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The Web has made a huge and ever-growing amount of information available
to its users. The appearance of new interaction paradigms that the so-called
Web 2.0 introduced, in which the Web users become part of the information
providers, has made this amount even bigger and more difficult to handle. At
this point, the Semantic Web [17] has been proposed in order to relieve the user
of the burden of processing the available information. By sharing definitions
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Abstract

The Web is experiencing a continuous change that is leading to the
realization of the Semantic Web. Initiatives such as Linked Data have
made a huge amount of structured information publicly available, encour-
aging the rest of the Internet community to tag their resources with it.
Unfortunately, the amount of interlinked domains and information is so
big that handling it efficiently has become really difficult for final users.
Thus, we have to provide them with tools to search the needed resources
in an easy way.

In this paper, we propose an approach to provide users with differ-
ent domain views on a general data repository, enabling them to perform
both keyword and refinement searches. Our system exploits the knowl-
edge stored in ontologies to 1) perform efficient keyword searches over a
specified domain, and 2) refine the user’s domain searches. In this way, we
enable the definition of different semantic views on Linked Data datasets
without having to change the original semantics. We present a prototype
of our approach that focuses on the case of DBpedia, which provides a
semantic way to access to Wikipedia.
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and tagging resources, the Internet is being made understandable to computers,
thus, allowing them to process the information on behalf of users.

This progressive structuring is being made using ontologies (which offer a
formal, explicit specification of a shared conceptualization [10]) and a set of dif-
ferent technologies built around them, promoted and supported by the W3C !.
Initiatives such as Linked Data [6] have already made a huge amount of struc-
tured information publicly available, providing schemas and data in machine-
readable formats; and, now it is the time to exploit all these information. Un-
fortunately, it is not realistic to expect that all the resources in the Internet
will be perfectly described and annotated, as there are also huge amounts of
information that are not semantically annotated as well. So, for the time being,
both dimensions (semantic and syntactic ones) of the Web are condemned to
coexist with each other. And so their different techniques and methods are.

In particular, the adoption of keyword-based search interfaces has spread
widely in the last few years, mainly due to their ease of use. However, this ease
of use comes from the simplicity of its query model, whose expressivity is low
compared with other more complex query models [15]. This lack of expressivity
leads to ambiguity when querying, and therefore, to non-satisfactory results.
On the other hand, formal query languages, despite of offering the expressivity
needed to describe the information need more accurately, are really hard to
learn and we cannot expect final users to use them. The sweet spot would
be keeping the usability of keyword interfaces, while achieving the expressivity
and precision of formal languages. To manage it, several approaches have been
proposed to perform keyword query interpretation [9], which is the process to
translate the input set of keywords into a structured query. However, the current
methods require highly expressive ontologies [8] or building large graphs out of
the underlying data [18], which might not be completely available to certain
users (e.g., when we only have access to a single data endpoint to which pose
our queries). In the Linked Data scenario, the data to be searched is stored in
RDF? format. The most basic representation data unit in RDF is the triplet,
< a R b >, where a is the subject, b the object and R is the property that
links them. So, at first sight, if we wanted to perform a keyword search on data
in RDF format, we would have to search on all the elements of all the triples,
which would lead to unbearable query processing times. Fortunately, we can
take advantage of the structure of data stored in RDF to make keyword search
manageable and enhance it.

In this paper, we present a system that adopts a hybrid search strategy which
exploits the knowledge stored in ontologies to focus and enrich the search process
on structured data. Our system builds on an external Linked Data repository
(which might not be under our control) and takes as input an ontology which
has two roles in the system: 1) to define the concept hierarchy of the search
domain, guiding and narrowing the scope of the keyword-based search; and 2) to
define the structure of the objects in the search domain, helping refining and

Thttp://wuw.w3.org
2RDF Resource Description Framework, http://www.w3.org/TR/rdf-primer/



suggesting further search results. With our approach, one can provide different
views on a general data repository by just adapting externally the ontology
provided. Moreover, our approach can be attached to any public SPARQL
endpoint without overloading it (this is important in open scenarios, such as
the one depicted by Linked Data). We use the DBpedia [7] as data repository
example as it provides us with a semantic entrance to the Wikipedia3.

