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Abstract
The reconstruction of an unknown function providing a set of Lagrange data can be approached
by means of fractal interpolation. The power of that methodology allows us to generalize any
other interpolant, both smooth and nonsmooth, but the important fact is that this technique
provides one of the few methods of nondifferentiable interpolation. In this way, it constitutes
a functional model for chaotic processes. This paper studies a generalization of an approxima-
tion formula proposed by Dunham Jackson, where a wider range of values of an exponent of
the basic trigonometric functions is considered. The trigonometric polynomials are then trans-
formed in close fractal functions that, in general, are not smooth. For suitable election of this
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parameter, one obtains better conditions of convergence than in the classical case: the hypoth-
esis of continuity alone is enough to ensure the convergence when the sampling frequency is
increased. Finally, bounds of discrete fractal Jackson operators and their classical counterparts
are proposed.

Keywords : Fractals; Fractal Interpolation; Trigonometric Approximation; Convergence;
Smoothing; Curve Fitting.

1. INTRODUCTION

Nearly all the scientists working in real-world appli-
cations must solve a problem of approximation at
some point of their professional activity. A large
number of publications consider this mathematical
problem. One of the reasons of this phenomenon
is the essential contribution of computers for the
solution of numerical problems. Although the classi-
cal Fourier methods remain extremely useful tools,
new techniques emerged in the last decades, such
as wavelets and fractals (see for instance Ref. 1)
are proven to be advantageous in the solutions of
nonlinear phenomena in sciences and engineering.

Interpolation and approximation are mostly car-
ried out with smooth functions, but in many prac-
tical situations we may come across nonsmooth
experimental signals. Thus we cannot use any usual
interpolation is such cases. Fractal interpolation
helps to solve this problem to a large extent as it
captures the nonlinearity feature associated with
both smooth and nonsmooth models. The non-
linearity feature of these models or their deriva-
tives depends on the choice of scaling parameters.
Specific conditions on the scaling parameters for
smoothness are given in Refs. 2–4. We give here a
global deterministic method to model these signals
by fractal interpolation. This method was intro-
duced by Barnsley and co-worker.2,5,6 For a given
continuous function f defined on a real compact
interval, Navascués and Chand7 considered suitable
iterated function system (IFS) to define a family of
continuous function fα, which can interpolate and
approximate f properly. Several shape preserving
properties of fα and approximation properties of
α-fractal functions are studied in Refs. 8–10.

This paper faces the generalization of a particular
type of approximants defined by Jackson.11 The sec-
ond purpose is to define nonsmooth or smooth frac-
tal versions of these classical approximants based on
the choice of scale vector associated with them. This
fact gives them a particular importance in order to

obtain mathematical representations of experimen-
tal signals, from which only their values at evenly
sampled nodes are known. For instance, time series
recorded with a constant sampling frequency may
be processed by means of these procedures. A pos-
sible application of the studied methods is the com-
putation of integral parameters, for instance, the
power of an experimental signal. However, if the
number of points is large and/or they are noisy, the
approximation is better than interpolation in many
cases.

The uniform error bounds between the original
function in C[−π, π] and its fractal Jackson approx-
imants are obtained based on the range of a posi-
tive exponent parameter. The proposed limits prove
the convergence of the fractal analog of the gen-
eralized discrete Jackson approximants with very
weak conditions on the given function and using
suitable choice of scale vector. Unlike the classi-
cal trigonometric case, the hypothesis of continu-
ity alone is sufficient to provide the convergence of
a generalized Jackson approximant when the num-
ber of terms tends to infinity. The fast evolution of
the programs of advanced calculus enables the use
of functions more complicated than mere polyno-
mial and trigonometric mappings. In this way, from
the theoretical point of view, new fractal nodal ele-
ments are proposed, that provide a generalization
of the trigonometric functions. The density of these
mappings in the space of continuous and periodic
functions is proved. In some cases, the new frac-
tal approximants perform better than the classical
Jackson’s originals. The paper is organized as fol-
lows. In Sec. 2, we give some brief description of
α-fractal functions and review the required classi-
cal results on uniform convergence of polynomial
and trigonometric approximation. A generalization
to nonsmooth fractal versions of discrete Jackson
approximant is proposed and convergence results
are studied for different ranges of exponent asso-
ciated with the kernel function in Sec. 3. Finally,
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Sec. 4 is devoted to study the bound of discrete
fractal Jackson operator.

2. PRELIMINARIES

In this section, we shall gather some essential mate-
rials on fractal function and trigonometric approx-
imation. For a more detailed account, we refer the
reader to Refs. 5, 7 and 12–14.

2.1. Constructions of Fractal
Functions

The construction of continuous fractal interpolation
function based on IFS is described by the following
steps: Let x1 < x2 < · · · < xN be real numbers,
and I = [x1, xN ] be a closed interval that contains
them. Let a set of data points {(xi, yi) : i ∈ NN} be
given, where Nk is the first k natural numbers. Let
Li : I → Ii := [xi, xi+1], i ∈ NN−1, be contractive
homeomorphisms such that

Li(x1) = xi, Li(xN ) = xi+1. (2.1)

Let K = I × R. Define N − 1 continuous mappings
Fi : K → R such that

Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1,

|Fi(x, y) − Fi(x, y′)| ≤ |αi||y − y′|, (2.2)

where (x, y), (x, y′) ∈ K, αi ∈ (−1, 1), i ∈ NN−1.
Now define functions wi : R2 → R

2 as wi(x, y) =
(Li(x), Fi(x, y)), ∀ i ∈ NN−1 to construct an IFS
for the given interpolation data as I = {K;wi, i =
1, 2, . . . , N − 1}.
Theorem 2.1 ([5, Barnsley]). The above IFS
I admits a unique attractor G. Further, G is the
graph of a continuous function f∗ : I → R such that
f∗(xi) = yi, i = 1, 2, . . . , N .

