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Abstract
We study the homology of an explicit finite-index subgroup of the automorphism
group of a partially commutative group, in the case when its defining graph is a tree.
More concretely, we give a lower bound on the first Betti number of this subgroup,
based on the number and degree of a certain type of vertices, which we call deep. We
then use combinatorial methods to analyze the average value of this Betti number, in
terms of the size of the defining tree.
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1 Introduction

Let K be an (undirected) finite graph, and write V (K ) and E(K ) for its set of nodes
and edges, respectively. The right-angled Artin group (RAAG, for short) defined by
K is the group AK given by the presentation
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AK = 〈a ∈ V (K ) | [a, b] = 1 ⇐⇒ ab ∈ E(K )〉,

where ab denotes the edge joining a and b, and [a, b] = aba−1b−1.
Observe that if K is a complete graph with n nodes, then AK ∼= Z

n ; at the other end
of the spectrum, if K has no edges, then AK ∼= Fn , the free group on n letters. For a
fixed number n of nodes, the groups AK interpolate between these two extremal cases
of Z

n and Fn . For instance, for a complete bipartite graph K , AK is a direct product
of two free groups, while for a disconnected graph K , AK is the free product of the
RAAGs defined by the connected components of K .

In this paper, we will study the automorphism group Aut(AK ) of AK which, by
the discussion of the paragraph above, interpolates between the important cases of
Aut(Fn) and Aut(Zn) = GL(n, Z). More concretely, we will restrict our attention to
the case when the defining graph K is a tree.

1.1 Abelianization of finite-index subgroups

Let G be a finitely generated group. Recall that the abelianization of a group G is
the quotient Gab := G/[G,G], where [G,G] is the commutator subgroup of G. By
definition, Gab is abelian and has a further incarnation as the first homology group
H1(G, Z) of G. Observe that, since Gab is abelian, it may be decomposed as B ⊕Z

N ,
where B is a finite abelian group. The number N is called the rank of Gab, also known
as the first Betti number of G, denoted b1(G).

A celebrated theorem of Kazhdan [9] implies that if G < Aut(Zn) = GL(n, Z)

has finite index (n ≥ 3), then b1(G) = 0. Motivated by this, a well-known open
question askswhether the sameholds true for finite-index subgroups ofAut(Fn), where
n ≥ 4. We remark that the condition n ≥ 4 is necessary, for Grunewald–Lubotzky [7]
have constructed an explicit finite-index subgroup of Aut(F3) with positive first Betti
number. On the other hand, a recent result of Kaluba–Nowak–Ozawa [8] asserts that
Aut(F5) has Kazhdan’s property (T), and therefore, all of its finite-index subgroups
have finite abelianization.

We may consider the analogous problem for automorphism groups of arbitrary
RAAGs, although one needs to be slightly careful about how to formulate it. Indeed, it
is often the case that Aut(AK ) contains AK as a subgroup of finite index (see Charney–
Farber [3] and Day [5] for explicit results in this direction), and b1(AK ) ≥ 1 so long
as K has at least one node. With this in mind, one may still search for combinatorial
conditions on K that guarantee the existence of finite-index subgroups of Aut(AK )

with positive first Betti number, andwhich apply to graphs K for which AK has infinite
index in Aut(AK ). (This is the case, for instance, when K is a tree.) In this direction,
Bregman–Fullarton [2] have identified a class of graphs K f , which they call focused,
such that AK f has infinite index in Aut(AK f ), and Out(AK f ) is virtually abelian [2,
Proposition 3.1]. In particular, for this class of graphs, Aut(AK f ) has a finite-index
subgroup with infinite abelianization.

The discussion of these types of conditions is the objective of this paper. Before
proceeding any further, we introduce some definitions and notations about graphs and,
in particular, trees.
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1.2 Graphs and trees

Given a graph K , the set of neighbors of a vertex v ∈ V (K ) will be called the link
of v:

lk(v) = {w ∈ V (K ) | vw ∈ E(K )}.

Thedegreeof v is the cardinality of lk(v).Wedefine the starof v as st(v) := lk(v)∪{v}.
For simplicity, by st(v) we also mean the subgraph with these vertices and the edges
from v in K .

If K2 is a subgraph of a graph K1, we denote by K1�K2 the full subgraph of K1
induced by the vertices which belong to K1 but not to K2.

We endow V (K ) with its usual combinatorial distance d, namely, given u, v ∈
V (K ), we define d(u, v) as the minimal n for which there exist nodes u =
w0, w1, . . . , wn = v in V (K ) with w jw j+1 ∈ E(K ) for all j .

1.2.1 Trees

A graph T is a tree if it is connected and every edge separates T into two connected
components, or, alternatively, if it is connected and has no cycles. From now on, we
will use T to refer to a tree.

A node of a tree T is a leaf if its degree is 1. The boundary ∂T of T is the set of
leaves of T and, for a node v of T , we write ∂v to abbreviate d(v, ∂T ), the distance
from v to ∂T .

A node v of a tree T is called deep if ∂v ≥ 3. The subset of deep nodes of a tree T
is denoted by D(T ). A tree is termed shallow if it has no deep nodes, i.e., all its nodes
are at distance at most 2 from the boundary.

We say that a tree T is rooted if it has one distinguished node, called the root of T . A
tree T with n vertices is called labeled if its set of vertices is {1, . . . , n}. An unlabeled
tree is an equivalence class of labeled trees under graph isomorphism.

1.3 Automorphisms of RAAGs defined by trees

In [1], the first and fourth named authors identified two properties of a graph K , each
of which implies the existence of finite-index subgroups of Aut(K ) with positive first
Betti number; see Corollary 1.4 and Theorem 1.6 of [1]. In this paper, we will study
one of these conditions in the particular case when T is a tree. At this point, we
remark that, apart from forming a natural subclass, RAAGs defined by trees are also
interesting from a topological viewpoint, as they are examples of fundamental groups
of certain three-dimensional manifolds called graph manifolds.

We shall denote by Aut�(AK ) the finite-index subgroup of Aut(AK ) generated by
transvections, partial conjugations, and thin inversions; see Sect. 2 for an expanded
definition.