The rest of the paper is as follows. In Section 2, we overview the architecture
of our search system. The definition of the search domain using an ontology
is explained in Section 3. In Section 4, we focus on how our system uses the
ontology to enhance the search. In Section 5, we present the prototype we have
developed over the DBpedia public endpoint. Some related work is discussed in
Section 6. Finally, the conclusions and future work are drawn in Section 7.

2 Architecture of the System

In this Section, we overview the architecture that allows our system to exploit
the information in the external Linked Data repository. As shown in Figure 1,
there is a previous offline step that consists of defining the search domain and
providing it modeled in an ontology. Our system uses an inner Description
Logics reasoner [3] (DL reasoner from now on) to exploit the information in this
ontology. Once it has the Domain Ontology, our system offers two different but
complementary kinds of search depending on the user’s input:
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Figure 1: Our system provides two complementary search services: a) Keyword-
based and b) URI refining services.

a) Keyword-based Search. This search service takes as input plain keywords
(step l.a) and checks out whether the search has been processed before
(step 2.a). The system has an internal Lucene* repository that serves as

3http://wikipedia.org
4nttp://lucene.apache.org/core/



a cache memory to alleviate the workload of the external public endpoint
(which is not under our control and might have limited availability). If the
search has not been performed before, the keyword query is forwarded to our
Query Engine which consults the concept hierarchy of the ontology to build
a focused SPARQL query (step 3.a). This hierarchy includes only the ob-
jects we want to be searched, this is, the objects that we define in the search
domain. If it is too large, there exists the possibility of specifying a class
of the Domain Ontology to serve as top node of the focused search. Once
the Query Engine has built the query, it poses it to the public endpoint to
perform the actual search (step 4.a). When the results are retrieved, they are
stored in our Lucene repository to cache them for future searches (step 5.a).
The Lucene repository acts a cache for future searches and provides the sys-
tem with relevance measures and ranking on the results. Finally, the results
(a set of URIs) are returned ranked according to their relevance (step 6.a).

b) URI Refining Search. The results of the previous search service is a ranked
set of URIs, which are presented to the user so s/he can explore them. When
the user selects a URI (step 1.b), it is directly forwarded to the Query Engine
(step 2.b). The Query Engine consults the data repository to obtain the type
of the object behind the URI (step 3.b). Then, it consults the definition of its
type (step 4.b) to build a set of specialized queries for that type of object (it
consults the relevant properties® to retrieve the appropriate data and suggest
other related objects) with the help of a DL reasoner. Finally, it forwards
these queries to the data endpoint (step 5.b) and returns the data (step 6.b).
This step is not cached as they are more specialized queries that are not so
time consuming as a general search over the whole domain.

Notice that the Lucene repository is only used to cache and rank the results
obtained from the actual query on the external Linked Data repository. We
assume that the results can be cached as the Linked Data repositories are in
fact quite stable in time (e.g.: there was a lapse of seven months from the release
of version 3.6 of DBPedia to the 3.7 one, and a year between 3.7 and the latest
one, 3.8). Anyway, our system can be easily adapted to another scenarios where
data are more volatile by deactivating the caching mechanism. In the following
sections we explain how the search domain has to be defined, how the system
builds the queries and performs the actual searches, and finally, we present a
prototype that we have developed applying our approach to the use case of the
DBpedia.

3 Defining the Search Domain

The search domain is defined by using an annotated ontology provided by the
administrator of the system (see Figure 1). This ontology provides an adaptable

5They are marked as being relevant during the ontology definition, so the Query Engine
can be aware of them.



view on the underlying data and has to be aligned to the ontology that describes
the actual data repository. In this way, our system can consider only part of the
data while being able to access it properly. In fact, although it can be built from
scratch, we advocate for using ontology extraction techniques [14] to obtain a
module and, then, make our system work directly with a subontology of the
repository’s one.