The previous function f∗ is called a fractal inter-
polation function (FIF), and for implicit represen-
tation of FIF, we proceed as follows:

Let G = {g : I → R | g is continuous and g(x1) =
y1, g(xN ) = yN}. Then G is a complete metric space
with respect to the metric induced by the uniform
norm ‖ · ‖∞ on C(I).

Define a mapping T :G �→ G by (Tg)(x) =
Fi(L−1

i (x), g ◦ L−1
i (x)), x ∈ [xi, xi+1], i ∈ NN−1.

Now, T is a contraction mapping on the metric
space (G, ‖ · ‖∞), i.e.

‖Tg − Th‖∞ ≤ |α|∞‖g − h‖∞, g, h ∈ G,

where α = (α1, . . . , αN−1) ∈ (−1, 1)N−1 is called
a scale vector of the IFS and |α|∞ = max{|αi| :
i = 1, 2, . . . , N − 1} < 1. By Banach fixed point
theorem, T possesses a unique fixed point f∗ ∈ G,
such that (Tf∗)(x) = f∗(x), ∀x ∈ [x1, xN ]. From
the definition of T , f∗ satisfies

f∗(x) = Fi(L−1
i (x), f∗ ◦ L−1

i (x)),

x ∈ [xi, xi+1], i ∈ NN−1.

α-fractal functions. Navascués13 observed that
the IFS theory can be used to generate a family
of continuous functions having fractal characteris-
tics from a prescribed continuous function f ∈ C(I).
Consider a partition ∆ = {x1, x2, . . . , xN} of I
satisfying x1 < x2 < · · · < xN , a base function
b satisfying b ∈ C(I), b �= f, b(x1) = f(x1) and
b(xN ) = f(xN ) and N − 1 real numbers αi satis-
fying |αi| < 1. Define an IFS through the maps

Li(x) = aix + di,

Fi(x, y) = αiy + f ◦ Li(x) − αib(x), i ∈ NN−1,

(2.3)

where Li and Fi satisfy (2.1) and (2.2), respec-
tively. In general b can be defined through a lin-
ear map L : C(I) → C(I) such that b = Lf , L
is bounded with respect to supremum norm and
Lf(x1) = f(x1) and Lf(xN ) = f(xN). The corre-
sponding FIF denoted by fα

∆,b = fα is referred as α-
fractal function for f with respect to a scale vector
α, base functions b and partition ∆. The function
fα is the fixed point of the operator

Tα
∆,b,fg(x) = f(x) + αi(g − b) ◦ L−1

i (x),

x ∈ Ii, i ∈ NN−1.

Further, the perturbation process produces a frac-
tal operator Fα

∆,b = Fα : C(I) → C(I) such that
Fα(f) = fα, which is a bounded linear map for
b = Lf and L : C(I) → C(I) being a bounded linear
map. From (2.3), the following uniform error bound
between f and its fractal analog can be found (see
for instance Refs. 7 and 14):

‖fα − f‖∞ ≤ |α|∞
1 − |α|∞ ‖f − b‖∞. (2.4)

The fractal function fα interpolates to f at the
nodes:

fα(xi) = f(xi), i ∈ NN . (2.5)

For α = 0, fα agrees with f .
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2.2. Some Classical Results

The best known results of the American mathe-
matician Dunham Jackson are several inequalities
bounding the uniform distance between a contin-
uous (or differentiable) function and the space of
trigonometric or algebraic polynomials of degree at
most n. For instance, in the periodic case we have
the following inequality.15

Theorem 2.2. Let f ∈ C[−π, π] be periodic. If
d∗n(f) = d(f, τn), where d(f, τn) is the minimum
distance between f and the space

τn =

{
n∑

k=0

(ak cos(kx) + bk sin(kx)) : ak, bk ∈ R

}
,

then d∗n(f) ≤ ω( π
n+1 ), where ω(δ) is the modulus of

continuity of f .

There is an analogous result for f ∈ C[−1, 1] and
the space of polynomials of degree at most n.15

Let us define the Lebesgue function λn of poly-
nomial interpolation with respect to a partition
∆ : a = x0 < x1 < · · · < xn = b of the interval
[a, b],

λn(x) =
n∑

k=0

|φk(x)|,

where φk(x) is the kth basic Lagrange polynomial.
Let Λn be the Lebesgue constant, defined as the
supremum of λn(x) on [a, b]. In general, if pn is
the interpolating polynomial and d∗n(f) is the min-
imum distance from f to the space of polynomials
of degree at most n, then16

‖f − pn‖∞ ≤ d∗n(f)(1 + Λn). (2.6)

