2.1978 \mathrm{E}-1 \\ 0.6969 \end{gathered}$	$\begin{gathered} 1.3558 \mathrm{E}-1 \\ 0.7674 \end{gathered}$	$7.9649 \mathrm{E}-2$
		\cdots	\cdots	...	\ldots
2^{-2}	$\begin{gathered} 4.5567 \mathrm{E}-1 \\ 0.4516 \end{gathered}$	$\begin{gathered} 3.3321 \mathrm{E}-1 \\ 0.5999 \end{gathered}$	$\begin{gathered} 2.1985 \mathrm{E}-1 \\ 0.6967 \end{gathered}$	$\begin{gathered} 1.3565 \mathrm{E}-1 \\ 0.7675 \end{gathered}$	$7.9684 \mathrm{E}-2$
$\begin{aligned} & d_{1}^{N, M} \\ & q_{1}^{N, M} \end{aligned}$	$\begin{gathered} 4.5855 \mathrm{E}-1 \\ 0.4602 \\ \hline \end{gathered}$	$\begin{gathered} 3.3331 \mathrm{E}-1 \\ 0.6004 \\ \hline \end{gathered}$	$\begin{gathered} 2.1985 \mathrm{E}-1 \\ 0.6967 \\ \hline \end{gathered}$	$\begin{gathered} 1.3565 \mathrm{E}-1 \\ 0.7675 \\ \hline \end{gathered}$	$7.9684 \mathrm{E}-2$

ACCEPTED MANUSCRIPT

Table 8

Maximum errors and orders of convergence in Example 3 for u_{2}

	$\mathrm{N}=16$ $\mathrm{M}=8$	$\mathrm{N}=32$ $\mathrm{M}=16$	$\mathrm{N}=64$ $\mathrm{M}=32$	$\mathrm{N}=128$ $\mathrm{M}=64$	$\mathrm{N}=256$ $\mathrm{M}=128$
2^{-6}	$6.6804 \mathrm{E}-2$	$5.7987 \mathrm{E}-2$	$3.9483 \mathrm{E}-2$	$2.4603 \mathrm{E}-2$	$1.4735 \mathrm{E}-2$
	0.2042	0.5545	0.6824	0.7396	
2^{-8}	$6.8721 \mathrm{E}-2$	$5.8378 \mathrm{E}-2$	$4.0315 \mathrm{E}-2$	$2.5349 \mathrm{E}-2$	1.5299 E,
	0.2353	0.5341	0.6694	0.7285	
2^{-10}	$7.1566 \mathrm{E}-2$	$5.8489 \mathrm{E}-2$	$4.0574 \mathrm{E}-2$	$2.5602 \mathrm{E}-2$	$1.5497 \mathrm{E}-2$
	0.2911	0.5276	0.6643	0.7252	
2^{-12}	$7.2293 \mathrm{E}-2$	$5.8520 \mathrm{E}-2$	$4.0643 \mathrm{E}-2$	$2.5668 \mathrm{E}-2$	$1.5 \cup, \mathrm{E}-2$
	0.3049	0.5259	0.6630	0.7242	
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
2^{-22}	$7.2537 \mathrm{E}-2$	$5.8531 \mathrm{E}-2$	$4.0666 \mathrm{E}-2$	2.56	
	0.3095	0.5254	0.6626	7239	1
$q_{2}^{N, M}$	$7.2537 \mathrm{E}-2$	$5.8531 \mathrm{E}-2$	$4.0666 \mathrm{E}-2$	$2.5690 \mathrm{E}-$	$1.5554 \mathrm{E}-2$
$d_{2}^{N, M}$	0.3095	0.5254	0.6626	~ 7239	

Table 9
Maximum errors and orders of convergence in \mathbf{L}. \rightarrow mple 3 for u_{3}