The provided ontology tells our system which information is relevant to build
the actual queries that are going to be posed to the external data repository. In
particular, our system considers the following information:

e The concept hierarchy that is defined in the Domain Ontology. It contains
the objects that are considered by our system in the searches. The size
of this hierarchy is not a problem, as our system can receive an extra
parameter to consider any concept as top node and thus focus the search
only on its descendants.

e The annotated properties. We introduce four different annotations that
make the system consider the defined properties to different purposes dur-
ing the search process:

— @dataRetrievableProperty: This annotation tells the system to re-
trieve the values of the property for the returned results. It allows
to improve the information about the returned results.

— @kwdSearchField: With this annotation, we mark the keyword search-
able properties of the objects, i.e., the properties that have values that
can be processed to perform keyword searches. These properties are
the ones that are considered for the actual keyword search.

— QrelevantProperty: These properties are consulted in the refining
step to further propose relevant results. The system uses them to
build up relevant property chains that are the basis for the refinement
queries.

— @QqueryLanguage: The language that has to be considered when con-
sulting the value of this property. When dealing with multilingual
repositories, such as DBpedia, we can restrict the language to be
considered with this annotation.

The Query Engine exploits this information to build scoped queries on the
structured data. Depending on the underlying repository, we can specify via
the annotations the different fields which we can perform the searches on and
the objects that are relevant to the domain view we want to offer. In Figure 2,
we can see an example of an annotated ontology®.

The keyword search is marked to be performed on the descriptions of Agent,
which subsumes both Person and Company. The values of the properties
marked as retrievable will be returned along with the instances that conforms

SNote that it is only an excerpt of an sample ontology to illustrate the domain definition
process, it is not meant to be an example of a complete domain definition.



ex.name (@dataRetrievableProperty

_ . @dataRetrievableProperty
ex:description  @kwdSearchField ex:name @dataRetrievableProperty
@queryLanguage="EN" ex:date

I: Of :
ex:birthDate @dataRetrievableProperty oy 5 ONW
ex:sex
-
Person ex:worksFor @relevantProperty . Company

ex:chiefOf ex:foundedin @dataRetrievableProperty
owl:stiClassOf ex:NIF

owl:sybClassOf

Racer —»| Race |exprize
ex:won @relevantProperty i L (@dataRetrievableProperty:

ex:participate

‘ Property @* annotations applied to Property ‘

Figure 2: Example of an ontology defining a possible search domain (excerpt).

the answer. For example, when the resources our system returns belong to Per-
son, their ez:birthDate will also be returned together. Finally, the properties
such as ex:won and ezx:worksFor will be used to further refine the queries and
provide information about a particular instance of Racer.

4 Searching on Structured Data

Once we have provided the annotated ontology, our system is able to perform
two types of searches on the external Linked Data repository: a keyword search
and a URI refining search. Both searches exploit the ontological definition of
the domain we have provided but in different ways, as we detail in the rest of
the section.

4.1 Keyword Search

When the user poses a keyword query, the Query Engine consults the Domain
Ontology to obtain information about:

e The hierarchy of the objects to look up. Exploiting the semantic structure
of the Linked Data, the Query Engine is able to focus the search only on
the objects that are relevant to the defined domain. Thus, our system
pre-filters the triplet values to be checked against the keyword query.

e The properties whose values are to be retrieved along with the results.
The system consults the annotations to know which properties have to be
included along with the URI of the resources that will conform the answer.

e The properties on which it has to perform the keyword search. Due to
the structure of Linked Data (it follows the RDF model based on triplets)
the system would have to look for the keywords in every element of the



triplets (subject, property, and value) if we do not specify which properties
to search on. This would lead to unbearable query processing times (note
that our system builds on public endpoints which data are not under our
control).

