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Abstract

In this paper we deal with solving efficier..'v 2D linear parabolic singularly perturbed
systems of convection-diffusion type. We analyze only the case of a system of two
equations where both of them f ature *he same diffusion parameter. Nevertheless,
the method is easily extended . systrms with an arbitrary number of equations
which have the same diffusior coeffic.cat. The fully discrete numerical method com-
bines the upwind finite diff ren e sc.ieme, to discretize in space, and the fractional
implicit Euler method, tc gethe. v ith a splitting by directions and components of
the reaction-convection- 1., *sion operator, to discretize in time. Then, if the spatial
discretization is defined on an appropriate piecewise uniform Shishkin type mesh,
the method is unifor aly onvergent and it is first order in time and almost first or-
der in space. The use . a fractional step method in combination with the splitting
technique to disc’ ctiz> in vime, means that only tridiagonal linear systems must be
solved at each ti. -2 "evel of the discretization. Moreover, we study the order reduc-
tion phenomer _ 1 assc “iated with the time dependent boundary conditions and we
provide a sin ple wa, - of avoiding it. Some numerical results, which corroborate the
theoretical es, blist :d properties of the method, are shown.

Key 1mords:  parabolic systems, fractional implicit Euler, splitting by components,
upwind scaeme, Shishkin meshes, uniform convergence, order reduction
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1 Introduction

In this work we consider two dimensional time dependent singularly r erturbed
convection-diffusion systems of type

L.(thu= ?tl(x, t) + Lx(Du(x, t) = f(x,1), (x,) € Q=Q ¥ (7,77, )
u(x,t) = g(x,t), (x,t) € 0, x[0,T], u(x,0) = p(x), X €\,

where u = (uy,us)?, x = (z,y),2 = (0,1)? and the spatia. i ferential opera-
tor Lx.(t) is defined as

Ly.(tH)u=—DAu+ Bx(x)aamu + By(x)fg 1+ .0X, t)u, (2)

with D = diag(e, ¢), B, (x) = diag(by 11(X), by 22(x,) By, = diag(by 11(x), by 22(x))
and A(x,t) = (ar-(x,1)), k,r=1,2.

We assume that 0 < e < 1 and it can be very su.~ll; moreover, the coefficients
of the convection matrices satisfy b, x(x) - p >0, k =1,2,2 = z,y, and
the reaction matrix A is an M-matrix, i.e., it n.lds

2
a >0, k=1,2, ap, <0 F k#rV(x,1t) € Q.

r=1

In order to assure that the exact solution u € C*2(Q), we suppose that the
data f(x,t) = (f1, f2)7, g(x,1, = (4 ,92)7, p(X) = (p1,¢2)T, the convection
matrices B,, z = x,y and the . actic a matrix A, are composed by sufficiently
smooth functions which, "esiles, satisfy sufficient compatibility conditions
among them (see [12] for . 1 tai’:d discussion.

The construction and analsis of efficient numerical schemes to solve coupled
systems of singularly- . ~rturbed problems has received great interest in the re-
cent years. For inst «mcr, the case of systems of 1D convection-diffusion elliptic
problems is consi lerea ‘n [1,13,14,16], where a coupling in the reaction terms
is considered fo' prs plems with equal or different diffusion parameters at each
equation of the sy. =ur. In [18], a case of coupling in the convective terms, with
equal diffusion pa. ameters was analyzed. For 2D problems, diffusion-reaction
systems wer. studi:d in [2,6,10,11] for the case of equal diffusion parameters
or in [20" .ur the case of different diffusion parameters. In [15], an elliptic 2D
system f conv ction-diffusion type was considered. Nevertheless, up to our
knowledge, “'.¢ parabolic coupled systems of convection-diffusion problems in
2D he= nv ween considered before. In this context, the suitable choice of the
numeric. | time integration is the key for obtaining an efficient numerical al-
gorithm. 1t is well known that the use of explicit methods is not suitable due




to the strong stiffness of the differential systems involved. On the other hand,
classical implicit schemes are not optimal due to the computational cost in-
volved in the advance in time, because the resolution of large and complicated
linear systems must be faced. In [7,8], an alternating direction me hod was
successfully studied and implemented for time dependent convectic n-di.~rsion
problems. In such case, only tridiagonal linear systems must e solved to
advance in time, resulting that the implicit method was uncon. ‘tic aally con-
vergent and it has a very low computational cost per time st > o1 “he same
computational complexity of any explicit method. If the sar.. tech. ique were
adapted to the systems considered in this paper, the com »uts cio..al cost per
time step is not optimal, specially in the case of considerine n.. nv equations in
the system, because banded linear systems (with a bar dwidt. which depends
on the number of components) should be solved. To av~id th s drawback, we
consider here a multi-splitting technique, both in airections and in compo-
nents, in order to get that simple sets of tridiagoi.~! ane r systems must be
solved to advance in time. In this way, we prese. = ti.. main feature of the
algorithm proposed in [7] for scalar convectior-diffusic n problems.

The paper is organized as follows. In section 2, wve describe the asymptotic
behavior of the exact solution of the conti. *ous problem, giving appropriate
bounds for its derivatives which will be msed lacer on to obtain the uniform
convergence of the numerical method. In Se :tion 3, we define the spatial dis-
cretization on a piecewise uniform m " ot Shishkin type and we prove that
the scheme is an almost first order uni,~ru.ly convergent method. In section
4, we define the time discretizatio.. vaocd on the fractional implicit Euler
method (see [4]) and a splitting by con.ponents and we prove that it is first
order uniformly convergent. A, wc'l. we provide a simple technique to elude
the order reduction related w.*h the tandard choice for the evaluations of the
boundary data. In Section ', we s. »w the numerical results obtained for sev-
eral test problems, which -or obc ate in practice the efficiency and the order
of uniform convergence ,f the ~».merical algorithm. Finally, in Section 6 some
concluding remarks ar: g en.