The following theorem is Proposition 5.3 in [1], which is simply a restatement of
Theorem 1.6 in [1] in the particular case when the given graph is a tree.
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Theorem [1] If the tree T is not shallow, then b1(Aut�(AT )) ≥ 1.

In this note, we refine the methods of [1] in order to give a better lower bound on
this rank, again in the particular case when T is a tree.

We introduce, for any tree T , the graph invariant

ϒ(T ) :=
∑

v∈D(T )

∑

w∈lk(v)

(deg(w) − 1).

As we shall see in Sect. 2, the invariant ϒ(T ) counts precisely the number of the
so-called partial conjugations of AT defined by deep nodes.

Observe that for a deep node v in a tree,
∑

w∈lk(v)(deg(w) − 1) ≥ 2, and thus for
any tree T ,

ϒ(T ) ≥ 2|D(T )|. (1.1)

The first result of this paper is the following lower bound of the Betti number of
Aut�(AT ).

Theorem A For any tree T , the bound b1(Aut�(AT )) ≥ ϒ(T ) holds.

This result implies that if T is a tree with at least one deep node, then
b1(Aut�(AT )) ≥ 1, as asserted in the result from [1] stated above.

1.4 Combinatorics of deep nodes

Next we turn our attention to the combinatorial analysis of deep nodes and shallow
trees, and to the study of the “typical size” of the combinatorial invariant ϒ(T ).

We will carry out this study in terms of labeled trees. This corresponds to consid-
ering RAAGs with labeled generators. Of course, isomorphism classes of unlabeled
trees correspond to isomorphism classes of RAAGs.

(The combinatorics of unlabeled trees is much more involved than the one for
labeled trees. Compare, for instance, Otter’s formula for the number of unrooted
unlabeled trees with n vertices, see p. 481 in [6], with Cayley’s formula for the labeled
case.)

LetUn denote the set of treeswith n nodes labeledwith {1, . . . , n}. Cayley’s formula
says that the cardinality of this set Un is exactly nn−2 for n ≥ 1.

As we will see below (Theorem B), for a typical tree T in Un , b1(Aut�(AT )) is
quite large; although we point out that for every n there are trees T with n nodes such
that b1(Aut�(AT )) = 0; see Lemma 2.11. It seems that the proportion of trees in Un

for which b1(Aut�(AT )) = 0 is asymptotically negligible as n → ∞. It would be
nice to ascertain this and to establish the precise speed of convergence to 0.

Theorem 3.7 asserts that

lim
n→∞

1

|Un|
∑

T∈Un

|D(T )|
n

= c3.
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The constant c3 is about 0.3522, and thus, we can say that for n large a typical labeled
tree with n nodes has about 35.22% of deep nodes.

Concerning the invariant ϒ(T ), as we will see in Theorem 3.8, we have that

lim
n→∞

1

|Un|
∑

T∈Un

|ϒ(T )|
n

= d3 ;

the value of the constant d3 is ≈ 2.070. In particular, we may say that for n large and
a typical tree T ∈ Un , the invariant ϒ(T ) is about d3 n.

In other words, we will get:

Theorem B For n large and a typical tree T ∈ Un, we have

b1(Aut
�(AT )) ≥ d3 n.

More concretely,

lim inf
n→∞

1

|Un|
∑

T∈Un

b1(Aut�(AT ))

n
≥ d3.

For the sake of completeness at this point, we remark that the explicit values of the
constants c3 and d3 are

c3 = e−1−2/e+e−1/e
and d3 = 2 − 1

e
+

(
1 − 1

e

)
e−1/e.

1.5 Plan of the paper

Section 2 is devoted to the proof of Theorem A. Section 3 contains the combinatorial
analysis which leads to the proof of Theorem B.

2 RAAGs and their automorphisms

Recall from the introduction that, given a finite graph K , the right-angled Artin group
(RAAG, for short) defined by K is the group AK with presentation

AK = 〈v ∈ V (K ) | [v,w] = 1 ⇐⇒ vw ∈ E(K )〉.

In order to relax notation, we will blur the distinction between nodes of K and gener-
ators of AK . For instance, given a vertex v ∈ V (K ) we will write v−1 for the inverse
of the generator corresponding to v in AK . In addition, we will write V (K )−1 for the
set of inverses of elements of V (K ), when viewed as generators of AK .

Here we will focus on the automorphism group Aut(AK ) of AK . Our first aim is
to describe a standard generating set for Aut(AK ), introduced by Laurence [10] and
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Servatius [13]. Before doing so, we will need to introduce a certain partial order on
the set of vertices of K .

2.1 A partial order on the set of nodes

There is a standard partial order ≤ on the set of nodes of K , whereby v ≤ w if
lk(v) ⊂ st(w). We will write v ∼ w to mean v ≤ w andw ≤ v; it is easy to see that∼
is an equivalence relation. We will say that a node v ∈ V (K ) is thin if its equivalence
class, with respect to ∼, has exactly one element.

We record the following observation for future use:

Lemma 2.1 Let T be a tree with at least three nodes, and let v and w be distinct
vertices. Then

(i) v ≤ w if and only if v ∈ ∂T and d(v,w) ≤ 2;
(ii) v ∼ w if and only if v,w ∈ ∂T and there exists u ∈ V (T ) with v,w ∈ lk(u).

Note that (ii) above implies that the ∼-equivalence classes of nodes with k ≥ 2
elements consist precisely of sets of k leaves which are neighbors of a same node. A
further consequence is that the thin nodes of a tree are either nodes that are not leaves,
or leaves whose only neighbor is not connected to other leaves.

2.2 Laurence–Servatius generators

We distinguish the following four types of automorphisms of Aut(AK ):

(i) Graphic automorphisms. Every automorphism of K induces an element of
Aut(AK ), which we call graphic.

(ii) Inversions. Given v ∈ V (K ), the inversion on v is the automorphism that sends
v to v−1 and fixes the rest of generators.

(iii) Transvections. Given u, v ∈ V (K ), the transvection tuv sends u to uv and fixes
the rest of generators. It is not difficult to see that tuv ∈ Aut(AK ) if and only if
u ≤ v.

(iv) Partial conjugations. Let u ∈ V (K ), and let Y be a connected component of
K� st(u). The partial conjugation cY ,u is the automorphism given by cY ,u(v) =
u−1vu if v ∈ Y , and cY ,u(v) = v otherwise.

