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This article is aimed at proposing a generalization of the Ross-Macdonald model for the trans-
mission of Vector-borne diseases in which human-to-human contagions are also considered. We first
present this generalized model by formulating a mean field theory, checking its validity by comparing
to numerical simulations. To make the premises of our model more realistic, we adapt the mean
field equations to the case in which human contacts are described by a complex network. In both
the mean-field and network-based models, we estimate the value of the epidemic threshold which
corresponds to the boundary between the disease-free and epidemic regimes. The expression of this
threshold allows us to discuss the impact that human-to-human contagions have on the spread of
vector-borne diseases.

PACS numbers:

I. INTRODUCTION

Vector-borne diseases (VBD) are transmitted indi-
rectly among humans by the intermediation of vectors
such as mosquitoes, ticks or sand-flies. According to the
World Health Organization (WHO), these diseases repre-
sent over the 20 % of all infectious diseases causing more
than one billion of infections and one million deaths per
year [1]. In the recent years there is a growing global con-
cern about VBD since, despite being mainly localized in
tropical and ecuatorial areas, these diseases have started
to spread across more tempered latitudes due to human
impact [2, 3] and the adaptability of the vectors to ur-
ban areas. For instance, Aedes albopticus species, which
are responsible for the transmission of some important
VBD like Dengue or Chikungunya, can survive in cool
temperatures and their eggs had the ability to diapause
during winter [4]. These facts have resulted in a wide
geographical distribution of Aedes albopticus, expanding
from South America and Asia to North America and Eu-
rope [5]. As a consequence, in the recent years the first
observations of endogenous cases of VBD in the south-
ern part of Europe and the island of Madeira have been
reported [6–8].

A recent example of the present and future threats
behind the rapid advance of VBD has been the out-
break of ZIKV epidemics in 2015 and 2016. This disease,
originally localized in the pacific area, became a global
concern in few months due to its sudden expansion to
the Caribbean and South America and, boosted, by the
series of neurological abnormalities associated to its in-
fection, mainly newborn microcephaly and the Guillain-
Barré syndrome [9–11]. One of the most surprising fea-
tures of ZIKV is that, unlike most VBD, it can also be
transmitted between humans via materna-fetal or sexual
transmission [12]. Inspired by this finding, the aim of
this work is to study the role that this new contagion

pathway plays on the epidemic onset of VBD.
The most usual way of modeling epidemics relies on

compartmental models [13–15]. Compartmental models
consider populations in which agents can adopt a dis-
crete and finite set of states. In the case of VBD, the
Ross-Macdonald (RM) framework [16–18] constitutes the
paradigmatic compartmental model for their study. In
this model, humans and vectors can be in either of the
two possible states: susceptible (SH for humans and SM

for vectors) or infected (IH for humans and IM for vec-
tors). The transitions between these two states occur
following different processes. First, contagion events, i.e.
the transition S → I, only occur in a crossed way: from
infectious vectors (humans) to healthy humans (vectors):

IM + SH
λMH

−−−→ IM + IH , (1)

IH + SM
λHM

−−−→ IH + IM , (2)

where λHM and λMH are the respective transmission
probabilities for each type of contagion. These crossed
infections make the RM model a very suitable framework
to characterize the evolution of VBD [19–22]. Second, the
transitions from Infected to Susceptible are endogenous,
i.e. they are not the product of any interaction:

IH
µH

−−→ SH , (3)

IM
µM

−−→ SM , (4)

where µH accounts for the recovery probability of hu-
mans, whereas µM is the death rate of vectors. Note that
infected vectors are not diseased but they act as simple
carriers of the pathogen. Thus, infected vectors are sim-
ply replaced at a rate µH by the new vectors born as
susceptible, i.e. free of pathogens. Finally, to generalize
the RM model by incorporating contagions from human
contacts we add the probability λHH that an infected

Soriano-Paños, D., Arias-Castro, H., Naranjo-Mayorga, F. et al. Eur. Phys. J. Spec. Top. 
(2018) 227: 661. https://doi.org/10.1140/epjst/e2018-00099-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289999473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

FIG. 1: Schematic representation of contagion and recovery
processes in our modified Ross Macdonald model. The conta-
gion processes are determined by the crossed contagion rates,
λMH and λHM , and the contagion rate between humans λHH .
The transition from infected to susceptible are controlled by
the human recovery rate, µH , and the death rate of vectors,
µM .

human transmits the disease to a susceptible one:

IH + SH
λHH

−−−→ 2 IH . (5)

The former microscopic transitions between the two com-
partments for humans and vectors are summarized in
Fig. 1.