Henceforth, we derote by ||f||p = max{||fillp, ||f2|llp}, where || - ||p is the
maximum norm on . * domain D, by |v| = (Jv1], |v2|)¥, v > w (analogously
v < w) means 5; > w; tor all 7. Finally, C = (C,C)?, where C is a generic
positive constan. vhica is independent of the diffusion parameter ¢ and the

discretizatio’. paramecters N and M.

2 Asyaptot ic behavior of the exact solution

In this s ction we give appropriate estimates for the derivatives of the solution
u of problem (1); from them, we deduce the existence of regular boundary




layer of width O(e) at the outflow boundary defined by I'y U T, where T'; =
{Ly), 0<y <1}, Iy ={(x,1), 0 <z < 1}

We introduce the scalar uncoupled differential operators

Ly cv(X, 1) = 0(X, 1) = (Vg (X, 1) 0y (X, 1) )b ooV (X, ) +0y o, (X, 0, Fagrv(X, 1),

for k = 1,2, which satisfy a maximum principle (see [17]) Fol.owing [19], the
next uniform boundedness result can be proved.

Lemma 1. Let w € C(Q) N C*(Q) be such that Ly =1 m Q, k = 1,2,
w =g on 02 x[0,T] and w(x,0) = ¢ on Q. Then, it h.'ds

lwllg < 2 [1¥llg + lgllaaxiory + NI~ (3)

=

Following a similar reasoning to the used one » [5] the following inverse
positivity property is deduced for problem (.
Lemma 2. Let v € (C(Q)NC*Q))* b ..-* that L:v >0 on Q and v > 0
on 90 x [0, T]UQ x {0}. Then, v > 0 on. 7).

Using this result joint to the barrier funcion technique, it can be proved that

| o1

1
lullg < 2" + lIglloaxir + [lella- (4)
g

Now, using the idea of e.ter.ded domains (see [7] for more details), we de-
compose the solution o (1) as « = v + w; + Wy + z;, where v is the regular
component, w;,7 = 1, 2 ai. the boundary layer functions and z; is the corner
layer function associ ... 1 with the corner (1,1).

The regular comr onen, ~an be described as the restriction on @ of the solution
of

ov* 0 0
r 4 _ 7 * * ¥ * _ ~r¥ * * —
ey (i, t) — DAV + Bx(x)&cv + By(x)ayv + A*(x,t)v

f*(x,t), (x,t) € Q* =Q* x (0,7,
Vir ) =0, (x,1) € 997, x[0,T], v'(x,0) = ¢ (x), x €,

*

where (. is an extension of ) with smooth boundary and B, By, A" 1, p”
are suitable smooth extensions (up to Q*) of By, By, A, f, ¢ respectively. On




the other hand, w; (similarly ws) is the restriction on @ of the solution of

kk
ow;

ot

(x,t) € Q™ = Q" x (0,7,
Wit (X, t) = -V’ (X7 t)? <X7 t) € 00", x [07 T]?
wi*(x,t) =0, (x,t) € 0", x[0,T],

wit(x,0) =0, x € Q**,

w + A'(x, t)w =0

where ** C Q* is a small extension of (2, only around t'.c corne. (1,1), whose
boundary 9€;* is smooth near it and it contains the s gment {(1,9)|0 <y <
1+ 0}, for a sufficiently small 6 > 0; we denote 09 = 27 *\0Q7*. Finally,
the corner layer function is the solution of

0 9, 0
Gy 060) = DAm + Bu(x) om + By(x) 5z + Al o =0, (1) € Q.

z1(x,t) = u(x,t) — (v(x,t) + wi(x,t) + wal. 1)), (x,t) € 02 x [0,T],
z1(x,0) =0, x € Q.

Then, following a similar process to the ¢.>¢ which was used in [7], we obtain
the following estimates for the derivac v < 0. these components:

HFtko _
mv(xi) <C (xt)eq, (5)
W?ak;jatkn)wl(x’t’,“” I e (©)
e O L @
mraﬁ) <Cefminfe e T () €Q (8)

with 0 < k+ 2k, < L and k = k; + ko.

3 The spctial ciscretization

In this se.**~. we propose a spatial semidiscretization of problem (1). To
do tht, .. ase the classical upwind scheme defined on a piecewise uniform

rectang. 'ar mesh Q" = Tiv X 75, being Tivjév 1D meshes of Shishkin type.

From the results of the previous section we know that the exact solution of




the continuous problem has a regular boundary layer at the outflow boundary
[’y UT'y; therefore, for the variable z (and similarly for the variable y) the grid
points of Tiv ={0=1x <z <...<axy = 1} are defined as follows (see [3]).
Let N be a positive even number and define the transition paramet »r

o =min{l/2,00cIn N}, 9)

with og a constant to be fixed later. Then, the grid points arc oive. by

iH, i=0,...,N/2,
xTr; =
rnj2+ (i — NJ2)h, i = N/2+1, .., N,

where i = 20/N, H =2(1—0)/N. Wedenote by h,; =2, ~_;,i=1,...,N,
and hx,i = (hxﬂ -+ hm,i+1)/27 1= 1, Ce ,N — 1.