ε	$\begin{aligned} & \mathrm{N}=16 \\ & \mathrm{M}=8 \end{aligned}$	$\begin{aligned} & \mathrm{N}=32 \\ & \mathrm{M}=16 \end{aligned}$	$M=$	$\begin{aligned} & \mathrm{N}=128 \\ & \mathrm{M}=64 \end{aligned}$	$\begin{aligned} & \mathrm{N}=256 \\ & \mathrm{M}=128 \end{aligned}$
2^{-6}	$\begin{gathered} 5.6305 \mathrm{E}-1 \\ 0.6271 \end{gathered}$	$\begin{gathered} 3.6455 \mathrm{E}-1 \\ 0.6547 \end{gathered}$	$\begin{aligned} & .3 \cdot-7 \mathrm{E}-1 \\ & 0.188 \end{aligned}$	$\begin{gathered} 1.4070 \mathrm{E}-1 \\ 0.7718 \end{gathered}$	$8.2408 \mathrm{E}-2$
2^{-8}	$\begin{gathered} 5.7665 \mathrm{E}-1 \\ 0.6251 \end{gathered}$	$\begin{gathered} 3.7388 \mathrm{E}-1 \\ 0.6594 \end{gathered}$	$\begin{aligned} & 3671 \mathrm{E}-1 \\ & 0.7278 \end{aligned}$	$\begin{gathered} 1.4293 \mathrm{E}-1 \\ 0.7857 \end{gathered}$	8.2910E-2
2^{-10}	$\begin{gathered} 5.7988 \mathrm{E}-1 \\ 0.6243 \end{gathered}$	$\begin{gathered} 3 \\ \text { u. } 619 \mathrm{E}-1 \\ \text { u } 10 \end{gathered}$	$\begin{gathered} 2.3792 \mathrm{E}-1 \\ 0.7298 \end{gathered}$	$\begin{gathered} 1.4346 \mathrm{E}-1 \\ 0.7915 \end{gathered}$	8.2884E-2
2^{-12}	$\begin{gathered} 5.8067 \mathrm{E}-1 \\ 0.6241 \end{gathered}$	$\begin{gathered} 3.575 \mathrm{E}-1 \\ 0.6 \mathrm{f} .3 \end{gathered}$	$\begin{gathered} 2.3821 \mathrm{E}-1 \\ 0.7304 \end{gathered}$	$\begin{gathered} 1.4358 \mathrm{E}-1 \\ 0.7586 \end{gathered}$	8.4866E-2
...			\cdots		\ldots
2^{-22}	$\begin{gathered} 5 \text { ou: } \mathrm{E}-1 \\ \text { O.f } 41 \end{gathered}$	$\begin{gathered} 3.7693 \mathrm{E}-1 \\ 0.6615 \end{gathered}$	$\begin{gathered} 2.3831 \mathrm{E}-1 \\ 0.7305 \end{gathered}$	$\begin{gathered} 1.4362 \mathrm{E}-1 \\ 0.7411 \end{gathered}$	$8.5928 \mathrm{E}-2$
$\begin{aligned} & q_{3}^{N, M} \\ & d_{3}^{N} \end{aligned}$	$\begin{gathered} 5.809 \mathrm{c}^{\square} \cdot 1 \\ 0.6 \end{gathered}$	$\begin{gathered} 3.7693 \mathrm{E}-1 \\ 0.6615 \end{gathered}$	$\begin{gathered} 2.3831 \mathrm{E}-1 \\ 0.7305 \end{gathered}$	$\begin{gathered} 1.4362 \mathrm{E}-1 \\ 0.7411 \end{gathered}$	$8.5928 \mathrm{E}-2$

6 Conclu ions

A nume ical al_{ξ} orithm is proposed, analyzed and tested for solving two dimensional para.....c singularly perturbed weakly coupled systems of convectiondiffus on sype. Such method combines the standard upwind scheme on an appropı . te spatial mesh and the fractional implicit Euler method, combined with a suitable splitting by directions and components of the spatial difference

ACCEPTED MANUSCRIPT

operator. We prove that this method is uniformly convergent of first order in time and of almost first order in space. The chosen splitting technique means that only tridiagonal systems must be solved; therefore, the computational cost of the fully discrete algorithm is low in comparison with mor classical implicit methods. Moreover, the order reduction of the method, relatea n the standard discretization of time dependent boundary data, can be en ded in an easy way. Some numerical experiments are performed which $\mathrm{s} \cdot{ }^{\circ} \mathrm{w}$ the main qualities of the algorithm.

Acknowledgements

This research was partially supported by the proje it $1 \times$. $12014-52859-\mathrm{P}$ and by the Aragón Government and European Social Fund (r, oup E24-17R).