The structure of this manuscript is as follows. We
first adapt the usual mean-field formulation of the RM
model to incorporate human-human contagions. We
then use the proposed equations to estimate the influ-
ence of human-human contagion paths on the epidemic
threshold, which is defined as the boundary between the
disease-free and the epidemic solutions. Afterwards, to
incorporate realistic human interaction patterns, we leave
the mean-field assumption by encoding the human con-
tacts in a complex network [23, 24]. To this aim, we
will write the dynamical evolution equations by making
use of the Microscopic Markov Chain Approach (MMCA)
[25–28] and use this formalism to describe the effect of in-
troducing heterogeneous (Scale-free [29, 30]) interaction
patterns among humans. To round off, we will derive an-
alytically the epidemic threshold when a general network
of human contacts is considered.

II. MEAN FIELD APPROACH

A. Model equations

In order to get a first insight about the effects of
adding a new contagion path to the RM model, we
propose a mean field theory whose equations are based
on discrete Markov chains. Following the original RM
model assumptions, we suppose a closed population of
N humans and we define γ as the ratio between vec-
tors and humans, so that there are γ · N vectors. The

microscopic (contagion and recovery) processes at work
have been already introduced above and summarized in
Fig. 1. On the one hand, contagion processes are the
outcome of the interactions between vectors and humans
and among humans, which are characterized by the con-
tagion probabilities{λMH , λHM , λHH}. To model these
interactions, we assume that each vector makes β bites
per time step and that each human contacts with other
k humans per time step. On the other hand, the recov-
ery processes are determined by the recovery/death rates
{µH , µM}.

Following the mean field premises of the original RM
model, the state of the whole system is characterized by
two variables, ρH(t) and ρM (t), which indicate us the
fraction of infected humans and infected vectors. Taking
into account the parameters previously defined, the time
evolution of the fraction of infected humans, ρH(t), can
be expressed as:

ρH(t+ 1) =
(
1− µH

)
ρH(t)

+
(
1− ρH(t)

) [
1− PHHninf (t)PMH

ninf (t)
]

(6)

where the first term corresponds to the infected agents
that do not recover, whereas the second term denotes the
susceptible ones who catch the disease. The probabilities
of not being infected neither by contact with vectors,
PHHninf (t), nor by contact with infected humans, PMH

ninf (t),
are given by:

PHHninf (t) =
(
1− λHHρH

)k
, (7)

PMH
ninf (t) =

(
1− λMHρM

)βγ
, (8)

where factor βγ accounts for the number of times that a
human is bitten by a vector. Let us note that the propor-
tion between vectors and humans, encoded in parameter
γ, plays a key role on the transmission of the pathogen
from vectors to humans, as seen in Eq. (8).

Following the same framework, the time evolution of
the fraction of infected vectors, ρM (t), can be written as:

ρM (t+ 1) =
(
1− µM

)
ρM (t)

+
(
1− ρM (t)

) (
1−

(
1− λHMρH(t)

)β)
(9)

where the first term corresponds to vectors that remain
infected, whereas the second term denotes the ones which
become infected after biting infected human. Let us re-
mark that in this case the proportion between vectors and
humans does not have any influence since all the vectors
are assumed to make β bites per time step, regardless of
the number of agents in the system under study.

Summing up, given an initial condition, ρH(0) and
ρM (0), the iteration of Eqs.(6)-(9) allows us to moni-
tor the time evolution of the spread of a VBD with two
contagion mechanisms under a mean-field assumption.