Laurence [10] and Servatius [13] proved that these four types of automorphisms
suffice to generate Aut(AK ):

Theorem 2.2 [10,13] Let K be any graph. Then Aut(AK ) is generated by the sets of
graphic automorphisms, inversions, transvections, and partial conjugations.

2.3 Day’s presentation of Aut(AK)

More recently, building on work of McCool [11], Day [4] gave an explicit finite
presentation of Aut(AK ) in terms ofWhitehead automorphisms, which we now briefly
recall.
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Let L = V (K ) ∪ V (K )−1 ⊂ AK and consider the obvious extension to L of the
partial order≤. A type (1)Whitehead automorphism is an automorphism of AK which
is induced by a permutation of L . A type (2)Whitehead automorphism is determined
by a subset A ⊂ L , plus an a ∈ L with a ∈ A but a−1 /∈ A. Then we set (A, a)(a) = a
and, for c �= a,

(A, a)(c) =

⎧
⎪⎪⎨

⎪⎪⎩

c, if c /∈ A and c−1 /∈ A,

ca, if c ∈ A and c−1 /∈ A,

a−1c, if c /∈ A and c−1 ∈ A,

a−1ca, if c ∈ A and c−1 ∈ A.

As remarked by Day [4], not every choice of A ⊂ L and a ∈ L gives rise to
an automorphism of AK . Using a slight abuse of notation, by the link (resp. star) of
a ∈ L�K we mean the link (resp. star) in K of a−1. In [4], Lemma 2.5, Day proved
the following result.

Lemma 2.3 [4, Lemma 2.5] Let A ⊂ L, and a ∈ L with a ∈ A but a−1 /∈ A. Then
(A, a) ∈ Aut(AK ) if and only if

(1) the set K ∩ A ∩ A−1
� lk(a) is a union of connected components of K� st(a),

(2) for each x ∈ A − A−1 we have x ≤ a.

Remark 2.4 Observe that every Laurence–Servatius generator of Aut(AK ) may be
expressed in terms of Whitehead automorphisms. This is clear for graphic automor-
phisms and inversions, which are type (1) automorphisms.

In the case of partial conjugations, if Y is a union of connected components of
K� st(a),

cY ,a =
(
Y ∪ Y−1 ∪ a, a

)
,

and in particular

ca := cK−a,a =
(
L − a−1, a

)
.

Finally, if τba is a transvection (so, in particular, b ≤ a), then

τba = ({a, b}, a).

In [4], Day proved the following.

Theorem 2.5 [4] Aut(AK ) is the group generated by the set of all Whitehead auto-
morphisms, subject to the following relations:

(R1) (A, a)−1 = (A − a ∪ a−1, a−1).
(R2) (A, a)(B, a) = (A ∪ B, a) whenever A ∩ B = {a}.
(R3) (B, b)(A, a)(B, b)−1 = (A, a), whenever {a, a−1} ∩ B = ∅, {b, b−1} ∩ A =

∅, and at least one of A ∩ B = ∅ or b ∈ lk(a) holds.
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(R4) (B, b)(A, a)(B, b)−1 = (A, a)(B − b ∪ a, a), whenever {a, a−1} ∩ B = ∅,
b /∈ A, b−1 ∈ A, and at least one of A ∩ B = ∅ or b ∈ lk(a) holds.

(R5) (A − a ∪ a−1, b)(A, a) = (A − b ∪ b−1, a)σa,b, where b ∈ A, b−1 /∈ A,
b �= a but b ∼ a, and where σa,b is the type (1) automorphism such that
σa,b(a) = b−1, σa,b(b) = a, fixing the rest of generators.

(R6) σ(A, a)σ−1 = (σ (A), σ (a)), for every σ of type (1).
(R7) All the relations among type (1)Whitehead automorphisms.
(R9) (A, a)(L−b−1, b)(A, a)−1 = (L−b−1, b), whenever {b, b−1}∩ A = ∅, and
(R10) (A, a)(L − b−1, b)(A, a)−1 = (L − a−1, a)(L − b−1, b), whenever b ∈ A

and b−1 /∈ A.

Remark 2.6 In Day’s list of relations [4], there is an extra type of relator, which Day
calls (R8); however, as he mentions in [4], Remark 2.9, this relation is redundant, and
therefore, we omit it from the list above.

2.4 The group Aut�(AK)

From now on, we will restrict our attention to an explicit finite-index subgroup of
Aut(AK ), which we will denote by Aut�(AK ). Before introducing this subgroup, we
need a definition. Recall that a node is said to be thin if its equivalence class, with
respect to the relation ∼, has only one element. Consequently, we call an inversion
thin if it fixes every thin node; in other words, it is the inversion about a node that is
not thin.

Now, let Aut�(AK ) be the subgroup of Aut(AK ) generated by transvections, partial
conjugations, and thin inversions. Observe that Aut�(AK ) has finite index in Aut(AK ).

In [1], the first and fourth named authors proved that Aut(AK ) has a finite-index
subgroup that surjects onto Z. In that paper, it was claimed that one such finite-
index subgroup is the one generated by transvections, partial conjugations, and all
inversions, which was denoted by Aut0(AK ). However, the proof given in [1] is not
correct; this issue was fixed in an updated version of [1] (see [1]), where it was
proved that Aut�(AK ) surjects to Z. In order to do so, one needs to prove that Day’s
presentation can be restricted in the obvious way to a presentation for Aut�(AK ). For
completeness, we include a proof here.Write Sym1(AK ) for the subgroup of Aut(AK )

consisting of thin inversions, plus those graphic automorphisms that preserve setwise
the equivalence classes for ∼ and fix every node of K that is thin. One has:

Proposition 2.7 The group Aut�(AK ) has a finite presentation with generators the
set S of type (2) Whitehead automorphisms and Sym1(AK ), and relators (R1), (R2),
(R3), (R4), (R5), (R9), (R10) above together with

(R6)’ σ(A, a)σ−1 = (σ (A), σ (a)), for every σ ∈ Sym1(AK ).
(R7)’ All the relations among automorphisms in Sym1(AK ).