With this information, and for each of the input keywords, the Query Engine
builds a SPARQL query to be posed to the public endpoint. This is done
separately for each of the input keywords to be able to re-use results from one
query to another as will be explained later. In Figure 3, the basic structure of
these queries and how they are affected by the consulted information is shown:

SELECT ?resource [ list of @dataRetrievableProperty ]
@dataRetrievableProperty

WHERE OPTIONAL [ ?resource bounding statements ]
[ 1list of taxonomy conditions ] [> Concept Hierarchy
FILTER [ @kwdSearchField match condicion (regex) ] @kwdSearchField
[ @queryLanguage match condition (langMatches) ] @querylLanguage

Figure 3: Basic structure of the keyword-based SPARQL query built by our
system.

e The SELECT clause comes defined by a free variable for the URI of the
answer resources and it is augmented with the set of properties marked as
retrievable (@QdataRetrievableProperty). To bind these properties to the
returned resources, a condition for each of them is added to the WHERE
clause (marked with the OPTIONAL flag to return the resources whose
values for those properties remain unknown). The DL reasoner [3] allows
us to check whether the properties to be consulted are compatible with
the concepts that are consulted in the query.

e The WHERE clause is extended to focus the search only on the resources
that belong to the concepts that are included in the concept hierarchy
of the Domain Ontology. The system limits the possible candidate re-
sources by forcing them to be instances of any of the objects included in
it. Querying a smaller set of resources will provide more accurate results
according to the selected knowledge context”. This limited search space
will also impact the performance of the keyword search query, reducing
the time required. The information of the concepts to be included is ob-
tained with the help of a DL reasoner, which provides us with the actual
concept hierarchy. Our system retrieves the relevant objects even when
the underlying repository has not classifying capabilities. Finally, if the
hierarchy is quite big, and without loss of generality, the system can ac-
cept a category/concept of the domain search to provide a more focused
search scope.

"The resources to be checked are only the ones that are in the domain search, which are a,
strict subset of the whole dataset.



e A FILTER condition is added for each of the properties that are search-
able on. To perform the actual keyword search, our system uses the regez
function to look for such keywords in the property values. This FILTER
is extended with a lang condition when the language that has to be con-
sidered for it is specified with the corresponding annotation.

Given the sample ontology of the previous section, an actual keyword-based
query is shown in Figure 4. The three properties that were marked as @dataRe-
trievable for Person are bounded to the resources via the three first conditions
on the WHERE clause. Note that, in spite of specifying Person as the root con-
cept to focus the search, the DL reasoner has provided us with the retrievable
properties that were defined for Agent, as it is its super class. Moreover, the
conditions with the is_a property, retrieve all the objects that belong to Person.

SELECT ?uri ?name ?birthDate ?description
WHERE OPTIONAL ?uri ex:name ?name @dataRetrievableProperty
OPTIONAL ?uri ex:birthDate ?birthDate
OPTIONAL ?uri ex:description ?description
{ { ?uri a Person }
UNION Concept Hierarchy
{ ?uri a Racer } }
FILTER regex ( ?description, f#keyword ) @kwdSearchField
lang ( ?description, #language ) @queryLanguage

Figure 4: Example of an actual built query given the sample ontology (with
Person as root concept).

The result of the built queries are a set of tuples < URI, {kwdSearchField;},
{dataRetrievable Property;} > for each keyword. Before presenting them to
the user, all the results are inserted on a local Lucene repository along with the
keyword query that has led to them. Lucene ranks them according to the relative
frequency of the input keywords in the retrieved values of the properties that we
marked in the ontology for the keyword search (this is, {kwdSearchField;}).
Our system, then, consults it with the whole set of input keywords, benefiting
from this step in two ways:

e On the one hand, it obtains a ranked set of resources that have been
retrieved due to their semantic belonging to the search domain. This is,
our system uses Lucene to rank the results according to their relevance
to the input keywords using the several well-known metrics it provides;
however, note that this ranking is performed only on semantically related
resources (the system has forced it via the query it has built for each
keyword).

e On the other hand, the Lucene repository serves as a cache for further
queries, alleviating the dependence on the processing resources of the pub-
lic endpoints (which availability might be even compromised).