Let us denote by QV the subgrid of o composed o. 'v by the interior points
of it, i.e., by Q" NQ, 9N = ﬁN\QN, by [v]oy ‘anal jgously [v]on for scalar
functions) the restriction operators, applied to 7ector functions defined in €2,
to the mesh 2V, and by [v]so~ (analogou ™, [o]yg~ for scalar functions) the
restriction operators, applied to vector functic s defined on 92, to the mesh
OON. For all (z;,y;) € QV, we introa.ce ... semidiscretization UN(t) =
Ufg(t), i,j =1,...N — 1, with Ufg”\ ~ a(x;,y;,t), as the solution of the
following Initial Value Problem

N
T+ L5001 = e Do, 0 0V % [0,7],
TV (t) = [g(x, ) on, 1 OOV x [0, 7], (10)

UY(0) = [p(x

where T (t) is the nat xal exv asion to 0" x [0, 77 of the semidiscrete func-
tions UY(t), defined m 1.V x [0,7T], by adding the corresponding boundary
data. As well, LY (#, .- the discretization of the operator Ly .(t) using the
upwind scheme. i.e

. =N
(ﬁév(t J " )ijp = Cz’j,l,kUiIle,k + Cij,r,kUz‘]JVrlj,k + Cij,d7kUz']g\‘]—1,k+ (11)

Cijr kUD i+ CijerUn g+ at (UL + a()UY 5, k=1,2,

j71
with

), . —€ bx,kk<xi7yj> c . —€
Lk = - = yCigrk — 5 7

h:p,ihx,i hx,i hx,iJrlhx,i

€ by,kk(xia yj) . —€ (12)
1],a, h h . h . ) ~1],U, h . h '7
v,.3"'%.7 YsJ y,J+11%y,j

Cijek = —(Cijik + Cijrk + Cijak + Cijuk),




where we denote ay,(t) = ag.(z;,yj,t), k,r=1,2fordi,j=1,...N —1.

The uniform well-posedness of (10) is a consequence of the following semidis-
crete maximum principle (see [6]).

Theorem 1. Under the assumption [f(x,t)|on, < 0, it holds that (ol (t) . ~aches
its maximum componentwise value at the boundary 0NN x [0, 715N x {0}.

The proof of this result is similar to the proof of the semidis. vete .~aximum
principle stated in [5]. From Theorem 1, the next result foll- -s.

Theorem 2. If [f(x,t)]ov > 0, [g(X,1)]gor > 0 and [1o(x*,on > 0, then
T(#) >o.

Using now a well known barrier-function technique, see '3,19] “or instance, the
following result can be proved.

Theorem 3. (Uniform stability for (10)). The w7 ue olution of problem
(10) satisfies the uniform bound

N
1T 1), 0z <

max{||[p(x)]av|[|,v, |8, 1)]aan laon .17, éll [£(x, t)]av[[ov <017}

The last result in this section proves e u. iform convergence of the spatial
discretization.

Theorem 4. Under the previous .mouvu.ness assumptions for u, the error
associated with the spatial discretization on the Shishkin mesh satisfies

1T () — [u(x, Vvl v < CN"'In N, t € [0, 7], (13)

where C' is independent o, £ rnd V, and therefore the spatial discretization is
an almost first order ur forn.. ' onvergent scheme.

Proof. To analyze *ae 1miform convergence of the spatial discretization, we
decompose the sen.. 'ic crete solution in the form

UVt =V () + i W () +Z ™ (1), (14)

where these y-id f-nctions are the solution of the semidiscrete problems

rd\N

s dt—(t)+£év(t)VN(t) = [L.(t)V]or, in QN x [0,T],
1 V(1) = [v(x,t)]san, in 9OV x [0,T],

VH(0) = [v(x,0)]qv,




W 0) + L2 0W (0) = O], in Y x [0.7]

W () = [wi(x, D)ooy, in 90N x [0, 7],
[Wi(xa O)]QN

z
2

e
I

for i = 1,2 and

dZy¥ N N
S0+ LXWZ (1) = [Olax, in QY x [0,7],

Z, (t) = [z1(x,t)]gqv,in 0N x [0,T],
Z7(0) = [z1(x,0)]ov

On the grid QY for any ¢ € (0, T}, the vector of trup~ati.~ ~.rors 7% (¢)(u) =
(" (t), 75" (£))", is given by

(54 Lactux, Dl — (o fulx, D)o + £ (1) ulx, D).

(1) (w) =

For the regular component, at the grid pc. v (4, y;),4,7 = 1,...,N — 1, the
truncation error satisfies

Y ()] < 1D (Av(@,y5,t) = (48, Vi@ ys, )|

0 _ ~ 0 _
+C|%V(xi,yj,t) — D v(z,y; D+ 7 a—yv(a:i,yj,t) — D, v(zi,y;,1)],

where 67 and ¢ are the discre*=ation on a nonuniform mesh of the second
derivatives respect to x and y «nd D~ and D, are the backward discretization
on a nonuniform mesh of th2 fu.* o der derivatives respect to x and y.

We analyze the first comp. - ent of local error in detail; the same reasoning
applies directly to the <econd component. From Taylor expansion, it easily

follows that
3 .
on hds+ [ (12
Ti—1

el Cy M PNt

)+ 15 e s).
Then, from the e. 1mses (5) it holds

TN ()(v)| < CN
Then, t] e sem liscrete comparison principle allows to establish that

(VY = v)(zi,y;,1)] < CN7. (15)

Next, we analyze the error associated with the boundary layer functions w;, 7 =



1,2. We give some details only for wy, and in a similar way the other one can
be obtained. The analysis depends on the location of grid point x;.