Proof First, it follows directly from the definition that Aut�(K ) is generated by all the
type (2) Whitehead automorphisms, and every thin inversion. Thanks to relator (R5),
we may add the elements of Sym1(AK ) to this list of generators.
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Let R1 be the list (R1)–(R10) of Day’s relators, except that (R6) and (R7) are
substituted by (R6)’ and (R7)’. Observe that every relation in R1 is indeed a relation
inAut�(AK ). Therefore, it remains to justifywhy these form a complete set of relations
in Aut�(AK ).

By Theorem B of [4], every automorphism α ∈ Aut(AK ) may be written as a
product α = βδ, where β lies in the subgroup of Aut(AK ) generated by short-range
automorphisms, and δ is in the subgroup generated by long-range automorphisms.
Here, we say that γ ∈ Aut(AK ) is long-range if either it is a type (1) Whitehead
automorphism, or it is a type (2) Whitehead automorphism specified by a subset
(A, v) such that γ fixes all the elements adjacent to v in K . Similarly, we say that
γ ∈ AK is short-range if it is a type (2) Whitehead automorphism specified by a
subset (A, v) and γ fixes all the elements of K not adjacent to v. Following Day, we
denote by �l (resp. �s) the set of all long-range (resp. short-range) automorphisms.

Consider now α ∈ Aut�(AK ) and observe that all short-range automorphisms are
in Aut�(AK ). The proof of the splitting in Theorem B of [4] is based on the so-called
sorting substitutions in [4], Definition 3.2. Of these, only substitution (3.1) involves an
element possibly not in Aut�(AK ), and this element is just moved along, meaning that
if our initial string consists solely of elements in the generating set S, then so does the
final string. Moreover, observe that the relators needed for these moves all lie in R1.
(An explicit list of the relators needed, case by case, can be found in Lemma 3.4 of
[4].) All this implies that up to conjugates of relators in R1, we may write α = βδ,
with β in the subgroup of Aut�(AK ) generated by�s , and δ in the subgroup generated
by �1

l = �l ∩ Aut�(AK ).
ByProposition 5.5 of [4], the subgroupofAut�(AK )generated by�s has a presenta-

tionwhere every generator is a short-range automorphism or an element of Sym1(AK ),
and where every relator lies in R1. Indeed, in the proof of Proposition 5.5 in [4], the
generators that we need to add to �s to get the desired presentation are precisely the
elements of the form σab of (R5), which belong to Sym1(AK ).

In addition, the subgroup Aut�(AK ) generated by �1
l has a presentation where

every relator is in R1. To see that this is indeed the case, first recall from Proposition
5.4 of [4] that the subgroup of Aut(AK ) generated by �l admits a presentation in
which every relation (also in the list (R1)–(R10) of Theorem 2.5) is written in terms
of �l . In order to prove this, Day uses a certain inductive argument called the peak
reduction algorithm. However, by Remark 3.22 of [4], every element of Aut�(AK )

may be peak-reduced using elements of Aut�(AK ) only. Indeed, the only subcase of
Remark 3.22 in [4] that is problematic in this setting is the use of subcase (3c) of
Lemma 3.18 in [4]. But the relator used in that subcase is precisely (R5), where the
type (1) Whitehead automorphism is σab, and thus lies in Sym1(AK ).

Moreover, the process of peak reduction needs relators in R1 only; this is a conse-
quence of the fact, observed already in Remark 3.22 of [4], that type (1) Whitehead
automorphisms are only moved around when lowering peaks, and if they lie in �1

l
then the needed relator is precisely (R5), where the type (1) Whitehead automorphism
is σab and thus lies in Sym1(AK ). ��
Remark 2.8 Let H be any subgroup of type (1) automorphisms which contains σa,b

for all a, b with a ∼ b. As one of the referees pointed out to us, the obvious adaptation
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of the argument above may be used to give a finite presentation of the subgroup
AutH (AK ) of Aut(AK ) generated by H and all type (2) automorphisms.

2.5 Proof of Theorem A

In what follows we will assume that T is a tree with at least 3 nodes. Recall that ∂T
denotes the set of leaves of T , that is, the set of nodes of degree one. Before embarking
in the proof of Theorem A, we make some preliminary observations.

First, an immediate consequence of Lemma 2.1 is that if a is a deep node of T ,
then there is no transvection of the form τca . Furthermore, recall that the same lemma
implies that the ∼-equivalence classes with more than one element consist precisely
of sets of k ≥ 2 leaves adjacent to a same node. Thus, the subgroup of Aut(AT )whose
elements are those graphic automorphisms which (setwise) preserve these classes is
generated by the graphic automorphisms that fix the whole T , apart from two leaves
adjacent to a same node, which are possibly interchanged by an involution.

Let a ∈ V (T ). Observe that the number of partial conjugations of the form cY ,a

coincides with the number of connected components of T� st(a). Moreover, this
number can be computed as

∑

c∈lk(a)

(degree(c) − 1).

Set

� =
⋃

{cY ,a | d(a, ∂T ) ≥ 3,Y connected component of T� st(a)}}.

Finally, in order to relax notation,wewill simplywrite H1 instead of H1(Aut�(AT ), Z).
After all this notation, Theorem A will be a consequence of the following stronger
result.

Theorem 2.9 Let π : Aut�(AT ) → H1 be the abelianization map. Then π(�) is a
linearly independent set in H1.

Accepting momentarily the validity of Theorem 2.9, we now explain how to deduce
Theorem A from it:

Proof of TheoremA In light of the discussion before Theorem 2.9, we have that the
cardinality of � is equal to

ϒ(T ) =
∑

v∈D(T )

∑

w∈lk(v)

(deg(w) − 1),

where again D(T ) denotes the set of deep nodes of T . Thus, the result follows from
Theorem 2.9. ��

Finally, we prove Theorem 2.9.
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Proof of Theorem 2.9 Let n be the cardinality of � and consider the map

ϕ : � →
⊕

c∈�

Z

c �→ 1c.

We claim that this map can be extended to a well-defined epimorphism Aut�(AT ) �
Z

|�|. To show this, we will first extend ϕ to the set of Whitehead automorphisms that
generate Aut�(AT ) and then check that the Day relators are preserved. In order to do
so, we map all automorphisms in Sym1(AT ) to 0.