So, in the end, our system provides the user with a ranked set of semantically
related resources, taking advantage of both semantic knowledge and information
retrieval techniques.

4.2 URI Refining Search

The result of the previous keyword search is a set of semantic resources, identi-
fied each one by a URI. Once the user selects a resource, the system performs
a URI refinement search to suggest further related results. This refinement is
performed via the properties that have been annotated as relevant in the domain
search definition.

Firstly, the Query Engine asks the underlying repository for the concept
which the resource belongs to to know its defined properties. Then, it consults
the DL reasoner to obtain the relevant properties® that are compatible with
its definition. Once the system has the definition of the properties, it retrieves
their values for the input resource. In the meantime, the system builds prop-
erty compositions, that is, chains of properties whose consecutive ranges and
domains are compatible?. These compositions are suggested as possible queries
to retrieve further results. All the semantic checkings of the domains and ranges
of the involved properties are performed with the help of the DL reasoner, and
s0, our system can avoid possible inconsistent queries (according to our Domain
Ontology).

The results of this kind of search lead to more resources that can be navigated
again and so on. In this way, our system keeps on providing results that are
related to the resource without leaving the search domain. In Figure 5, two
examples of refinement queries are shown.

a)| SELECT 2uri ?name ?foundedIn ?description
WHERE OPTIONAL ?uri ex:name ?name @dataRetrievableProperty
OPTIONAL ?2uri ex:foundedIn ?foundedIn
OPTIONAL ?2uri ex:description ?description
<#inputURI> ex:worksFor 2uri D @relevantProperty domain/range
FILTER lang ( ?description, #language ) D @queryLanguage
b) SELECT ?uri ?name ?prize
WHERE OPTIONAL ?uri ex:name ?name @dataRetrievableProperty
OPTIONAL ?uri ex:prize ?prize
<#inputURI> ex:won Quri D @relevantProperty domain/range

Figure 5: Example of refinement queries for a Racer URI: a) retrieve the com-
panies s/he works for and b) retrieve the races s/he has won.

8Note that the Domain Ontology is mapped to the underlying repository, so we assume
that we have the information needed to perform the proper translation.

9The length of the path is restricted to avoid infinite loops; it has been defined as a system
configuration parameter.



Note how in the first query, as the resources to be returned are also Agents,
the properties to be retrieved include ex:description and ex:name. As it was
marked with the query language annotation, we restrict the returned values to
be in English. In these examples, the related resources are a just one prop-
erty distance from the refined resource, however, we could let the system form
different property paths to explore the relationships at deeper levels.

5 Use Case: The DBpedia

In this Section, we present a prototype we have developed using the DBpedia [7]
as external data repository and ’Mechanics’ as domain search. Firstly, we give
an overview on the structure of DBpedia to explain how our system handles it
to understand some design decisions we made during the development of the
prototype. Secondly, we show the implementation details of the prototype and
how it handles the special case of the DBpedia.

5.1 Structure of DBpedia

DBpedia is a project that extracts structured data from Wikipedia, and makes
this information available on the Web under the principles of Linked Data.
This extraction is performed automatically by exploiting the structure of the
information stored in Wikipedia. However, the nature of the results of this
extraction process differs from the sources in more ways than barely structural
and format ones.

When moving from the article world of Wikipedia to the semantic resources
in DBpedia, there are objects that might augment their descriptions as the
new semantic model can represent more information about them. The articles
extracted from Wikipedia, once in DBpedia, become resources. Each resource is
represented by a URI and has a direct correspondence to its original Wikipedia’s
article, inheriting its categorization. The whole taxonomy of article categories
of Wikipedia is included as an SKOS'® ontology in DBpedia; thus, DBpedia
provides a first view on the resources according their category.