Thus, the Lebesgue constants (which do not depend
on f) are a measure as to how far the interpolation
error exceeds the minimum error d∗n(f). The con-
stants of Lagrange increase exponentially as n → ∞
if the nodes are uniformly distributed. For exam-
ple, Λ10 = 29.90 and Λ20 = 10986.03 (see for
instance Ref. 16). With equidistant nodes, even a
high degree of differentiability of f is not sufficient
to obtain convergence. In general, Runge-type phe-
nomena are observed at the extremes of the interval
(great oscillations). When the original function can
be extended into an entire function f̂ : C → C, then
the convergence is guaranteed, but this is a very
strong requirement.17

The Chebyshev abscissae (zeros of Chebyshev
polynomials)

xk = cos
(

2k − 1
2n

π

)
,

for k = 1, 2, . . . , n, are among the best options to
be chosen in order to obtain low values of Λn in
the interval [−1, 1]. However, one has the following
result.18

Theorem 2.3. Let ΛnT be the Lebesgue constant
of the polynomial interpolation with respect to the
Chebyshev abscissae. Then

2
π

log(n) + 0.9625 < ΛnT ≤ 2
π

log(n) + 1, (2.7)

for n = 1, 2, . . ..

As a consequence, ΛnT tends to infinity with n.
However, the convergence is sure for Lipschitz func-
tions on Chebyshev partitions due to the following
inequality of Jackson (see Ref. 15).

Theorem 2.4. For all Lipschitz continuous func-
tions on [−1, 1] with Lipschitz constant L, the min-
imum error is bounded as

d∗n(f) ≤ πL

2n + 2
.

In this case, due to (2.6) and (2.7),

‖f − pn‖∞ ≤ πL

2n + 2

(
2 +

2
π

log(n)
)

,

and the uniform convergence holds.
However, in many applications the nodes cannot

be chosen. For instance, the bioelectric recordings as
electrocardiograms and electroencephalograms are
sampled by a device with a constant step (time
period), and the partitions are uniform. This is true
for tabular or historic data as well. For these cases
the interpolants of Jackson type give uniform con-
vergence with the hypotheses of continuity and peri-
odicity (see Sec. 3).

Let Ln be the operator that maps f into the nth
Lagrange polynomial. The formula

Lnf(x) =
n∑

k=0

f(xk)φk(x)

implies that

‖Lnf‖∞ ≤ Λn‖f‖∞,

and

‖Lnf − Lnf ′‖∞ ≤ Λn‖f − f ′‖∞.

The Lebesgue constant is equal to one in the Jack-
son case, and the approximation does not amplify
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the distances. Consequently, (2.6) assures a good
uniform norm approximation.

Theorem 2.5. If f ∈ C2[−π, π] is periodic, then

|ak| = O
(

1
k2

)
, |bk| = O

(
1
k2

)
and

‖f − Sn‖∞ = O(n−1),

where Sn is the nth Fourier sum of f, and ak, bk are
its coefficients.

Theorem 2.6. If f ∈C[−π, π] is periodic and sat-
isfies a Dini–Lipschitz condition [limδ→0 log(δ) ×
ω(δ) = 0], then its Fourier series converges uni-
formly to f .

This result is achieved by the Jackson approx-
imants with the single hypothesis of continuity
(Sec. 3), and let us remember that uniform con-
vergence implies convergence in the mean of order
p (Lp-norm) on compact intervals for 1 ≤ p ≤ ∞.

Fractal trigonometric polynomials.14 Let τn be
the set of trigonometric polynomials of degree at
most n, linearly spanned by the set

{1, sin(x), cos(x), sin(2x), cos(2x),

. . . , sin(nx), cos(nx)}.
Let ∆ : − π = x0 < x1 < · · · < xN = π be a

partition of the interval [−π, π] and let Fα be the
α-fractal operator that maps f to fα (see Sec. 2.1).

Definition 2.1. τα
n = Fα(τn) is the set of all

α-fractal trigonometric polynomials of degree at
most n.

Due to the linearity of Fα, τα
n is spanned by

the set{1, sinα(x), cosα(x), . . . , sinα(nx), cosα(nx)},
where Fα(sin(jx)) = sinα(jx) and Fα(cos(jx)) =
cosα(jx). Thus, it is clear that dim τα

n < +∞. This
fact allows the existence of a finite uniform distance
from f ∈ C[−π, π] to τα

n . Let Sα
n = Fα ◦ Sn be the

operator such that

Sα
n (f) = Fα(Sn(f))

(α-fractal finite Fourier sum of f). Sα
n is a bounded

linear operator. In this way Theorem 2.6 can be gen-
eralized to the fractal series (see Ref. 14 for details).

Theorem 2.7. Let f ∈ C[−π, π] be peri-
odic and satisfying a Dini–Lipschitz condition
[limδ→0 log(δ)ω(δ) = 0]. If {αn} is a sequence of
scale vectors such that αn → 0 as n → ∞, then

the α-fractal Fourier series of f converges uniformly
to f .

If one wants to use Fourier-type functions, one can
take a Césaro mean. According to Féjer’s theorem,
the average defined as

σn =
1
n

(S0 + S1 + · · · + Sn−1)

converges uniformly to f .15

The advantage of the Jackson approximants is
the fact of being explicit in terms of the sampled
values of the original function and their good prop-
erties of convergence. We will study the fractal ver-
sions of generalized discrete Jackson approximants
in the following sections.