3

FIG. 2: Panel (a). Fraction of infected people in the station-
ary state ρH as a function of the human-to-human contagion
probability λHH . Solid lines correspond to the predictions of
our model by integrating Eqs.(6,9) whereas black dots rep-
resent the solutions from numerical simulations obtain by
averaging 20 realizations. The color of each line denotes
the biting rate β, while the rest of parameters of our model
(λMH , λHM , k, γ, µH , µM ) are set to (0.01, 0.01, 4, 2, 0.2, 0.1).
Panel (b). Temporal evolution of the fraction of in-
fected people (red) and the fraction of infected mosquitoes
(blue). Solid lines are obtained by iterating Eqs. (6)-(9)
whereas dots correspond to results from MC simulations. In
this case, we have set (λMH , λHM , λHH , k, γ, β, µH , µM ) to
(0.01, 0.01, 0.2, 4, 2, 2, 0.2, 0.1).

B. Model validation

In order to validate the former equations, it is custom-
ary to compare its predictions about the incidence of a
disease, which is defined as the fraction of infected agents
in the stationary state, to results from Monte Carlo sim-
ulations. These simulation are performed by tracking the
state of each vector and human, which changes in time
according to the probabilistic rules defined in Fig. 1. This
way, we start by infecting a 1% of vectors and then we
let the whole system evolve until it reaches the station-
ary state. Due to the stochastic nature of the microscopic
contagion and recovery processes, it is necessary to av-
erage the results for several realizations of these Monte
Carlo simulations. In turn, theoretical predictions are
obtained by iterating Eqs. (6)-(9) until the stationary
solution, (ρH , ρM ), is reached.

In order to show the accuracy of the mean-field formu-
lation, we have represented in Fig. 2.a the prediction of
Eqs. (6)-(9) about the incidence of a disease as a function
of the human-human contagion rate, λHH , for several val-
ues of the vector biting rates β and considering that the
population of vectors duplicates that of humans (γ = 2)
and a that each human contacts k = 4 other humans
per time step [31]. Regarding Monte Carlo simulations,
we have considered a system composed of N = 4000
humans (and correspondingly 8000 vectors). The ac-
curacy of Eqs. (6)-(9) becomes clear from the diagrams
ρH(λHH). In addition, it can be observed that increas-
ing the vectors biting rate β clearly boosts spreading due
to the pronounced decrease of the epidemic threshold,
λHHc , here represented as the minimum value of λHH for

FIG. 3: Fraction of infected people in the stationary state
ρH as a function of the human-to-human contagion probabil-
ity λHH . Solid lines correspond to the solution obtained by
iterating Eqs. (6)-(9) whereas black dots represent the solu-
tions from Monte Carlo simulations obtained after averaging
over 20 realizations. In panel (a) the color of each line de-
notes the vector-human contagion rate λHM , while the rest
of parameters of our model (λMH , β, k, γ, µH , µM ) are set to
(0.01, 2, 4, 2, 0.2, 0.1). In Panel (b) the color of each line de-
notes the vector-human contagion rate λMH , while the rest
of parameters of our model (λHM , β, k, γ, µH , µM ) are set to
(0.01, 2, 4, 2, 0.2, 0.1).

which ρH > 0. To further validate the mean-field formu-
lation we analyze the temporal evolution of the disease
incidence. To this aim, in Fig. 2.b, we show (solid lines)
the time evolution for the fraction of infected humans,
ρH(t), and vectors, ρM (t), as obtained by solving (iter-
ating) Eqs. (6)-(9). The two curves are in perfect agree-
ment with the numerical results obtained from a single
run of a Monte Carlo simulation (dots) in a population.