First, we assume that 0 < z; < 1 — 0. We define the barrier func’ion ¥ =
(U, ¥)T with ¥ = S, ;(3), where

N -1
1 hxz 7' N7
S,i(8) = SZZHH( Fhaple) L i# N,

1,i=N,

Then, using the barrier function ¥, and taking into accernt t..~ estimates (6)
and using that S, ;(8) < CN~! for 0 <z; <1—0,ve have

(WY = wi)(zi,y;,1)| SC N (16)

For the grid points (z;,y;) € (1 —o,1) x (0,1), w.ng th- bounds (6), we find
that the local error satisfies

7Y () (wi)| < Ce "h
and taking into account that h < C eN~'In.  we obtain
|(W{V —wi)(zi,ui,t), - CN'In N. (17)

Finally, we analyze the error associatea wich the corner layer function z;. If
0<z,<1-00<y<l-0, vviry<l-0gl-0c<y <lor
l—0<2;<1,0<y; <1-—o0, using that z; decays exponentially from y =1
and the definition of the transi ion point o, proceeding in the same way as for
the analysis of wy, it follows

(7" 20 (2,5, t)] < CNTL (18)

At last, for the grid puints (*:,y;) € (1 —0,1) x (1 — 0, 1), the error estimates
are deduced using a cla sical truncation error analysis (see [9,19]) and making
use that the mesh . fi ie in both spatial directions; in this case, it holds

(7% — z1)(25,y;,t)| < CN'In N. (19)

From (15)-("9), tke required result follows. O

4 The fully liscrete scheme: uniform convergence

The sec nd step to find the fully discrete method, consists in to apply an
appropriate time integrator to the semidiscrete problems (10). To simplify the




notations, we introduce the difference operators

551 (t)UN = —e0p, 0" + bw,llaxUN + %,11(75)UN

Ci\fl(t)vN = —20,,v" + b, 110,0" + a, 11 (t)v", 20)
552(01” = 0,0 + bz,223xUN + ax,zz(t)UNa \
E;XQ(t)vN = —88yyvN + by,ggﬁyvN + ay,gg(t)vN,

being 0., and d,, the classical second order central differe 'ces, and 9,, 0, the
forward approximation of first derivatives, on the corresmonu »g one dimen-
sional Shishkin meshes, with a, ki(x, v, t) + aypr(z,y,t = apr 'z, y,t),k = 1,2
We will choose that a, yr(z,y,t) > 0, k = 1,2,z = - u. nalogously, we
decompose the non diagonal coefficients of the re «ctic™ matrix in the form
Ay jor (2,9, 1) + aypr(z,9,t) = ape(x,y,t), k,r = o 2k £ r, choosing that

s pr(2,y,t) <0, kyr=1,2,k #r, z=ux,y, and i as (x,y,t) > a,>0,k=

1,2,z = 2,y (op + oy = ). Notation a, g, (}2" A“‘Jt be understood as fol-
lows: (a, g ()0 )iy = az g (21,95, t)viy; as well. wo decompose the right-hand
side f(x,t) = (f1, f2)7, in the form £, + £, = ‘o1, fo2)T + (fy1, fy2)®

Then, the fully discrete scheme is given b -

0) (initialize) UM = [g]on,

(first half step)

Nm+1/2 N,m+1/2 n4+l1 2  ~Nm+1/2 .
U2 — ghmi2 gy - g =0,...,N,

(second half step)

UNm+]. Gl ~ 1 J-Nm+1 GNm+1 i:O,...,N,
m=0,...,M —1,

(21)
where 7 = T'/1" is the time step, t,,, = m7,m = 0, ..., M are the intermediate
times wh re th2 semidiscrete solution U(t,,) is approximated as UN™ QN =
INx o N =T <IN,

Fm+1 [fon(x, tm—i-l)]QN k=12z=uw.y, (22)

10

DI+ 7LY (tme)YU ™ = U™ 4 7 FI = Ty 10(tnan) U™, in QF,
2)(I + 7L (tmy1)) U™ 12 = 03" 4 TS — Ty o1 (b ) UL ™2, i O,

3) ([ + chy\jz(tm_; ‘))lrzv’m—i_l = U2N’m+1/2 + Fm+1 — TAy21 (tm+1)UN7m+1/2, in QN

Yy

I+ TLY (VO ™ = Ut E a1 () U™ in QN



and the discrete boundary data are given by

Go " = (T4 7L (b)) [92 (0, s )], = 7L (0,9t
[7ay,12(0, Y, tin11)92(0, Y, trns1)] 1,
(I + 7L (tms1))[92(0, 9, L))z, — T fy 0, 1 tmsn)]r, +
[Tay,21(0,y, tmi1)g1(0, y, m+1)]1>
GN™ 2 = (14 7Ly ()91 (L, )]s, = T (L ), +
[Tay,12(1, Y, tint1)92(1, s tinia) 1,
(I + 7L (tm)) 921,y timsn) 7, = T 52(L, Y, i), +

frayon (L4, i) (L4 b))

Gévvm+1 - [g(x’ 07 tm+1>]lx and G%’erl = [g(x’ ]" tn“ ! 1)][@:

(23)

Note that in the half steps of (21), only triciago..~’ linear systems must be
solved to obtain UM*. Therefore, the computatic. al cost of our algorithm is
similar to the cost of any one step explicit 1. ~thod; for the same reason, the
method has a computational cost consid .. "'v smaller than the one of implicit
classical schemes.

With respect to the proposed boundary daca, we wish remark that our pro-
posal provides solutions that are mo. ~ accurate than those ones obtained with
the simpler and, arguably, more obvious formulation

N,m m
eh “”z[g(o,y,u,, Dl GV = (g (L y )],

N,m+1
GN

= [g(x,", t, 11)!:, and = [g(z, 1, tmi)]r,-

which provokes a red' *ion in the order of consistency. This reduction in
the order of consistency ma!-es difficult to complete the analysis of uniform
convergence of this :ho ce.

Let us study no v the a,proximation properties of our proposal. Firstly, we
state an invers pr siti- ity result for our fully discrete scheme, which is the
discrete analc=1e 0. 7 heorem 2 of the previous section.

Theorem ! . If a.' of the data (G,F1,Fq,[ploy in (21), have non-negative
components, ‘hen he solutions UN™ of (21) have non-negative components.