Depending on the content of its corresponding article, a DBpedia resource
might also be representing an object (see Figure 6). The classification of this
object dimension of the resources is done via several general domain ontologies,
being DBpedia Ontology!! and YAGO'? the most important ones. In this way,
independently of the article categorization, DBpedia offers a second different
view based on the nature of the underlying resources. However, this view does
not cover all the DBpedia. There exist resources that, despite being categorized,
do not have these descriptions as they are not defined in the used ontologies, as
shown in Figure 6.

10SKOS Simple Knowledge Organization System, http://www.w3.org/TR/skos-primer/
1 The DBpedia Ontology, http://wiki.dbpedia.org/Ontology
12YAGO Ontology, http://www.mpi-inf .mpg.de/yago-naga/yago/
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categorizing [ Category ] [ Category ] [ Category ]

articles cat:Theoretical_physicists cat:Fundamental_physics_concepts cat:Viscosity
dcterms:subject dcterms:subject
Resource Resource
dbr:Albert_Einstein dbr:Viscosity
rdf:type
Namespace
" dbo: http://dbpedia.org/ontology/
classifying Class Class yago: http://dbpedia.org/class/yago/
resources dbo:Person yago:Person10007846 dbr: http://dbpedia.org/resource/
cat: http://dbpedia.org/resource/Category:

Figure 6: DBpedia excerpt of the descriptions of Albert Einstein and Viscosity
resources.

Summing up, DBpedia organizes knowledge in two major ways: the SKOS
categorization, and an ontological classification. Both of them can be used
to define the domain hierarchy in our prototype, depending on what kind of
resources we want to search on. However, as we are dealing with Articles (which
are the most general type of resources in DBpedia), the natural way of focusing
the search is through the SKOS categorization (i.e., the different categories of
the articles).

5.2 Implemented Prototype

In our prototype, we have considered to perform the keyword search on Articles.
Thus, as it works with the DBpedia as underlying data repository, we have con-
sidered the SKOS categorization as the general taxonomy that must be pruned
to focus the keyword search. On the other hand, for refinement purposes, we
obtain the ontological definitions from the DBpedia ontology (for those articles
that are about resources which have an ontological classification). Far from
being a drawback to our approach, this shows the flexibility that it gives us
to define the search domain (the Domain Ontology in Figure 1 can be divided
to focus on different aspects of the object definitions). In particular, we have
pruned the SKOS categorization to deal with the categories under ‘Mechanics’,
and we are only interested, in the refinement process, in People, Institutions and
the different articles that could be related to each resource. The keyword search
is performed on the abstract property, which gives an excerpt of the Wikipedia
entry associated to each resource.

The main adaptation that we have had to do to our prototype to deal with
the special case of the DBpedia is to change how to handle the concept hierar-
chy. The properties that define the hierarchy depend on the modeling language
that has been selected to express the ontology. In OWL!? (e.g., when using the
DBpedia ontology to obtain the hierarchy), the main property is the is_a prop-
erty (subclassOf), while in SKOS the hierarchy is modeled via the broader and

IBOWL Web Ontology Language, http://www.w3.org/TR/owl-primer/
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narrower properties. So, depending on the modeling language, our prototype
adopts one or another to build the constraints on the query.

In Figure 7, we can see a snapshot of our prototype, which is deployed
at http://sid.cps.unizar.es/HybridKeywordSearch. It has been developed
with Java 1.6, using HermiT 1.3.5'* as DL reasoner, and Lucene 3.6.0'°. The
handling of ontologies and SKOS documents has been performed using OWL
API v316 and SKOS API v3!7. To form and pose the SPARQL queries, Jena 2.6.418
has been used. Finally, the DBpedia has evolved from version 3.6 to 3.8 during
the development of the prototype (this affected mainly to the actual properties
used in the DBpedia to describe several facts).