Consider an arbitrary type (2) Whitehead automorphism (A, a). If there is some
leaf b such that d(a, b) ≤ 2, then we map (A, a) �→ 0. Otherwise, assume first that a
is a node of T . Using Lemma 2.3 and relators (R2), we may write (A, a) as a product
of partial conjugations cY ,a ∈ � (observe that there is no element b ≤ a), and the
set of possible Y ′s appearing in this expression is uniquely determined from A. We
define the image of (A, a) in the obvious way using this expression; note that the last
observation implies that this is well defined. Finally, in the case when a−1 ∈ T , set
ϕ(A, a) = −ϕ(A − a ∪ a−1, a−1). Now we have an extended map which we also
denote ϕ and claim that it respects Day relators. We do not have to worry about (R1)
and (R2) because of the way ϕ is defined. About (R3) and (R9), they are preserved
because Z

n is abelian. For (R6)’ and (R7)’ we only have to consider elements in
Sym1(AT ). Relator (R7)’ is not an issue either, because all the terms therein vanish.
So we are left with (R4), (R5), (R10) and (R6)’. About (R4), as Z

n is abelian we only
have to check that ϕ maps (B − b ∪ a, a) to 0, but this is obvious because of the facts
that b /∈ A, b−1 ∈ A and that (A, a) is well defined imply b ≤ a; hence, b is a leaf
and d(a, b) ≤ 2. Exactly the same argument works for (R5) and (R10): in the case of
(R5) we have a ∼ b; thus, both are leaves and everything is mapped to 0. And in the
case of (R10), we know that b ∈ A, b−1 /∈ A, and (A, a) is well defined; thus, b ≤ a,
and we argue as before to conclude that (L − a−1, a) is mapped to 0.

At this point, we only have to consider (R6)’. We claim that if a is a deep node,
and (A, a) is well defined, then (σ (A), σ (a)) = (A, a) for any σ ∈ Sym1(AT ); note
that this will imply that ϕ preserves (R6)’. In fact, it suffices to show the claim for
A = Y ∪ Y−1 ∪ a and Y a connected component of T� st(a). As T is a tree, such a
Y must have more than one element and must itself be a tree with a vertex in lk(a),
which we may regard as the root of Y . Moreover, if c ∼ b are leaves in T and one of
them happens to be in Y , then so is the other. Therefore, σ(Y ∪ Y−1) = Y ∪ Y−1. On
the other hand, since a is thin we have that σ(a) = a, by the definition of Sym1(AT ),
so the claim follows. ��

2.6 A remark on the bound given by Theorem A

Before continuing, we stress that the lower bound given by Theorem A is most def-
initely not sharp. On the other hand, not every element of Aut�(AT ) projects to a
non-trivial element of H1. In this direction, we have:
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Lemma 2.10 Let T be a tree with at least three vertices, and let Aut∗(AT ) → H1 be
the abelianization map. The following elements have trivial image:

i) Every transvection tda = ({d, a}, a) satisfying that:

– either a is a leaf, and there is a third leaf b /∈ {a, d} such that a, b, d have a
common neighbor,

– or d is adjacent to a, and there is a leaf b �= d adjacent to a.

ii) Partial conjugations cY ,a where a is a leaf and there is a second leaf b �= a such
that a, b have a common neighbor.

In order to prove the lemma, we will mainly use relators (R4) and (R10). It will be
useful to reformulate them as follows. (We emphasize that this reformulation does not
make use of the hypothesis that T is a tree.)

(R4) Let B1 ⊆ L be such that (B1, a) is well defined. Assume that there is some
b ∈ L with b ≤ a and b, b−1 /∈ B1 such that (B1 − a ∪ b, b) is well defined
and that for some A ⊆ L we have (A, a) well defined, b /∈ A, b−1 ∈ A, and at
least one of A ∩ B1 = {a} or b ∈ lk(a) holds. Then

(B1, a) vanishes in H1.

(R10) Let b, a ∈ L such that b ≤ a. Then

ca vanishes in H1,

where ca denotes conjugation (of every node of T ) by a.

We are now ready to prove Lemma 2.10:

Proof of Lemma 2.10 First, note that since tda is defined, then d is necessarily a leaf
by Lemma 2.1. Moreover, in both cases we have b ≤ a, and thus, the element (A, a),
with A = {b−1, a}, is well defined. Now, in case i) let B1 = {d, a} so tda = (B1, a).
As the hypothesis implies d ≤ b, we see that (B1 − a ∪ b, b) = ({d, b}, b) is well
defined; thus, using (R4) we deduce that tda vanishes in H1.

Consider now case ii). Let

T − st(a) = {b} � Y1 � · · · � Yt

be the partition of T� st(a) into connected components. Observe that the connected
components of T� st(b) are precisely

T − st(b) = {a} � Y1 � · · · � Yt

also. For any i , set B1 = Yi ∪ Y−1
i ∪ a and as before A = {b−1, a}. Using (R4) we

deduce that cYi ,a vanishes in H1. Moreover, the fact that b ≤ a implies by (R10) that
ca also vanishes in H1, and as an iterated use of (R2) implies

ca = cb,a
∏

cYi ,a,
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we see that the same happens for cb,a . ��
As a consequence, we may easily exhibit a class of trees T for which the first Betti

number of Aut�(AT ) vanishes.

Lemma 2.11 Let T be a tree such that every node is either a leaf or it has at least
three leaves as neighbors. Then b1(Aut�(AT )) = 0.

Proof Observe first that the result is true if T is just an edge. Otherwise, recall that a
consequence of Day’s presentation is that Aut�(AT ) is generated by certain type (1)
Whitehead automorphisms, all of which have finite order, and the following two kinds
of type (2) Whitehead automorphisms:

i) Transvections τy,a = ({y, a}, a) with y ≤ a,
ii) Partial conjugations cY ,a = (Y ∪ Y−1 ∪ a, a) with Y a connected component of

T − stT (a).