The pro °f of tlis result uses an induction principle on the fractional steps of
(21) which ., similar to the used one in [4].

To comy 'ete the analysis of the uniform convergence of our algorithm, now we
rewrite it in such a way that the fractional implicit Euler method is clearly

11




involved:

initialize) UMY =[]~
( ) Pl
(I + TLé\,[k(tm+1))UN7m+k/4 — UN,m+(k71)/4 + 7_Ferk/4’ in (‘5\/,
UNmtk/4 GN,m+lc/4, in 8Q{€V, (25)
k=1,2,3,4,

m=0,...,M—1,

where QY = Q) = QF, O = Q) =QJ, and

N | LY (tmg) azaa(tmr) N V- ( 1 0
Ls,l(tm+1) = ) Ls,?(thrl/ - N )
0 I \ @ 21(tms1) Lo (tmr1)
1 0 LY (tms1) ayaa(tmer)
L (tmi1) = v s LYy () = v ! ;
ay,21(tm+1) Ey,z(tm—l—l) 0 I
el 0 3 0 Ftl
Frtl/d = x,1 ’Fm+2/4 = ' T m+3/4 — : Frtl = y,1
0 :?712 * ) F?TQ—H 0

GNmH/2 GNmHL are given in (20, QN /4 = (G2 [Uév’m]miv)T and
GN:m+3/4 = ([UlN’mH/Q]mév, Gév’mH)T, veing NN = 905 = {0,1} x I, and
o0 =00l =1, x {0,1}.

Using this rewriting, comb’ied wi.". the previous inverse positivity result, we
are ready to state the ur for n sability and the uniform consistency of our
time integration process.

Corollary 1. (Contr .cu. ity of the time integrator). If G = 0,F; = 0 and
Fy, =0, it holds

U™ gy < UM oy, m=0,1,..., M~ 1. (26)

The proof of .uis res. It requires the use of the barrier function technique in a
similar way 1s in [« ].

To analr ze the uniform consistency, we introduce the local errors in time, as

usual:

eNm+l — UN(th) . ﬁN,erl’

~

where U is the result which is obtained with the step m of scheme (25)
if we change UN™ by T ().

Nym+1

12




Theorem 6. (Uniform consistency of the time integrator). Assuming that
u e C*2(Q), it holds

le¥ ™ g, SCM™2, V7 € (0,7 andVm=0,1,...,M—". (27)

Proof. We make use of the following Taylor expansion for U ., ), i,j =

1...N—1
N

du
Ug(tm) = Ug(tmﬂ) - TWJ(th) + O(72).
8

-
As Uy is the solution of (10), we can substitute the term - %(tmﬂ) by

4
Z m+1 N<tm+1) - Fm+k/4)ia
k=1
to deduce
4 N 4 k-
TLU+7 L2 tn2) O () = Y H T L2 (t)JF™ 4 40(72),
k=1 k=1 -1

in Q~. On the other hand, for the values o1 "™ (tn,11) at the boundaries QF,

it is obvious that UN(th) = G™ 1 in (1., -~ well, the remaining boundary
data given by (23) have been chosen in su.’« a way that

4

II (+7L8(tns))0
k=4-1+1

N(th,' I) - am+1 l/4 111 894 l’ l— ]_ 2 3

Therefore, UN(th) can be escrit »d as the solution of

UN,m _ UN(tm) 4 0(7 ‘>7

(I+7‘L5k( m+1))TJNm i gNmtk-1/4 +rFEmHEA iy QN )

UNm+k/4 — GQN:mtk/s 2 9ON ( 8)
- 9 k>

k=1,23,4.

Subtracting this s her e and the corresponding one which defines ﬁﬁ“, it is
immediate tiat e’ is the solution of a problem of the form

e =0(r?),

f \] + TLgk(tm+l))eN7m+k/4 = eN7m+(k_l)/47 in ch\c

| (29)
1 eVmHk/4 = 0 in OO,

k=1,234,

13




Using now (26), the required result follows. O

A classical combination of (27) and (26), allows to establish that *he time
integration process is uniformly convergent of first order (see [4,5' for more
details), i.e.

T3V m < s —
1T (tn) = UM [l < 3 e flgv < O (30)

s=1

Joining now (13) and (30), the main uniform convergence 1.~ Ut of this paper
is deduced (see [4] for more details).

Theorem 7. (Uniform convergence) Assuming that v € C*'(Q), the global
error associated with the numerical method defined *, (%.,, (23) satisfies

max [|[UN™ — [u(x, tm)lgnllgy < C (7\7_ In M+ M_l) : (31)

0<m<M

where the constant C' is independent of the a.,*usio v parameter € and the
discretization parameters N and M.

5 Numerical results

In this section we show the numec."cai = sults obtained with the algorithm
proposed here to solve successfully somc problems of type (1).

Example 1. The matrices of the fir t example are given by

VR e y)t* ~(r+v*)(1—e)
— sin(xy)t” L e HEty) 7 (32)
B, = diag(3 — z1.2 + ¢ ), B, = diag(3 —2* —y*,3 —z —y),

and the rest of data ~ e defined by
f(x,t) = (sin(z =) (1- ™), =10(z*+y*)t*))", g = ((v+y)t*, 2y (e'~1))", o = 0.

Figure 1 di plays the numerical solution at 7" = 1 for ¢ = 10~*. From it, we
clearly see t. e reg1 iar boundary layers at the outflow of the spatial domain.