Once analyzed the role that vector biting rate, β, plays
on epidemic spreading, it is worth analyzing the effect of
breaking the symmetry between the contagion rates be-
tween humans and vectors, λMH = λHM , assumed in
Fig. 2.a. For this purpose, in Fig. 3.a we have analyzed
the disease incidence as a function of λHH for several
values of λHM , fixing the biting rate to β = 2 and the
vector-human contagion probability to λMH = 0.01. Al-
ternatively, in Fig. 3.b the same analysis is performed
by fixing λHM = 0.01 and exploring different values of
λMH . Although in both cases the epidemic threshold,
λHHc , decreases as the likelihood of crossed transmission
[humans to vectors in (a) and vectors to humans in (b)],
it is remarkable that this trend is much smoother than
the observed in Fig. 2.a when increasing the biting rate.
Given the observed agreement between Monte Carlo and
mean-field equations in Fig. 2.a and Fig. 3, we can ex-
plain this result from the different functional roles played
by β (exponent) and the crossed contagion probabilities
in Eqs. (6)-(9).

C. Epidemic threshold

Once the validity of mean-field Eqs. (6)-(9) has been
shown, we can now make use of them and obtain an an-
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alytical expression for the conditions to be fulfilled at
the epidemic onset. It is worth mentioning that in the
original RM model the epidemic solution appears when
[14]:

β2γλHMλMH

µMµH
= 1 . (10)

From the former expression one can derive different epi-
demic thresholds, i.e. those critical values for the RM
parameters for which the l.h.s. of Eq. (10) is equal to 1.

Coming back to our generalized RM model, Eqs. (6)-
(9), let us first assume that we are under stationary con-
ditions, i.e. the disease has reached the stationary solu-
tion: ρH(t+ 1) = ρH(t) = ρH and ρM (t+ 1) = ρM (t) =
ρM . Introducing these two stationary values, ρH and ρM ,
into Eqs. (6)-(9) yields:

µMρM =
(
1− ρM

) (
1−

(
1− λHMρH

)β)
µHρH =

(
1− ρH

) [
1−

(
1− λMHρM

)βγ (
1− λHHρH

)k]
.

Close enough to the epidemic onset, we can suppose that
ρH and ρM are small enough (ρH = εH and ρM = εM )
allowing us to linearize the former equations:

µHεH = kλHHεH + βγλMHεM , (11)

µM εM = βλHM εH . (12)

By substituting Eq. 12 into Eq. 11 and rearranging the
terms, we obtain the following equation:

εH
(
µH − kλHH − β2γλHMλMH

µM

)
= 0. (13)

Since we have considered εH as a negligible but non-zero,
the right term must be equal to zero and the new condi-
tion for the epidemic onset reads:

kλHH

µH
+
β2γλHMλMH

µMµH
= 1 . (14)

Comparing Eq. (14) with Eq. (10), we easily notice the
correction kλHH/µH provided by the addition of human-
to-human contagions. It is remarkable that kλHH/µH =
1 corresponds to the epidemic threshold in a SIS model
where each human contacts with other k agents and con-
tagions take place exclusively by human-to-human inter-
actions.

Considering now the probability of contagion between
humans as our control parameters (as in Fig. 2.a and
Fig. 3), the epidemic threshold, λHHc , can be estimated
from Eq. (14) as:

λHHcr =
µH

k
− β2γλHMλMH

kµM
. (15)

Interestingly, Eq. (15) can give rise to negative values
of the epidemic threshold, which in physical terms corre-
spond to the situation in which the vector-human conta-
gion path is strong enough to sustain the epidemic solu-
tion, and for any value of λHH the epidemic solution is
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FIG. 4: Fraction of infected people in the stationary state de-
noted by the color scale for each value of (β, λHH). Solid black
line correspond to the estimation of the epidemic threshold
as a function of β using Eq. (15). The epidemic parameters
involved in contagion processes are set to (λMH , λHM , k, γ)
= (0.01, 0.01, 4, 2). Recovery rates are set to (µH , µM ) =
(0.2, 0.1).

the equilibrium point. Therefore, the epidemic threshold
λHHc will be that predicted by Eq. (15), unless the l.h.s of
Eq. (15) is negative so that λHHc = 0. In Fig. 4 we show
the excellent agreement between our prediction for λHHc
(black solid line) and its value according to Monte Carlo
simulations by plotting the fraction of infected humans
as a function of β and λHH . Apart from the agreement,
it is remarkable that an increase of the biting rate β leads
to a decrease of the epidemic threshold until it vanishes
for β = 10.