Therefore, it suffices to check that both types of elements i) and ii) vanish in H1.
In case i), this follows from the hypothesis and Lemma 2.10. The same happens in
case ii) unless a is not a leaf. In this latter case, take the vertex z ∈ st(a) that connects
a to Y and a leaf b that is adjacent to z. Observe that in a similar way as we did in
Lemma 2.10, putting A = {b−1, a} and B1 = Y ∪ Y−1 ∪ a, relator (R4) implies that
cY ,a vanishes in H1. ��

Before closing this section, we briefly discuss an example of a type of tree T
such that Aut(AT ) has infinitely many finite-index subgroups with zero Betti number.
Specifically, suppose T contains a vertex with degree n, and n leaves as neighbors.
Then AT = Z × Fn , where the Z-factor is generated by the vertex of degree n. This
group satisfies properties (B1) and (B2) in [1], and thus, by Theorem 1.1 in that paper,
we obtain that b1(H) = 0 for any H ≤ Aut(AT ) of finite index containing the Torelli
subgroup.

In light of these results, a natural question is:

Question 2.12 Let T be a tree. What is the exact value of b1(Aut�(AT ))?

More generally, one may ask:

Question 2.13 Let K be an arbitrary graph, andAut1(AK ) the subgroup of Aut(AK )

generatedby transvections andpartial conjugations.Calculate b1(Aut1(AK )) in terms
of the combinatorics of K .

3 Deep nodes and shallow trees

Recall that a node v of a tree T is called deep if ∂v ≥ 3, that the collection of deep
nodes of T is denoted D(T ), and that a tree T with no deep nodes is termed shallow.

Some examples of shallow trees and trees with deep nodes follow; intensity of
shading indicates distance to the boundary.
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The class of rooted labeled trees is denoted by T , while the class of general
(unrooted) labeled trees is denoted by U . The respective subclasses of trees with
nodes labeled with {1, . . . , n} are denoted by Tn and Un , for each n ≥ 1. Cayley’s
formula (see [6, p. 127]) tells us that

tn := |Tn| = nn−1, for n ≥ 1,

and that

un := |Un| = nn−2, for n ≥ 1.

We endow Un with the uniform probability distribution; claiming that a certain
property occurs with probability p in Un is tantamount to claiming that the proportion
of trees in Un satisfying that property is p.

3.1 Notation and some basic results

The “symbolic method” readily translates questions about counting trees into analytic
questions about power series. We introduce here some basic notation and results and
refer to the comprehensive treatise of Flajolet and Sedgewick [6] for details.

Given a sequence (an)∞n=0, its (ordinary) generating function (ogf, for short) is the
power series f (z) given by

f (z) =
∞∑

n=0

an z
n

for all z ∈ D(0, ε), for some ε > 0. We will write an = coeffn( f (z)).
The function g(z) is the exponential generating function (for short, egf) of the

sequence (an) if

g(z) =
∞∑

n=0

an
n! z

n

for all z ∈ D(0, ε), for some ε > 0.
A basic tool for handling combinatorial questions about trees is the Lagrange inver-

sion formula (see, for instance, Section A.6, p. 732, in [6]).

Lemma 3.1 (Lagrange inversion formula) Let h(z) and f (z) be two holomorphic func-
tions on some neighborhood of z = 0, say D(0, ε), such that f (0) �= 0, and
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h(z) = z f (h(z))

in D(0, δ). Then, for any function g holomorphic at 0,

coeffn [g(h(z))] = coeffn−1

[
g′(z) f (z)n

n

]
, for each n ≥ 1.

Note that h(0) = 0.

Trees and generating functions. We let T (z) denote the egf of the sequence (tn),
namely:

T (z) =
∞∑

n=0

tn
n! z

n, |z| <
1

e
. (3.1)

The function T (z) satisfies the following implicit equation:

T (z) = z eT (z). (3.2)

Here, the factor z accounts for the root, while eT (z) represents the (possibly empty)
set of trees stemming from the root. See the details in [6, p. 127].

As an immediate corollary of Lemma 3.1, we state:

Corollary 3.2 For n, k ≥ 1,

coeffn
[
T (z)k

] = k

n

nn−k

(n − k)! .

Stirling numbers. For n ≥ 0 and k ≥ 0, the symbol S(n, k) stands for the (double)
sequence of Stirling numbers of the second kind, that count the number of partitions
of a set of size n into k non-empty (unlabeled) subsets, with the conventions S(n, 0) =
0 = S(0, k) for n ≥ 1 and k ≥ 1, but S(0, 0) = 1.

We shall use the following identities (see [6, p. 736]). For k ≥ 0,

∞∑

n=0

S(n, k)

n! xn = 1

k! (ex − 1)k . (3.3)

Also,

∑

k,n≥0

S(n, k)
xn

n! yk = ey(e
x−1). (3.4)

Notice that, writing the Taylor series of (ex −1)k , and identifying coefficients, formula
(3.3) gives
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S(n, k)

n! = 1

k!
∑

q1,...,qk≥1
q1+···+qk=n

1

q1! · · · qk ! . (3.5)

Taking a derivative with respect to x in (3.4), we get

∑

k≥0,n≥1

S(n, k)
xn−1

(n − 1)! y
k = y ex ey(e

x−1); (3.6)

and multiplying by x and differentiating again with respect to x ,

∑

k≥0,n≥1

S(n, k) n
xn−1

(n − 1)! y
k = y ex ey(e

x−1) (
1 + x + xy ex

)
. (3.7)

3.2 Deep nodes

Our objective now is to study how abundant deep nodes are in a typical labeled tree
with n nodes, as n → ∞. Our argument starts analyzing rooted trees (Sects. 3.2.1 and
3.2.2 ) and then settles (Sect. 3.2.3) the same question about unrooted trees, which is
the more relevant case for our purposes.

3.2.1 Proportion of rooted trees with the root at distance≥ 3 to the border

Recall that T denotes the class of all rooted trees and that Tn denotes the subclass
of rooted trees labeled with {1, . . . , n}. Again, we endow Tn with the uniform proba-
bility distribution. Probabilities and expectations, denoted by Pn and En , refer to this
probability space. Recall that tn = |Tn| = nn−1.

Call T (3) the subclass of rooted trees whose root is a deep node, ∂root ≥ 3. In
such trees, the root has, say, k ≥ 1 descendants, which in turn have q1, . . . , qk ≥ 1
descendants, none of which is a leaf. (This guarantees distance ≥ 3 from the root to
the leaves.) Call N = q1 + · · · + qk (Fig. 1).