3. FRACTAL DISCRETE
GENERALIZED JACKSON
APPROXIMANTS

First, we generalize the discrete Jackson approxi-
mants with a positive exponent γ > 0 in the kernel
function as follows: Define

Dm,γ(f)(x) = Hm,γ

2m∑
i=1

f(xi)Pm,i,γ(x), (3.1)

where

Pm,i,γ(x) =

∣∣∣∣∣∣
sin
(

m(xi−x)
2

)
m sin

(
xi−x

2

)
∣∣∣∣∣∣
γ

,

H−1
m,γ =

2m∑
i=1

Pm,i,γ(x), (3.2)

and

xi+1 − xi =
π

m
for i = 1, 2, . . . , 2m − 1.

The discrete Jackson approximants were defined for
a fixed exponent γ = 4 by (3.1) (see p. 456 of
Ref. 19). For a positive exponent γ > 0, Hm,γ =
Hm,γ(x) depends on the variable x although we will
preserve the original notation omitting it. Note that
Hm,4 is a constant. However, the value γ = 4 is not
always the optimal choice, as shown in Table 1.

Now, we will define fractal versions of discrete
Jackson approximants by using fractal analogs of
the kernel function Pm,i,γ(x). For this accomplished
goal, the basis function Pm,i,γ(x) is perturbed using
suitable base functions bm,i,γ , suitable scale vector α
and partition of [−π, π] in order to obtain its frac-
tal analogs Pα

m,i,γ(x). If we have N interpolation
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Table 1 Point-Wise Errors Between f(x) and Dm,γ(x) for Differ-
ent Choices of m, f and γ.

γ = 4 γ = 4.5 γ = 5

m = 12, (sin(π/5) cos(π/5))3 0.00948607 0.00948607 0.00958445

m = 12, (sin(π/7) cos(π/7))3 0.00278478 0.00278478 0.00368186

m = 5,
p

sin(π/3) 0.03208200 0.02814760 0.02471950

m = 6,
p

sin(π/4) 0.02640850 0.02458460 0.02352260

m = 5, log(2 + cos(π/3)) 0.01834100 0.01787330 0.01861590

m = 6, log(2 + cos(π/4)) 0.01377970 0.01252320 0.01191420

points in [−π, π], then α = (α1, α2, . . . , αN−1) ∈
(−1, 1)N−1, and N is independent of m. Thus, the
fractal function associated to the generalized dis-
crete Jackson approximants is defined as

Dα
m,γ(f)(x) = Hm,γ

2m∑
i=1

f(xi)Pα
m,i,γ(x).

Example 3.1 (Fractal Jackson basis func-
tion). Consider m = 10 and γ = 4. The classi-
cal third Jackson basis function P10,3,4 is plotted
in Fig. 1a over [−π, π]. To construct fractal Jackson
basis function over the interval, we have taken a par-
tition with 10 equidistant subintervals of [−π, π],
i.e. N = 11. The base function b10,3,4 is taken
as a straight line joining the end points to con-
struct the fractal basis function Pα

10.3.4(x) with dif-
ferent scales α. First, we choose a scale vector,
where each component is positive as α = (0.4, 0.1,
0.1, 0, 0, 0, 0, 0.1, 0.1, 0.2). The corresponding third
fractal Jackson basis function generated in Fig. 1b
is irregular and nonnegative. Next, the scale vec-
tor contains some negative components as α =
(0.3, 0, 0, 0, 0, 0, 0, 0,−0.4, 0.4), and the correspond-
ing fractal Jackson basis function is plotted in
Fig. 1c. For a smoother version of fractal Jack-
son basis function, the magnitude of compo-
nents of α are reduced as α = (0.05,−0.06, 0.1,
−0.04, 0.08,−0.04, 0.14,−0.04, 0.04,−0.04) to gen-
erate Fig. 1d. The range of Pα

m,i,γ(x) can be
restricted based on the suitable choice α (see Ref. 8
for details). It is observed that based on the choice
of α, we can get fractal smooth or nonsmooth Jack-
son basis functions to approximate periodic smooth
or nonsmooth signals that are known at discrete
points.

In order to prove the main approximation result
by the fractal version of the generalized discrete

Jackson operator in Theorem 3.1, we need the fol-
lowing lemmas.

Lemma 3.1. For all m = 1, 2, . . . , γ > 0, and
v ∈R, ∣∣∣∣sin (mv)

m sin(v)

∣∣∣∣γ ≤ 1. (3.3)

Proof. For γ = 2, it is known that (see p. 340 of
Ref. 12)(

sin
(

nx
2

)
sin
(

x
2

) )2

= n + 2[(n − 1) cos x + (n − 2)

× cos 2x + · · · + cos((n − 1)x)],

for n ∈ N and x ∈ R. Taking n = m and x = 2v in
the above identity, we have(

sin(mv)
sin(v)

)2

= m + 2[(m − 1) cos(2v) + (m − 2)

× cos(4v) + · · · + cos(2(m − 1)v)].

Then∣∣∣∣sin (mv)
m sin(v)

∣∣∣∣γ
=

1
mγ

|m + 2((m − 1) cos(2v) + (m − 2)

× cos(4v) + · · · + cos(2(m − 1)v))|γ/2

≤ 1
mγ

(
m + 2

(
1 + (m − 1)

2

)
(m − 1)

)γ/2

≤ 1
mγ

(m2)γ/2 = 1.