III. CONTACTS NETWORK APPROACH

In order to add more realism to the generalization of
the RM model, we now leave the mean field hypothesis
that assumes agents to be homogenous and statistically
equivalent. To this aim, we now consider that contacts
among humans are described by a complex network rep-
resented by a matrix A, whose elements determine the
interaction between human. This way, Aij = 1 when
agents i and j interact while Aij = 0 otherwise. On the
other hand, we keep considering the mean-field dynamics
for the set of vectors.

In this framework Eqs. (6)-(9) are no longer valid since
we need N equations to characterize the evolution of the
state of each agent and another one for the evolution of
the vector population. Under these premises, the prob-
ability than an agent i is infected at time t + 1 is given
by:
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ρHi (t+ 1) =
(
1− µH

)
ρHi (t) +

(
1− ρHi (t)

)1−
(
1− λMHρM

)βγ N∏
j=1

(
1−AijλHHρHj

) . (16)

On the other hand, the equation for the fraction of in- fected vectors reads as in the mean-field case, Eq. (9):

ρM (t+ 1) =
(
1− µM

)
ρM (t) +

(
1− ρM (t)

) (
1−

(
1− λHMρH(t)

)β)
,

with the exception that here ρH(t), which denotes the
total fraction of infected people at time t, is calculated
as the average of the set of N probabilities {ρHi } as:

ρH(t) =
1

N

N∑
j=1

ρHi (t) . (17)

In order to validate these equations, we assume that
contact among humans are determined by scale-free (SF)
networks. The main characteristic of these networks
is the heterogeneity for the number of contacts per
individual, since they are composed by a large number
of nodes with low connectivity and also by a few highly
connected ones that are the so-called hubs. In our case
the SF network is constructed following the Barabási-
Albert method [29] that generates graphs for which the
probability of finding a node with k contacts is given by

 0
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ρH

λHH

Mean Field
Scale-Free

FIG. 5: Fraction of infected people in the stationary state ρH

as a function of the human-to-human contagion probability
λHH . The contagion parameters are set to (λMH , λHM , β, γ)
= (0.01, 0.01, 2, 2). Solid lines show the predictions of the
proposed models, encoding the human contacts by a mean
field theory (blue) with k = 4 or by a scale-free network with
〈k〉 = 4. Black dots correspond to the results from MC sim-
ulations for each case, both obtained by averaging 20 realisa-
tions. The recovery rates are set to (µH , µM ) = (0.2, 0.1).

P (k) ∼ k−3. As in the case of the mean-field formulation,
we compare the predictions of Eqs. (16)-(17) with the
results obtained from Monte Carlo simulations. These
simulations are carried out in a similar way to those of
the mean field case, but taking into account that hu-
man contacts are now governed by a SF contact network.

In Fig. 5 we show the epidemic diagram ρH(λHH)
for the SF network and that of a mean-field population,
in both cases the average number of contacts if set to
〈k〉 = 4. Again the solid lines show the solution ob-
tained by iterating Eqs. (16)-(17) and dots correspond
to the results from Monte Carlo simulations. The agree-
ment between theory and simulations is still quite good.
Besides, we appreciate how introducing heterogeneity in
terms of human contacts leads to an important decrease
of the epidemic threshold due to the presence of hubs
that, due to their large number of acquaintances, boost
the propagation of the disease.

A. Epidemic threshold with contact networks

To round off, we tackle the derivation of an analytical
expression for the epidemic threshold that allows us to
analyze the role of the degree heterogeneity of the human
contact network. For this purpose, we proceed as in the
mean-field case and consider stationarity and a small dis-
ease incidence. This way, the probability that an agent i
is infected εHi as well as the fraction of infected vectors are
very small, so that ρHi = εHi � 1 ∀i and ρM = εM � 1.
This approximation allows us to linearize Eqs. (16)-(17)
yielding the following set of equations:

µHεHi =
N∑
j=1

λHHAijε
H
j + βγλMHεM , (18)