Consider the following subclasses of T :

T (3)
k,q1,...,qk

=
{ k descendants of the root, with q1, . . . , qk ≥ 1

descendants, respectively, and ∂root ≥ 3

}

T (3)
k,N =

{ k descendants of the root, N nodes
in the second generation, ∂root ≥ 3

}
=

⋃

q1,...,qk≥1
q1+···+qk=N

T (3)
k,q1,...,qk

.

Observe that

T (3) =
⋃

k≥1

⋃

N≥k

T (3)
k,N .
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Fig. 1 Trees with ∂root ≥ 3

In all cases, an extra subindex n would indicate the corresponding subclass of trees
with nodes labeled with {1, . . . , n}.

We have the following asymptotic result.

Theorem 3.3

lim
n→∞Pn

(
T (3)
n

)
= e−1−2/e+e−1/e =: c3.

Proof Let k, q1, . . . , qk be fixed. The symbolic method (for labeled structures) of
Flajolet and Sedgewick [6] yields that the egf of the class T (3)

k,q1,...,qk
is given by

∞∑

n=0

∣∣∣T (3)
n;k,q1,...,qk

∣∣∣
n! zn = z

zk

k!
(T (z) − z)q1

q1! · · · (T (z) − z)qk

qk ! . (3.8)

Here, the factor z accounts for the root, the factor zk for its k neighbors, and each
factor (T (z) − z)qi , for the tree (with more than one vertex) springing from each one
of those neighbors. The factorials in the denominators take into account the absence
of order among first neighbors and among the subsequent trees.

We can rewrite (3.8) as

∞∑

n=0

∣∣∣T (3)
n;k,q1,...,qk

∣∣∣
n! zn = 1

k!
1

q1! · · · qk ! z
k+1 (T (z) − z)N ,

from where we get that

Pn

(
T (3)
n;k,q1,...,qk

)
=

∣∣∣T (3)
n;k,q1,...,qk

∣∣∣
|Tn|

= n!
nn−1

1

q1! · · · qk !
1

k! coeffn
[
zk+1 (T (z) − z)N

]
.
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Now, writing a j = (k + 1) + (N − j) and using Corollary 3.2,

coeffn
[
zk+1 (T (z) − z)N

] = coeffn−k−1

⎡

⎣
N∑

j=0

(
N

j

)
T (z) j (−1)N− j zN− j

⎤

⎦

=
N∑

j=0

(
N

j

)
(−1)N− j coeffn−a j

[
T (z) j

]

=
N∑

j=0

(
N

j

)
(−1)N− j j

n − a j

(n − a j )
n−a j− j

(n − a j − j)! .

This yields

Pn

(
T (3)
n;k,q1,...,qk

)

= n!
nn−1

1

q1! · · · qk !
1

k!
N∑

j=0

(
N

j

)
(−1)N− j j

n − a j

(n − a j )
n−a j− j

(n − a j − j)! . (3.9)

Notice that

n!
nn−1

1

n − a j

(n − a j )
n−a j− j

(n − a j − j)!
= n

n − a j

n(n − 1) · · · (n − a j − j + 1)

na j+ j

(
1 − a j

n

)n−a j− j
, (3.10)

which tends to e−a j when n → ∞.
This gives, recalling that a j = (k + 1) + (N − j), that

lim
n→∞Pn

(
T (3)
n;k,q1,...,qk

)
= 1

q1! · · · qk !
1

k!
N∑

j=0

(
N

j

)
(−1)N− j j e−a j

= 1

q1! · · · qk !
1

k! e
−N−(k+1)

N∑

j=0

(
N

j

)
(−1)N− j j e j

= 1

q1! · · · qk !
1

k! e
−(k+1) N

(
1 − 1

e

)N−1

,

where in the last step we have used the binomial theorem.
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Now, summing over all tuples q1, . . . , qk ≥ 1 with sum N , we get

lim
n→∞Pn

(
T (3)
n;k,N

)
= 1

k! e
−(k+1) N

(
1 − 1

e

)N−1 ∑

q1,...,qk≥1
q1+···+qk=N

1

q1! · · · qk !

= e−(k+1) S(N , k)
1

(N − 1)!
(
1 − 1

e

)N−1
, (3.11)

using (3.5).
Finally, summing over k and N , we get

lim
n→∞Pn(T (3)

n )
(�)=

∑

k,N

e−(k+1) S(N , k)
1

(N − 1)!
(
1 − 1

e

)N−1

= 1

e

∑

k,N

S(N , k)
(1 − 1/e)N−1

(N − 1)!
(1
e

)k = 1

e

1

e
e1−1/e e(e1−1/e−1)/e (3.12)

(for the last identity, use (3.6) with x = 1 − 1/e and y = 1/e).
To justify the interchangeof limit and (the double) sum in (�),weobserve, from (3.9)

and (3.10), that

Pn

(
T (3)
n;k,q1,...,qk

)
≤ 1

q1! · · · qk !
1

k!
N∑

j=0

(
N

j

)
j = 1

q1! · · · qk !
1

k! N 2N−1,

and so

Pn

(
T (3)
n;k,N

)
≤ N

k! 2
N−1

∑

q1,...,qk≥1
q1+···+qk=N

1

q1! · · · qk !

≤ N

k! 2
N−1 coeffN

[
ekz

]
= 1

2

1

k!
(2k)N

(N − 1)! .

As

∑

k≥1

∑

N≥k

1

k!
(2k)N

(N − 1)! < +∞,

dominated convergence justifies (�). ��
Remark 3.4 (Rooted labeled trees with the root farther away from the leaves) For
k ≥ 0, denote by T (k) the subclass of rooted trees in which the root is, at least, k units
away from the boundary (∂root ≥ k). Write �k(z) for its egf.

For k = 0, T (0) = T , and the corresponding egf is just the Cayley’s function,
�0(z) = T (z).
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The symbolic method (see [6]) gives that the sequence (�k(z)) of egfs satisfies the
recurrence relation

�0(z) = T (z), �k(z) = z
(
e�k−1(z) − 1

)
, k ≥ 1. (3.13)

To see this, take a tree in T (k), delete its root (and the edges departing from it), and
observe that we are left with a non-empty set of rooted trees in T (k−1).