Lemma 3.2. For v ∈ [0, π/2],

sin(v) ≥ 2v
π

. (3.4)
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(a) P10,3,4(x) when α = 0 (b) Pα
10,3,4(x) with

α = (0.4, 0.1, 0.1, 0, 0, 0, 0, 0.1, 0.1, 0.2)

(c) Pα
10,3,4(x) with (d) Pα

10,3,4(x) with α = (0.05,−0.06, 0.1,

α = (0.3, 0, 0, 0, 0, 0, 0, 0,−0.4, 0.4) −0.04, 0.08,−0.04, 0.14,−0.04, 0.04,−0.04)

Fig. 1 Basis functions of generalized Jackson approximation.

Proof. The function sin(v) is concave in the inter-
val [0, π/2] and thus

sin(v) ≥ r(v),

where r(v) is the line joining (0, 0) and (π/2, 1). But
r(v) = 2v/π, and hence the result.

Theorem 3.1. Let f ∈ C[−π, π] be Hölder contin-
uous such that for x, x′ ∈ [−π, π],

|f(x) − f(x′)| ≤ K|x − x′|q,
for some q such that 0 < q ≤ 1. Then for γ > q +1,

‖Dα
m,γ(f) − f‖∞
≤ K

2

(π

2

)γ ( π

2m

)q

×
(

1 + 2q + 2γ

(
1

γ − (q + 1)
+

1
γ − 1

))
+ m

(π

2

)γ ‖f‖∞ |α|∞
1 − |α|∞ ,

where α is a suitable scaling vector used to construct
the fractal perturbation of Pm,i,γ based on a partition
of [−π, π].

Proof. For the required upper bound, we will use

‖Dα
m,γ(f) − f‖∞
≤ ‖Dα

m,γ(f) − Dm,γ(f)‖∞ + ‖Dm,γ(f) − f‖∞.

(3.5)

Now using the definitions of Dm,γ (3.1) and Hm,γ

(3.2), and changing xi = x + 2ui, we obtain

|Em,γ(f)(x)|
:= |Dm,γ(f)(x) − f(x)|

≤ Hm,γ

2m∑
i=1

|f(x + 2ui) − f(x)|Pm,i,γ(x).

(3.6)
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Using the Lipschitz constant and exponent,

|Em,γ(f)(x)| ≤ Hm,γK2q
2m∑
i=1

|ui|q|Pm,i,γ(xi − 2ui).

Since Pm,i,γ is periodic, we can assume ui ∈
[−π/2, π/2]. Considering increasing order in |ui|
and denoting them by v0, v1, . . . , v2m−1,

|Em,γ(f)(x)| ≤ Hm,γK2q
2m−1∑
i=0

vq
i Pm,i,γ(xi − 2vi),

(3.7)

where
πi

4m
≤ vi ≤ π(i + 1)

4m
≤ π

2
, (3.8)

for i = 0, 1, . . . , 2m−1 (see p. 458 of Ref. 19 ). Here
Pm,i,γ(xi−2vi) = | sin(mvi)

m sin(vi)
|γ . Now from Lemma 3.1,∣∣∣∣ sin(mvi)

m sin(vi)

∣∣∣∣γ ≤ 1 if i = 0, 1. (3.9)

For i ≥ 2, using Lemma 3.2,

m sin(vi) ≥ m sin
(

πi

4m

)
≥ m2

i

4m
≥ i

2
.

As a consequence, for i ≥ 2,∣∣∣∣ sin(mvi)
m sin(vi)

∣∣∣∣γ ≤
(

2
i

)γ

. (3.10)

Bearing in mind (3.9) for i = 0, 1 and (3.10) for
i ≥ 2, we obtain

|Em,γ(f)(x)|

≤ Hm,γK2q
2m−1∑
i=0

vq
i

∣∣∣∣ sin(mvi)
m sin(vi)

∣∣∣∣γ

≤ Hm,γK2q

[
vq
0 + vq

1 +
2m−1∑
i=2

vq
i

(
2
i

)γ
]
.

(3.11)

By definition of vi,

vq
0 ≤

( π

4m

)q
, vq

1 ≤
( π

2m

)q
, (3.12)

and
2m−1∑
i=2

vq
i

(
2
i

)γ

≤ 2γ
( π

4m

)q
2m−1∑
i=2

(i + 1)q
1
iγ

= 2γ
( π

4m

)q
2m−1∑
i=2

(
1

iγ−q
+

1
iγ

)
.

(3.13)

The last sum is part of lower Riemann sums of the
functions 1/xγ−q and 1/xγ , in the interval [1,+∞)
with unit step, respectively:

2m−1∑
i=2

1
iγ−q

≤
∫ ∞

1

dx

xγ−q
=

1
γ − (q + 1)

,

if γ > q + 1.

Likewise

2m−1∑
i=2

1
iγ

≤
∫ ∞

1

dx

xγ
=

1
γ − 1

, if γ > 1.

Collecting the above results, (3.12) and (3.13) in
(3.11), we have

|Em,γ(f)(x)|

≤ Hm,γK2q

[( π

4m

)q
+
( π

2m

)q

+ 2γ
( π

4m

)q
(

1
γ − (q + 1)

+
1

γ − 1

)]
.