As the (xact sclution is unknown we cannot calculate exactly the errors; in-
stead of 1., v~ estimate them by using a variant of the double-mesh principle
(see | ). 71 =se estimated maximum errors are given by

2N,2m

dN,M
€ 1€
0<m<M 0<i,j<N

14




Fig. 1. Components u; (left) and wy (right) at 7 = 1 for ¢ = 107* with
N =32, M = 32

numerical solution at t=1

y axis 0 o

x axis

where {ﬁZZJNm} is the numerical solution on a finer mes b {(%;, 9;,%,)} , which
has the mesh points of the coarse mesh and their midpcinte From the maxi-
mum two-mesh differences d2" | we obtain the e-ur forr. 'wo-mesh differences

by

dVM = maxd) M.
€

From dY"™ | the numerical orders of convergence . ve ~alculated by
XM = log (aXM/d, =) /log2,

and from ™™, the numerical uniform o1 ‘e s of uniform convergence are cal-
culated by
g =log (™ /a M) /log 2.

As the algorithm requires a suitable smooth partition of the reaction matrix,
for simplicity, here we have cb ssen

ax,k?“(xayyt) = ry,kr(x)b,t> = Gkr(%?/i)/l /C,’I“ = 172 (33)

Moreover, we have tak .. (see [3,7])

fy,k(‘T y,t :fk(m707t)+y(fk(x71’t)_fk(x707t))’

(34)
f:C,’ T, )= fk(xayat) - fy,k($7y7t)v k= 1727

to decompose *he 1.".t-hand side of the differential equation.

Tables 1 ana ? sho s the results for some values of ¢ for the first and the second
compone .its respectively, taking op = 1.2 in (9) . From them, we clearly deduce
the unit wm co wergence of the algorithm of almost first order according to
the theoreuvicat results.

Examp < 2. In order to show the influence of the chosen boundary data on
the errors, we have chosen another example. The matrices of this example are

15



Table 1

Maximum errors and orders of convergence in Example 1 for uy

Table 2

N=16 N=32 N=64 N=128 N=256
e M=8 M=16 M=32 M=64 M=128

2=6 | 1.4137E-1 | 9.5876E-2 | 6.1784FE-2 | 3.8154E-2 | 2.2682E-2
0.5602 0.6339 0.6954 0.7503

2=8 | 1.3562E-1 | 8.9498FE-2 | 5.8496E-2 | 3.6486E-2 | 2.1823F J
0.5997 0.6135 0.6810 0.7415 |

2-10 | 1.3601E-1 | 8.5626E-2 | 5.6106E-2 | 3.5287E-2 | 2.135E-2
0.6676 0.6099 0.6690 0.7249 |

2-12 | 1.3610E-1 | 8.4342E-2 | 5.51356-2 | 3.4697E-2 | 2.1.° B-2 |
0.6903 0.6133 0.6682 0.6860

2-22 | 1.3613E-1 | 8.3872E-2 | 5.4786E-2 | 3.44 OE.~ | % 1640E-2
0.6987 0.6144 0.6697 > 6704

dMM | 1.4137E-1 | 9.5876E-2 | 6.1784E-2 | 3.8154k 2 | 2.2682E-2

g M 0.5602 0.6339 0.6954 " 7502

Maximum errors and orders of convergence ‘» Exairaple 1 for ug

given by

{

N=16 N=32 N- 64 N=128 N=256
€ M=8 M=16 M=3. M=64 M=128
2-6 2.7063E-1 | 1.7587E-1 1.:“05?1 5.3191E-2 | 3.0687E-2
0.6218 0.8137 v.o.15 0.7936

2-8 3.1378E-1 | 2.0118E-1 | 1.1324E-1 | 5.9733E-2 | 3.0707E-2
0.6413 8291 0.9228 0.9600

2-10 3.2690E-1 | - '058E-1 1.1728E-1 | 6.1672E-2 | 3.1708E-2
0.6345 0.844 . 0.9273 0.9598

2-12 3.3040E ﬁlSQS ~1 | 1.1836E-1 | 6.2219E-2 | 3.1988E-2
0.63 o 5495 0.9278 0.9598

222 5.375 E-1 | 2.1422E-1 | 1.1900E-1 | 6.2420E-2 | 3.2092E-2
u. 03 0.8481 0.9309 0.9598

dé\”] “.3159E-1 | 2.1422E-1 1.1900E-1 | 6.2420E-2 | 3.2092E-2

qé\]" 0.7 303 0.8481 0.9309 0.9598

10 —215(102*(1 — z)*y*(1 — y)h)
| —2:6(2024(1 — 2)*9*(1 — y)*) 20

B, = diag(1,1), B, = diag(1,1),

16
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and the rest of data are defined by

f(x,t) = (1 —e ™) (z+y)+5zy, (1 —e ') (z+y) + 10zy)",

g=(zy(l—e™),ayl—e ") p=0.
and T = 1.

Figure 2 displays the numerical solution at T = 1 for ¢ = .o~ r.om it, we
clearly see the regular boundary layers at the outflow of t e ¢ atial domain.

Fig. 2. Components u; (left) and wuo (right) at T = 1 for = = 10~* with
N =32 M =32

0.8
0.6
0.4

0.2

numerical solution at t=1
numerical solution at t=1

We estimate the numerical errors and *he orders of convergence using the
same double mesh principle as in tu. nrevious example. We use again the de-
composition given in (33) and (34) for tue reaction matrix and the right-hand
side of the differential equatio ., re. nectively. Tables 3, 4 show the results for
some values of ¢ for first an. secon 1 component respectively. These results
correspond to the use of th : impre ed boundary data given in (23). Tables 5,
6 show the results when he star lard boundary data (24) are chosen. From
them, we see that, in th : casc ~* using the standard boundary data, the max-
imum errors are large a..? the orders of convergence are lower for all values
of e.