In particular, using Cayley’s formula (3.2), we get

�1(z) = z
(
e�0(z) − 1

)
= z

(
eT (z) − 1

)
= T (z) − z. (3.14)

and

�2(z) = z
(
e�1(z) − 1

)
= z

(
eT (z)−z − 1

)
= T (z) e−z − z. (3.15)

In the latter case, the particular structure of �2(z) allows to obtain the asymptotic
behavior of its coefficients in a direct manner (avoiding a combinatorial argument
similar to that used in the proof of Theorem 3.3), using a trick of Schur and Szász (see
[6, Theorem VI.12, p. 434]). The result in this case is that

lim
n→∞Pn(T (2)

n ) = e−1/e ≈ 0.6922.

For k = 3, instead,

�3(z) = z
(
e�2(z) − 1

)
= z eT (z)e−z

e−z − z, (3.16)

and the simple approach sketched above for k = 2 does not work. That is why we had
to go through the combinatorial argument of the proof of Theorem 3.3, to obtain

lim
n→∞Pn(T (3)

n ) = 1

e
e−1/e e(e1−1/e−1)/e ≈ 0.3522.

Notice that the height of a rooted tree is the maximum distance from the root to the
leaves, while the distance ∂root is the minimum distance from the root to the leaves.
The egfs �k(z) of rooted trees of height ≤ k satisfy

�0(z) = z, �k(z) = z e�k−1(z), k ≥ 1. (3.17)

The asymptotics of the proportion that rooted trees of height ≤ k occupy in Tn is well
known, starting with the Rényi–Szekeres analysis of (3.17) (see [12]).

It would be nice to have a general analogous analysis of recurrence (3.13) that could
lead to an answer to:

Question 3.5 For k ≥ 4, and as n → ∞, what is the proportion that trees in T (k)
n do

occupy in Tn?
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3.2.2 Mean of the sum of degrees of descendants of the root

In the same probability space Tn (rooted trees labeled with {1, . . . , n}, with uniform
distribution), consider the random variable

Yn(T ) = 1{∂root≥3} · Nn(T ) =
{
Nn(T ) if ∂root ≥ 3,
0 otherwise,

where Nn(T ) is the number of nodes in the second generation of the graph T counted
from the root (see Fig. 1). Observe that

Nn(T ) =
∑

v∈lk(root of T )

(deg(v) − 1).

The following asymptotic result holds.

Theorem 3.6

lim
n→∞En(Yn) = 2 − 1

e
+

(
1 − 1

e

)
e−1/e =: d3.

The numerical value of d3 is ≈ 2.070.

Proof Recalling (3.11) and (3.12), we observe that

lim
n→∞En(Yn) = 1

c3

∑

k,N

N · S(N , k)
(1 − 1/e)N−1

(N − 1)! e−(k+1)

= 1

c3

1

e

∑

k,N

N · S(N , k)
(1 − 1/e)N−1

(N − 1)!
(
1

e

)k

= 1

c3

1

e

1

e
e1−1/e e(e1−1/e−1)/e

[
2 − 1

e
+ 1

e

(
1 − 1

e

)
e1−1/e

]

=
[
2 − 1

e
+ 1

e

(
1 − 1

e

)
e1−1/e

]
,

where we have used (3.7) with x = 1 − 1/e and y = 1/e, and the value of c3 from
Theorem 3.3. The interchange of limit and double sum can be justified by dominated
convergence, along the same lines as in the proof of Theorem 3.3. ��

3.2.3 From rooted to unrooted trees

Theorems 3.3 and 3.6 can be readily reinterpreted in the context of unrooted trees.
Fix n and consider the collection Un of the nn−2 trees labeled with {1, . . . , n}

endowed with the uniform probability. For the sake of clarity, we denote probability
and expectation in Un with P′

n and E′
n , respectively.
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Let Xn(T ) denote the random variable in Un that counts the number of deep nodes
of T :

Xn(T ) =
∑

v∈V (T )

1{∂v≥3} = |D(T )|.

Consider now a 0–1 matrix M , of dimensions n × nn−2, with columns labeled
with T1, T2, . . . , the collection of trees in Un , and with rows labeled with the nodes
{1, . . . , n}, where in the ( j, Ti )-entry we place a 1 if the node j of Ti is deep, and we
place a 0 otherwise.

Summing the entries of the matrix M and dividing by nn−2, we obtain the mean
value of Xn :

E′
n(Xn) = 1

nn−2

∑

T∈Un

Xn(T ).

Each (unrooted) tree Ti leads to n different rooted trees T (1)
i , . . . , T (n)

i by choosing

any of its nodes as the root; here, T ( j)
i means that node j has been selected as the root

in the tree Ti .
Now build a 0-1 matrix M ′ of dimensions n × nn−1: rows are labeled with the n

nodes, and the columns with the collection of rooted trees in the following order: first
T (1)
1 , . . . , T (n)

1 , then T (1)
2 , . . . , T (n)

2 , etc. The value of the entry (vi , T
(k)
j ) is 1 if i = k

and the node i (the root of the tree T (i)
j ) is at distance ≥ 3 to the boundary; and it is 0

otherwise.
The sum of the entries of M ′, divided by nn−1, gives the probability that in a rooted

labeled tree, the root is at distance ≥ 3 to its boundary. As the sum of the entries of M ′
equals the sum of the entries of M , recalling Theorem 3.3, we deduce the following.

Theorem 3.7 As n → ∞, the expectation of the proportion of nodes in a labeled tree
on n nodes that are at distance ≥ 3 from any leaf tends to c3, i.e.,

lim
n→∞

1

n
E′
n(X) = c3.

Next, in the probability space Un of unrooted trees T labeled with {1, . . . , n} and
endowed with uniform probability, consider the random variable

ϒ(T ) =
∑

v∈V (T )

1{∂v≥3} · Nv =
∑

v∈D(T )

Nv,

where Nv is the number of nodes two units away from v. Observe that

Nv(T ) =
∑

w∈lk(v)

(deg(w) − 1).
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An analogous argument as above using Theorem 3.6 instead of Theorem 3.3 yields:

Theorem 3.8

lim
n→∞

1

n
E′
n(ϒ) = d3.
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