(3.14)

Let us bound now Hm,γ which is defined in (3.2).

H−1
m,γ =

2m−1∑
i=0

∣∣∣∣ sin(mvi)
m sin(vi)

∣∣∣∣γ >

∣∣∣∣ sin(mv0)
m sin(v0)

∣∣∣∣γ

+
∣∣∣∣ sin(mv1)
m sin(v1)

∣∣∣∣γ . (3.15)

Since mvi ≤ π/2 for i = 0, 1, from (3.8) and
Lemma 3.2,

sin(mvi)
m sin(vi)

≥ 2mvi

mπ sin(vi)
≥ 2

π
,

and thus from (3.15),

H−1
m,γ > 2

(
2
π

)γ

. (3.16)

Now for the first term of right-hand side of (3.5),

|Dα
m,γ(f)(x) − Dm,γ(f)(x)|

=

∣∣∣∣∣Hm,γ

2m∑
i=1

f(xi)(Pα
m,i,γ(x) − Pm,i,γ(x))

∣∣∣∣∣
≤ Hm,γ

2m∑
i=1

|f(xi)||Pα
m,i,γ(x) − Pm,i,γ(x)|

1850079-8
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≤ Hm,γ‖f‖∞
2m∑
i=1

|Pα
m,i,γ(x) − Pm,i,γ(x)|

≤
(π

2

)γ
m‖f‖∞ max

1≤i≤2m
‖Pα

m,i,γ − Pm,i,γ‖∞

≤
(π

2

)γ
m‖f‖∞ |α|∞

1 − |α|∞
× max

1≤i≤2m
‖Pm,i,γ − bm,i,γ‖∞, (3.17)

due to (3.16) and (2.4). The maps bm,i,γ are used
to define the fractal functions Pα

m,i,γ . Let us bear in
mind now that, due to Lemma 3.1, the kernel func-
tions Pm,i,γ are bounded by one, i.e. 0 ≤ Pm,i,γ(x) ≤
1, ∀x ∈ [−π, π]. The maps bm,i,γ can be chosen such
that they are bounded by one (taking for instance
the lines joining the extremes of the graph of Pm,i,γ).

Consequently, we have |Pm,i,γ(x)−bm,i,γ(x)| ≤ 1 for
all i = 1, 2, . . . 2m, x ∈ [−π, π]. Finally, using (3.5),
(3.14) and (3.17), the proof follows.

Corollary 3.1. If f ∈ C[−π, π] is Hölder contin-
uous with exponent q (0 < q ≤ 1) and γ > q + 1
and if we select scaling factors α such that |αi| =
O(m−(q+1)), then Dα

m,γ(f) converges uniformly to
f as m tends to infinity. The order of convergence
O(m−(q+1)) does not depend on γ.

Example 3.2. In order to show the versatility and
diversity associated with fractal version of the gen-
eralized discrete Jackson approximants, we consider
a periodic function on [−π, π] as f(x) = sin3 x +
2cos2 x as in Fig. 2a. Take m = 6, for which 12
values of f are taken for reconstruction of approxi-
mants in our method. First, we plot the generalized

(a) Graph of the function (b) Generalized Jackson approximant

f(x) = sin3 x + 2 cos2 x D6,5(f)(x)

(c) Dα
6,5(f) with α = (0.2,−0.2, 0.2,−0.2, (d) Dα

6,5(f) with α = (0.05,−0.1, 0.1,−0.15,

0.2,−0.2, 0.2,−0.2, 0.2,−0.2) 0.15,−0.1, 0, 0.05,−0.12, 0.09,−0.08)

Fig. 2 Original function and fractal versions of its generalized Jackson discrete approximants.
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discrete Jackson approximant D6,5(f) in Fig. 2b
with exponent γ = 5. In order to get the fractal
version of the Jackson approximant, consider an
equidistant partition of [−π, π] with N = 11. We
have taken two different scaling vectors in (−1, 1)10

to obtain fractal version of Jackson approximants
in Figs. 2c and 2d. Note that these 12 sample
points are present in our proposed Jackson approx-
imants whose shapes are very much different. In
practice, there is no need to believe that sample
points are being generated only from a smooth
function. According to Corollary 3.1, when the
sample size increases, the fractal Jackson approxi-
mant converges to the original function with proper
choice of scaling factors. Thus, a priori hypothesis
on nature of f may help us to choose a smooth
or nonsmooth periodic approximant of f in our
methodology.

From here on we consider a general continuous
function f ∈ C[−π, π], consequently uniformly con-
tinuous in this interval. Let us remind the modulus
of continuity ω of f .

Definition 3.1. Let f(x) be a uniformly continu-
ous function in a compact interval I. The modulus
of continuity of f is defined as

ω(δ) = ω(δ; f)

= sup
|x−x′|≤δ

|f(x) − f(x′)|, x, x′ ∈ I.

Some of the properties of the modulus of continuity
are (see for instance Refs. 20 and 21):

• If δ ≤ δ′ then ω(δ) ≤ ω(δ′).
• limδ→0 ω(δ) = 0.
• ω(mδ) ≤ mω(δ) for m ∈ N.
• ω(λδ) ≤ (λ + 1)ω(δ) for λ ≥ 0.