Example 3. To sho.. that our ideas are easily extended to systems with
more componer s, “ve consider an example which has three equations. Now
the matrices are g ver by

ertY(L 1) —t(z+y) —tx
A= —@+) 1+)B+z+y) —tsin(y) ;
. —uxy®  —t(sin(z) + sin(y)) €'(2 + cos(x + y))
B, = a. g(1 4+ xy/2,5 + 2%y, 3 — xy), B, = diag(e”’¥,3 +sin(z +y), 1 + = + y),
(36)
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Table 3

Maximum errors and orders of convergence in Example 2 for u; with improved
boundary conditions

Table 4

Maximum errors and orders of convergenc

N=16 N=32 N=64 N=128 N=256
e M=8 M=16 M=32 M=64 M=128
276 | 5.4353E-2 | 3.6659E-2 | 2.2783E-2 | 1.3125E-2 | 7.1339E-3
0.5682 0.6862 0.7956 0.8796

2-8 | 5.6112E-2 | 3.8920E-2 | 2.4656E-2 | 1.4664E-2 | 8.1668%-3 |
0.5278 0.6586 0.7497 0.8444

2710 | 55969E-2 | 3.9518E-2 | 2.5278E-2 | 1.5181E-2 | 8 ,2zf7}ﬁ
0.5021 0.6446 0.7356 0.8325

212 | 5.5863E-2 | 3.9657E-2 | 2.5444FE-2 | 1.5308E-2 | 8.6204E-» |
0.4943 0.6402 0.7330 0.8285

222 | 55821E-2 | 3.9702E-2 | 2.5500E-2 | 17350E-2 | ,.6534E-3
0.4916 0.6387 0.7322 0.820.

dy™ | 5.6112E-2 | 3.9702E-2 | 2.5500E-2 | . “350F 2 | 8.6534E-3

qM 0.4991 0.6387 0.7322 | 0.8269

boundary conditions

in Example 2

for uo with improved

N=16 N=32 N=64 N=128 N=256

€ M=8 M=16 =2 M=64 M=128

276 | 7.3169E-2 | 5.5703E-. ' 3.00u3E-2 | 2.0759E-2 | 1.1312E-2
0.3935 0.6377 L. 7864 0.8759

2-8 | 7.3168E-2 | 5.7 02k | 3.5803E-2 | 2.0759E-2 | 1.1311E-2
0.3935 26377 0.7864 0.8759

210 | 7.3374E-2 558000 . | 3.6048E-2 | 2.0928E-2 | 1.1406E-2
0.3927 0.637/ 0.7845 0.8756

2712 | 7.322¢ 52 | .77 2E-2 | 3.5880E-2 | 2.0823E-2 | 1.1359E-2
0.7 I5. 0.6361 0.7850 0.8743

222 | 7., "RE-2 | 55702E-2 | 3.5803E-2 | 2.0759E-2 | 1.1311E-2
0.3935 0.6377 0.7864 0.8759

7§V*"4k 7.3¢ 9E-2 | 5.6072E-2 | 3.6136E-2 | 2.0928E-2 | 1.1406E-2
g M | 0.3930 0.6338 0.7880 0.8756

and the rest ¢ d»”a are defined by

fi-.t) = (10¢%sin(z +y), —5(1 — e~ ) (2% + 3?), —4tel cos(ay))7T,
g - iz +y)sin(t), zyt?, 3™ (1 — )T, o = 0.

To obtain numerical solutions, we have used the same ideas that in [5] for

18




Table 5

Maximum errors and orders of convergence in Example 2 for u; with standard
boundary conditions

N=16 N=32 N=64 N=128 N=256
e M=8 M=16 M=32 M=64 M=128
276 | 5.7604E-2 | 5.2413E-2 | 3.9613E-2 | 2.5523E-2 | 1.5129E-2
0.1362 0.4040 0.6342 0.7545
2=8 | 6.0507E-2 | 5.7951E-2 | 4.3880E-2 | 2.7898E-2 | 1.5970%-2 |
0.5278 0.6586 0.7497 0.8444
2710 | 6.1712E-2 | 5.9708E-2 | 4.5419E-2 | 2.8924E-2 | 1 ,5177}ﬂ
0.0476 0.3946 0.6510 0.8083
212 | §.2020E-2 | 6.0201E-2 | 4.5876E-2 | 2.9246E-2 | 1.6711E-~ |
0.0432 0.3920 0.6495 0.8075
2722 | 6.2137E-2 | 6.0372E-2 | 4.6039E-2 | 2 °367E-2 | ..6787E-2
0.0416 0.3910 0.6487 0.80bc
dy™ | 6.2137E-2 | 6.0372E-2 | 4.6039E-2 | . "367F 2 | 1.6787E-2
qM 0.0416 0.3910 0.6487 | 0.8068

Table 6

Maximum errors and orders of convergenc~ . ™
boundary conditions

-ample 2 for us with standard

N=16 N=32 L. 64 N=128 N=256
€ M=8 M=16 M. =32 M=64 M=128
276 | 7.2865E-2 | 5.8239E-2 | ~ 6286E-2 | 4.2482E-2 | 2.6997E-2
0.3232 0.0492 0.4059 0.6540

278 | 7.4212E-2 | 6 (178E-2 | 6.2380E-2 | 4.6460E-2 | 2.9069E-2
0.2096 L2110 0.4251 0.6765

210 | 7.3045E-2 | 6./076E-2 | 6.4628E-2 | 4.8198E-2 | 3.0055E-2
0.1623 0.02.0 0.4232 0.6814

212 | 7.370 5-2 | 6.0013E-2 | 6.5304E-2 | 4.8749E-2 | 3.0412E-2
0..476 0.0287 0.4218 0.6807

2722 | 7.375.7-2 | 6.6800E-2 | 6.5547E-2 | 4.8956E-2 | 3.0554E-2
0.1/24 0.0273 0.4210 0.6802

| gV M 7‘ T4 12E-2 | 6.6800E-2 | 6.5547E-2 | 4.8956E-2 | 3.0554E-2
g M | 01518 0.0273 0.4210 0.6802

splitting systems with more components. Figure 3 displays the numerical
solution at T = 1 for ¢ = 10~*. Again, we clearly see the regular boundary

layers at ti.. sutflow of the spatial domain.