Keywords muscle Search Category. Mechanics | Change o Create account & Login
Article Articulo Properties. Q
5C
Work loop [abstract]
Muscular hydrostat Hill's muscle model refers to either Hill's equations for tetanized muscle s H | ”'5 m u50|e
Vestibulo emotional reflex contraction or to the 3-element model. They were derived by the famous WIKIPEDIA
Locomotar effects of shoes physiologist Archibald Vivian Hill The Free Encyclopedia model
Soft body dynamics [page] Bt
Endoskeleton hitp:/’en wikipedia orgiwiki/Hill's_muscle_madel From Wikipedia, the free
Balance (ability) “??e” Main page encyclopedia
Gray's paradox Hill's muscle model Contents
[uri] e
hitp:i/dbpedia_org/resourcei/Hill's_muscle_madel Featured content H_'" s m.u.scle mc.)del refers to
IETEEE either Hill's equations for
Random article tetanized muscle contraction or
Donate to Wikipedia to the 3-element model. They
were derived by the famous
= Interaction physiologist Archibald Vivian Hill.
= Help
= About Wikipedia Contents [hide]
A nz ‘; :Tlour:e Fersona Properties: Community portal 1 Equation to tetanized muscle
rchibal 1l
- Recent changes
CategoryBiomechanics [abstract] o _9 2 Three-element model
Category:Equations AV, Hill, christened Archibald Vivian (which names he detested) CH OBE FRS (26 Contact Wikipedia 21 Viscoelasticity
Category Exercise_ph September 1886 - 3 June 1977) was an English physiologist, one of the founders of the » Toolbox 3 See also
diverse disciplines of biophysics and operations research. He shared the 1922 Nobel Prize 4 References
in Physiology or Medicine for his elucidation of the production of heat and mechanical work b Printexport
inmuscles R
[page] ~ Languages Equation to [edit]
http:fien.wikipedia.orgiwikilArchibald_Hill Portugués tetanized muscle
[label]
Arc_hmald Hill This is a popular state equation
uri] applicable to skeletal muscle that
hitp://dbpedia.orgiresource/Archibald_Hill has been stimulated to show
Tetanic contraction. It relates
tension to velocity with regard to
the internal thermodynamics. The
URI Page Back 0 o i i

’

Figure 7: Snapshot of the developed prototype (showing the results for "'muscle
in "Mechanics’).

In Table 1, the results retrieved for the input ‘fish movement’ are shown
(they are ranked downwards). We can see how all the results that retrieved by
our system are related to the specified search domain ‘Mechanics’. However,
when we perform the same search directly on the Wikipedia, we obtain results
that would be out of our interests: the first two results are related to biology,

Mhttp://hermit-reasoner.com/

5http://lucene.apache.org/
6nttp://owlapi.sourceforge.net/index.html
17http://skosapi.sourceforge.net/index.html
18http://sourceforge.net/projects/jena/files/Jena/Jena-2.6.4/
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the third one is about a specific species of fish, the fourth is about a fishing
artifact, the fifth about an island in Minnesota, and so on. While our system
was able to focus on the domain we defined, Wikipedia always considers any
domain in the search. Note that we have defined the search domain without
modifying anything on the actual data (they are not under our control). Also
note how the change of version in the DBpedia has led to different results in our
system, as the values for the properties have changed. However, it still holds

that all the results are within the search domain!®.

Our System Wikipedia
DBpedia 3.7 DBpedia 3.8
tripedalism dynamical system fish migration
fish locomotion Konig’s theorem (kinetics) lateral line
role of skin in locomotion Vestibulo-emotional reflex Murray cod
aquatic locomotion Journal of Applied Biomechanics fishing lure
dynamical system Long period ground motion Bear Island

Table 1: Results retrieved for the input keywords ‘fish movement’.

Finally, following with this example, the user could select ‘dynamical sys-
tem’ out of the resources that the keyword search has retrieved. The results
of the refinement will depend on how the Domain Ontology was defined. In
this case, we define two properties for articles: knownFor and subject, that
represent people related to the article and the categories where the article is
included. Now, the refined results include the following people (in both 3.7 and
3.8 versions): Krystyna Kuperberg, Jean-Christophe Yoccoz, Yakov G. Sinai,
Denis Blackmore, Bill Parry (mathematician), John Guckenheimer, ...; and
categories: Systems, DynamicalSystems, and SystemsTheory. This refinement
allows the user to navigate within the domain, finding resources that otherwise
would have been hidden by more popular results.