Let us recall the Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

.

Theorem 3.2. If f ∈ C[−π, π] and γ > 2,

‖Dα
m,γ(f) − f‖∞ ≤

(π

2

)γ
ω
( π

4m

)
(1 + 2γζ(γ − 1))

+ m
(π

2

)γ
‖f‖∞ |α|∞

1 − |α|∞ ,

where α is a suitable scaling vector used to con-
struct the fractal perturbation of the kernel func-
tions Pm,i,γ .

Proof. In this case, considering the properties of
ω, (3.6) is transformed to

|Em,γ(f)(x)| ≤ Hm,γ2
2m−1∑
i=0

ω(vi)
∣∣∣∣ sin(mvi)
m sin(vi)

∣∣∣∣γ .

Using (3.8), we have

ω(vi) ≤ ω

(
π(i + 1)

4m

)
≤ (i + 1)ω

( π

4m

)
,

and thus, bearing in mind (3.9) and (3.10),

|Em,γ(f)(x)|

≤ 2Hm,γ ω
( π

4m

) 2m−1∑
i=0

(i + 1)
∣∣∣∣ sin(mvi)
m sin(vi)

∣∣∣∣γ

= 2Hm,γ ω
( π

4m

)(
1 +

2m∑
i=1

i

(
2
i

)γ
)

.

Consequently,

|Em,γ(f)(x)| ≤ 2Hm,γ ω
( π

4m

)
(1 + 2γζ(γ − 1)).

The fractal part is similar to that of the previous
theorem.

Corollary 3.2. If f ∈ C[−π, π], γ > 2 and if
we choose scaling factors α such that m|α|∞ owns
a rate of convergence similar to that of ω, then
Dα

m,γ(f) converges to f uniformly as m tends to
infinity. The order of convergence does not depend
on γ.

Remark 3.1. Theorem 3.1 cannot be deduced from
Theorem 3.2 because the interval of values of γ is
different. The range of convergence values of γ is
wider in Theorem 3.1 [γ > q + 1] with the stronger
assumption on f . By Theorem 3.2, the hypoth-
esis of continuity alone is sufficient for a similar
result when γ > 2. The error bounds obtained in
these theorems ensure the convergence of the frac-
tal approximant. In practice, if the signal is periodic
and irregular (for instance, a nonsmooth variable
defined on the circle), the proposed fractal models
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may be more suitable than the standard trigono-
metric functions.

Corollary 3.3. If f ∈ C[−π, π] admits a bounded
first derivative and γ > 2, then

‖Dα
m,γ(f) − f‖∞
≤
(π

2

)γ ( π

4m

)
‖f ′‖∞(1 + 2γζ(γ − 1))

+ m
(π

2

)γ ‖f‖∞ |α|∞
1 − |α|∞ ,

where α is a suitable scaling vector used to con-
struct the fractal perturbation of the kernel func-
tions Pm,i,γ .

Proof. In this case, the modulus of continuity ω
satisfies

ω(δ) ≤ δ‖f ′‖∞,

and the result is a consequence of Theorem 3.2.

Corollary 3.4. If f admits a bounded derivative,
γ > 2 and |αi| ≤ 1

m2 , then the approximant con-
verges uniformly to f as m−1 at least.

Let us consider now the periodic functions
belonging to Lp[−π, π], p ∈ [1,+∞), and defined
at every point of the interval.

For f ∈ Lp[−π, π], p ∈ [1,+∞), there exists the
modulus of p-integrability (or integral modulus of
continuity) of f

ωp(δ)

= sup

{(∫ π

−π
|f(x + h) − f(x)|pdt

)1/p

; |h| ≤ δ

}
.

The properties of ωp(δ) are similar to those of the
modulus of continuity (see for instance p. 162 of
Ref.20).

Theorem 3.3. If f ∈ Lp[−π, π], p ∈ [1,+∞) and
γ > 2, then

‖Dα
m,γ(f) − f‖p ≤

(π

2

)γ
ωp

( π

4m

)
(1 + 2γζ(γ − 1))

+ m
(π

2

)γ ‖f‖∞ |α|∞
1 − |α‖∞ ,

where α is suitable scaling vector used to con-
struct the fractal perturbation of the kernel func-
tions Pm,i,γ .

Proof. It is left to the reader, due to similarity
with previous theorem.

The statement about the convergence of the frac-
tal interpolant is valid here, considering the new
modulus ωp.

Remark 3.2. The convergence in Lp is implied by
the uniform convergence as well (1 ≤ p < +∞) but
the last condition is stronger.