The ma.imum errors and the numerical orders of convergence are calculated
in the same way as for the first example and we use again the decomposition
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Fig. 3. Components u; (left top), ug (right
e=10"* with N = M = 32

top) and wug (bottom) at 7' = 1 for

<

o

=1
«
=1

IS

numerical solution at t:
N ow

numerical solution at

ro

=1

numerical solution at t:

given in (34) for the right-hand side of the dincrential equation. Tables 7, 8
and 9 show the results for some values o1 = for 1irst, second and third compo-
nent respectively. These results corre. . »na ‘o the use of improved boundary
conditions according to (23). From them, we clearly observe the uniformly
convergent behavior of the present ~tgu...iim which is almost first order and
supports the theoretical results.

Table 7

Maximum errors and orders ¢! con, *r ence in Example 3 for u

N=16 r&:?ﬁ N=64 N=128 N=256
e M=¢ M- 16 M=32 M=64 M=128
276 | 458" .71 | 3.2635E-1 | 2.1155E-1 | 1.3000E-1 | 7.6284E-2
0.4907 0.6254 0.7025 0.7690
2-8 584 E-1 | 3.3291E-1 | 2.1813E-1 | 1.3431E-1 | 7.8863E-2
> 616 0.6099 0.6997 0.7681
2710 | 4565501 | 3.3331E-1 | 2.1954E-1 | 1.3536E-1 | 7.9518E-2
0.4,39 0.6024 0.6977 0.7674
s : 591E-1 | 3.3325E-1 | 2.1978E-1 | 1.3558E-1 | 7.9649E-2
\ 0.4521 0.6005 0.6969 0.7674
T
|22 | 45567E-1 | 3.3321E-1 | 2.1985E-1 | 1.3565E-1 | 7.9684E-2
0.4516 0.5999 0.6967 0.7675
dMM | 4.5855E-1 | 3.3331E-1 | 2.1985E-1 | 1.3565E-1 | 7.9684E-2
M | 0.4602 0.6004 0.6967 0.7675
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Table 8

Maximum errors and orders of convergence in Example 3 for uo

Table 9

N=16 N=32 N=64 N=128 N=256
€ M=8 M=16 M=32 M=64 M=128
276 | 6.6804E-2 | 5.7987E-2 | 3.9483E-2 | 2.4603E-2 | 1.4735E-2
0.2042 0.5545 0.6824 0.7396

278 | 6.8721E-2 | 5.8378E-2 | 4.0315E-2 | 2.5349E-2 | 1.5299E J
0.2353 0.5341 0.6694 0.7285

2710 | 7.1566E-2 | 5.8489E-2 | 4.0574E-2 | 2.5602E-2 | 1.54°7E-2
0.2911 0.5276 0.6643 0.7252 |

9-12 | 7220382 | 5.8520E-2 | 4.0643E-2 | 2.5668E-2 | Lo, E-2 |
0.3049 0.5259 0.6630 0.7242

2722 | 7.2537E-2 | 5.8531E-2 | 4.0666E-2 | 2.5¢ '0E.-* | 1 5554E-2
0.3095 0.5254 0.6626 > 7239

g™ | 7.2537E-2 | 5.8531E-2 | 4.0666E-2 | 2.5690L 2 | 1.5554E-2

dy"™ | 0.3095 0.5254 0.6626 | " 7230

Maximum errors and orders of convergence in k..~mple 3 for us

6 Concluions

A nume.ical alg¢ orithm is proposed, analyzed and tested for solving two dimen-
sional par.' “lLic singularly perturbed weakly coupled systems of convection-
diffus.»n .y,.e. Such method combines the standard upwind scheme on an
appropi. te spatial mesh and the fractional implicit Euler method, combined
with a suitable splitting by directions and components of the spatial difference

N=16 N=32 C—e. | N=128 N=256
e M=8 M=16 M=" M=64 M=128
276 | 5.6305E-1 | 3.6455E-1 | . 5.77E-. | 1.4070E-1 | 8.2408E-2
0.6271 0.6547 0.7188 0.7718
2-8 | 5.7665E-1 | 3.7388E-1 e 3671E-1 | 1.4293E-1 | 8.2910E-2
0.6251 0.6594 0.7278 0.7857
210 | 5.7088E-1 | 2 (619E-1 | 2.3792E-1 | 1.4346E-1 | 8.2884E-2
0.6243 L. 7210 0.7298 0.7915
2712 | 58067E-1 | 3. 675E-1 | 2.3821E-1 | 1.4358E-1 | 8.4866E-2
0.6241 0.6€ .3 0.7304 0.7586
2722 | £ Uy B-1 | 3.7693E-1 | 2.3831E-1 | 1.4362E-1 | 8.5928E-2
0.F .41 0.6615 0.7305 0.7411
g™ | 5809071 | 3.7693E-1 | 2.3831E-1 | 1.4362E-1 | 8.5928E-2
al T 06 41 0.6615 0.7305 0.7411
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operator. We prove that this method is uniformly convergent of first order in
time and of almost first order in space. The chosen splitting technique means
that only tridiagonal systems must be solved; therefore, the computational
cost of the fully discrete algorithm is low in comparison with mors classical
implicit methods. Moreover, the order reduction of the method, relatea "~ the
standard discretization of time dependent boundary data, can be ¢i. ded in an
easy way. Some numerical experiments are performed which s ow the main
qualities of the algorithm.
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