µM εM = βλHM
N∑
j=1

εHj
N

. (19)
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To reduce the complexity of this set of equations, we
introduce the solution for εM , Eq.(19), into the first N
ones, Eq. (18), which now read as:

µHεHi =
N∑
j=1

(
λHHAij +

β2γλMHλHM

NµM

)
εHj . (20)

At this point, to get a compact expression of the epi-
demic threshold, λHHc , let us express, without any loss
of generality, the cross-contagion rates λHMc and λMH

c as
a function of the human-human one λHH . In particular,
we define λMH = αMHλHH and λHM = αHMλHH . This
enables us to write:

µH

λHH
εHi = (Mε)i , (21)

where M is a N × N matrix whose elements are given
by:

Mij = Aij +
β2γαMHαHM

NµM
. (22)

Equation (21) encodes an eigenvalue problem, and there
are N solutions of λHH , each one associated with one
eigenvalue of matrix M. However, since we are interested
in the minimum probability of contagion for which the
epidemic solution exists, the epidemic threshold is given
by:

λHHc =
µH

Λmax(M)
, (23)

where Λmax(M) denotes the maximum eigenvalue of M.
Interestingly, for the case of a SIS disease in contact

networks, the epidemic threshold is proportional to the
inverse of the maximum eigenvalue of the Adjacency ma-
trix, λc ∼ 1/Λmax(A), whose value increases with degree
heterogeneity. Here, this threshold is modified as ma-
trix M, Eq. (22), is the sum of A plus a positive con-
stant. Thus, the vector-human contagion path decreases
λHHc with respect to that expected from simple human-
to-human infections.

IV. CONCLUSIONS

The great concern raised by the rapid spread of ZIKV
pathologies has spurred the scientific research about the
particular features that characterize this disease. As an
example, A. Allard et al [32, 33] have shown, by using
bond percolation, that the well-known contagion asym-
metry between males and females [34, 35] leads to the ap-
parition of a double epidemic threshold: one associated
to the onset of epidemics inside the men-who-have-sex-
with-men (MSM) community and another one associated
to its global outbreak. Interestingly, this high asymmetry
also allows the disease to be self-sustained, even in the
case that the vector-human reproductive ratio is small.

This great impact of the human-human contagion path
has already been reported by other mean field theories
[36, 37] that were proposed to reproduce ZIKV contagion
mechanisms.

In this paper, we have formulated a new version of
the RM model in order to incorporate a feature that
differentiates ZIKV transmission from most of the usual
VBD: the presence of human-to-human contagions. We
have first proposed a mean field theory which enables
us to get some intuition about the effect of adding this
new contagion path. To validate this theory, we have
compared its predictions about the incidence as well
as the temporal evolution of a disease to results from
numerical Monte Carlo simulations. Moreover, we have
observed how introducing a second contagion path boost
the spreading of a VBD since the epidemic solution can
be found despite being below the epidemic threshold
of the original RM model. In this sense, to completely
characterize the influence of human contacts on the
propagation of this kind of diseases, we have linearized
the mean field equations, obtaining the lowest value
of the human-human contagion rate which leads to a
non-zero impact of a VBD with human interactions.

To gain further insight about the importance of
human-to-human contacts we have included the ex-
istence of a human contact network that acts as the
backbone of human-to-human infections. Specifically,
we have observed how degree heterogenous contact
topologies, like scale-free networks, makes the pop-
ulation prevention from this kind of diseases much
more difficult, since the epidemic threshold decreases
considerably with respect to the mean-field theory. In
this regard, we have been able to deduce an analytical
expression for the epidemic threshold capturing both
the influence of the network of human contacts and the
usual parameters of the RM model.

Although our model is a theoretical approach which is
not designed to tackle the specific case of ZIKV transmis-
sion, the introduction of a microscopic framework char-
acterizing human-to-human contagions into the original
RM model will pave the way to the formulation of more
accurate ZIKV models. In particular, our formalism can
be the starting point to elaborate future metapopulation
models [38–41] in which more realistic ingredients such
as human mobility or seasonal fluctuations of vector con-
tagion rates [42, 43], are incorporated.
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