References

[1] S. Bellew, E. O'Riordan, A parameter . vk ist numerical method for a system of two singularly convection-diffusio `qua 'ons, Appl. Numer. Math. 51 (2004) 171-186.
[2] C. Clavero, J.L. Gracia, Uniformi, convergent additive schemes for 2D singularly perturbed parabolir systems of reaction-diffusion type, Numer. Algorithms, doi.org/10.1007 s110، -018-0518-y.
[3] C. Clavero, J.L. Graci , J.C. orge, A uniformly convergent alternating direction HODIE finit dif ser se scheme for 2D time dependent convectiondiffusion problems, If iA J. Nomer. Anal. 26 (2006) 155-172.
[4] C. Clavero, J.C. Jorge, Tniform convergence and order reduction of the fractional implic*: E ler method to solve singularly perturbed 2D reactiondiffusion probleı.- tppl. Math. Comp. 287-88 (2016) 12-27.
[5] C. Clavero, .C. Jorse, Solving efficiently one dimensional parabolic singularly perturbed reav in diffusion systems: a splitting by components, Appl. Math. Comp. 2‘,7-88 (2016) 12-27.
[6] C. Clavoro, ${ }^{\text {r }}$. Jorge, A multi-splitting method for two dimensional parabolic sing larly f ${ }^{2}$ rturbed systems of reaction-diffusion type, J. Comp. Appl. Math $344, ~ 918)-14$.
[7] C. Cl vero, J.C. Jorge, F. Lisbona, G.I. Shishkin, A fractional step method on a sp -ial mesh for the resolution of multidimensional evolutionary convectiondiffusion problems, Appl. Numer. Math. 27 (3) (1998) 211-231.
[8] A. Das, S. Natesan, Higher-order convergence with fractional-step method for singularly perturbed 2D parabolic convectiondiffusion problems on Shishkin mesh, Comp. Math. Appl. 75 (2018) 2387-2403.
[9] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O'Riordan, G.I. Shishl _. Robust Computational Techniques for Boundary Layers, Applied Mathematics, 16. Chapman and Hall/CRC, (2000).
[10] R.B. Kellogg, T. Linss, M. Stynes, A finite difference method n lay "-adapted meshes for an elliptic reaction-diffusion system in two r:mens: ns, Math. Comput. 774 (2008) 2085-2096.
[11] R.B. Kellogg, N. Madden, M. Stynes, A parameter ror st nu. erical method for a system of reaction-diffusion equations in two dim $\operatorname{nsions,~Numer.~Methods~}$ Partial Differential Equations 24 (2007) 312-334.
[12] O.A. Ladyzhenskaya, V.A. Solonnikov, and N N. Ur ltseva, Linear and Quasilinear Equations of Parabolic Type, Tunslatir as of Mathematical Monographs, 23, American Mathematical Society, r. vidence, R.I. (1967).
[13] T. Linss, Analysis of an upwind finite-differt re sc. . . . singularly perturbed convection-diffusion equatı. \&, Computing 79 (2007) 2332.
[14] T. Linss, Analysis of a system of sin, ${ }^{\text {ul }}$, 11 y perturbed convection-diffusion equations with strong coupling, SI^M J. Numer. Anal. 47 (3) (2009) 18471862.
[15] T. Linss, M. Stynes, Numerical s littuon of systems of singularly perturbed differential equations, Comput. Methous Appl. Math. 9 (2009) 165-191.
[16] R. M. Priyadharshini, N Rama ujam, A. Tamilsevan, Hybrid difference schemes for a system of sing. ${ }^{1} \mathrm{ar}^{1} \&$ perturbed convection-diffusion equations, J. Appl. Math. \& Inforr «ati s 27 (2009) 1001-1015.
[17] M.H. Protter, H.F.W inbe ${ }_{\llcorner }{ }^{\wedge}$, Maximum Principle in Differential Equations, Prentice-Hall, Englr wu \downarrow Cliffs, NJ (1967).
[18] H.G. Roos, C. Re oig r, Analysis of a strongly coupled system of two convectiondiffusion equatic. \& r th full layer interaction, Z. Angew. Math. Mech. 91 (2011) 537-543.
[19] H.G. Roos, ${ }^{\top}$. stynes, L. Tobiska, Robust numerical methods for singularl perturbed differential equations, Springer Series in Computational Mathem tics, B rlin (2008).
[20] G.I. shish ${ }^{1}$ in, Approximation of systems of singularly perturbed elliptic reacion-difl ision equations with two parameters, Comput. Math. Math. Phys. 47 (20し.', 197-828.