6 Related Work

When it comes to accessing semantic data from a set of keywords, there are
quite a lot different approaches, but most of them start with query building
step which translates the input into an structured query [9, 16, 18, 8]. In [16],
the input is matched to semantic entities by means of text indexes, and then a set
of predefined templates is used to interpret the queries in the language SeRQL.
However, in this system, the user has to be aware of the underlying data schema
to be able to query as, at least, one of the keywords has to be matched to a
class in the ontology that describes the underlying data. Moreover, the search

19A document with further examples as a proof of concept can be found in http://sid.
cps.unizar.es/HybridKeywordSearch-data/KES2012-KwdEvaluation.pdf .
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domain and the properties to be used cannot be adapted as it can be done in
our system.

Other relevant systems in the area of semantic search are SemSearchPro [18],
Q2Semantic [11], SPARK [21], and QUICK [20]. These systems find all the
paths that can be derived from a RDF graph, until a predefined depth, to gener-
ate the queries. In [9] they propose a similar approach to keyword interpretation
but they introduce the context of the user’s search (the knowledge about previ-
ous queries) to focus the whole search process. However, all of these approaches
assume that the data sources are under their control and can pre-calculate com-
plex graphs to perform the query translation and, finally, access the data. As
they work on the data level, they do not take into account the flexibility that
using and adapting the describing ontology provides as we do. Moreover, the
path generation they perform is quite similar to our refinement step, but, as
our system works at ontological level, it performs semantic checkings that these
approaches cannot.

A different approach to combine keyword-based search and semantic search
is K-Search [5]. The main differences between their approach and ours are that
they completely separate semantic searches from keyword ones, this is, they
do not take into account the semantics of the domain to focus their keyword
searches as our system does; and that they do not provide the possibility of
defining external views via the domain definition and annotation as our approach
does. Moreover, they rely again on an pre-indexing phase for the keyword search
part of the system.

There are also some works in the area of databases to provide a keyword-
based interface for databases, such as BANKS [1], DISCOVER [13] and DBX-
plore [2], which translate a set of keywords into SQL queries. However, as
emphasized in [4], most of these works only rely on extensional knowledge ob-
tained by applying IR-retrieval techniques, and so they do not consider the
intensional knowledge (the structural knowledge). So, again, they have to have
the data sources under their control, thus restricting the application in an open
scenario such as the Linked Data one.

Finally, regarding keyword search on generic graphs, there are systems with
different approaches such as BLINKS [12] or Yanii [19]. However, they also
rely on an initial data indexing phase, which is not applicable when we do not
have control over the dataset. Moreover, their approaches are focused by the
structure of the data graph, and not by the defined semantics as ours is.

7 Conclusions and Future Work

In this paper, we have presented a system that enables a hybrid search approach
based on keywords and guided by ontologies. Our system combines the ease
of use of keyword search with the benefits of exploiting the structure of the
underlying data in an efficient way. In particular, our system:

e Provides a keyword-based search guided and focused by the Domain On-
tology, avoiding queries that would be too time-consuming. To do so, it
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uses the information of the concept hierarchy of the search domain. This
process is highly configurable, as the search can be restricted to a set of
specified properties via annotations.

Exploits the definition of the objects in the domain to suggest further
close-related results, refining the search within the domain. This is done
with the help of a DL reasoner, that performs all the semantic checkings
needed to avoid inconsistent queries.

Can be built on third parties’ Linked Data repositories without overload-
ing them, while allowing to provide the user with different domain views.
Our system manages the ontologies as views on the underlying data, de-
coupling them and processing the results in more flexible ways.

As future work, we are planning to include crossed-domains searches, that is,

to include inter-domain relationships in the search, while keeping the adopted
hybrid strategy. We also want to perform tests with different kinds of final users
to measure the semantic accuracy of our prototype and the overall performance
of our approach.
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