Example 3.3. Consider a periodic equidis-
tant data set {(−4π

5 ,−1), (− 3π
5 , 2), (− 2π

5 , 3), (−π
5 , 2),

(0, 1), (π
5 , 2), (2π

5 , 3), (3π
5 , 2), (4π

5 , 1), (π, 0)} over the
interval I = (−π, π]. Clearly, m = 5 in this case,
and we take γ = 4 for the reconstruction of dis-
crete Jackson approximants based on these samples.
Figure 3a is the plot of classical discrete Jackson
approximant D5,4(x) which does not interpolate the
data of at least four points. Now, we wish to con-
struct a fractal version of D5,4(x) by taking N = 11
and different choices of scale vector. The base func-
tion is taken as the line joining the end points of
the graphs. When a scale vector α = (0.2,−0.05,
0.15,−0.15, 0.05, 0.15,−0.1, 0.1, 0, 0.05) is chosen
such that

∑ |αi| = 1, we obtain a fractal Jackson
approximant that does not interpolate at least two
points in Fig. 3b. It is clear from Fig. 3a that with
smooth fractal Jackson approximants, we cannot
approximate the given data set accurately. Accord-
ing to Theorems 3.1 and 3.2, if we take larger val-
ues of m, we can approximate the given data set
properly. But for fractal case, the advantage is that
even for small values of m only, the data can be
approximated accurately with the help of suitable
choice of partition points and scaling vector. Again
with the same choice of base functions and parti-
tion as in Fig. 3b, we have constructed a nonsmooth
fractal Jackson approximant with α = (−0.45, 0.35,
−0.15,−0.15, 0.2, 0.15, 0.25,−0.15, 0, 0.5) in Fig. 3c
which interpolates almost all data points. In order
to get a more closer approximant, a nonuniform
partition of I is taken as [−π,−π/2,−π/3,−π/4,
−π/5,−π/6,−π/7,0,π/7,π/6,π/5,π/4, π/3, π/2, π].
In order to define the fractal function, the scale
vector α is taken as (0.45,−0.12, 0.1, 0, 0.1,−0.1,
−0.05,0.1,−0.05,0.15,−0.15, 0.2,−0.15, 0), we have
the fractal version of discrete Jackson approximant
Dα

5,4(x) shown in Fig. 3d which interpolates all data
points very accurately. It is worth noting that in
general the larger the values of components of α,
the fractal Jackson approximants are nonsmooth
or irregular in nature. Thus, the proposed Jackson

1850079-11
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(a) Classical discrete Jackson (b) Dα
5,4(x) with 11 approximation data

approximant D5,4(x)

(c) Nonsmooth Dα
5,4(x) with 11 (d) Nonsmooth Dα

5,4(x) with 15

approximation data approximation data

Fig. 3 Fractal generalized Jackson discrete approximants of the set defined in Example 3.3.

approximant combines the advantages of both tra-
ditional and fractal methodologies.

4. PROPERTIES AND BOUNDS
OF Dα

m,γ

Let us define, for all x ∈ [−π, π],

hα
m,i,γ(x) = Hm,γPα

m,i,γ(x).

{hα
m,i,γ} are continuous functions because Pα

m,i,γ are
and the denominator H−1

m,γ is not null for every x ∈
I due to (3.16).

For γ > 2 and m ∈ N fixed, let us define

Hα
m,γ = span(hα

m,i,γ)2m
i=1.

Since dim(Hα
m,γ) < ∞, there exists a best approxi-

mation fα
m,γ of f ∈ C[−π, π] in Hα

m,γ . The subspace
Hα

m,γ is closed.

Let us define

dα
m,γ(f) = ‖f − fα

m,γ‖∞.

Hα
m,γ is fundamental for γ > 2 fixed, since for any

ε > 0 and f ∈ C[−π, π], according to Theorem 3.2,
there exists a linear combination of elements of the
set {hα

m,i,γ : i = 1, 2, . . . , 2m} such that the dis-
tance to f is lower than ε. Thus, Hα

m,γ is complete,
since in a Banach space every fundamental set is
complete.12

Let us define

Hα
γ = span(Hα

m,γ)∞m=1.

In the case γ = 4 and α = 0, H4 is a set of
trigonometric polynomials,19 henceforth Hα

γ is a
double generalization of this kind of mappings (with
respect to the exponent γ and the scale α).
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The operator Dα
m,γ : C[−π, π] → C[−π, π] is lin-

ear (3.1) and

‖Dα
m,γ(f)‖∞ ≤

2m∑
i=1

|f(xi)||hα
m,i,γ(x)|

≤ ‖f‖∞‖Hm,γ‖∞
2m∑
i=1

|Pα
m,i,γ(x)|.

From (3.16), the norm of the operator Dα
m,γ with

respect to the sup-norm in C[−π, π] can be bounded
as

‖Dα
m,γ‖ ≤ 1

2

(π

2

)γ
Λα

m,γ ,

where Λα
m,γ is the Lebesgue constant associated to

the nodal kernels {Pα
m,i,γ}2m

i=1.
For α = 0, i.e. in the classical case, since∑2m
i=1 hm,i,γ(x) = Hm,γH−1

m,γ = 1 according to (3.2),

‖Dm,γ(f)‖∞ ≤ ‖f‖∞,

and consequently

‖Dm,γ‖ ≤ 1. (4.1)

The condition of the function values is measured by
‖Dm,γ‖, because

‖Dm,γ(f) − Dm,γ(f̃)‖∞ ≤ ‖Dm,γ‖,
‖f − f̃‖∞ ≤ ‖f − f̃‖∞.

The operator increases the errors for no value of γ
and m (see Table 1).

Lemma 4.1. If γ > 2, 1 ∈ σp(Dm,γ), where
σp(Dm,γ) is the point spectrum of Dm,γ .

Proof. Let us consider f(x) = 1 for any
x ∈ [−π, π]. The definition of Dm,γ implies that
Dm,γ(f) = 1 = f, and 1 ∈ σp(Dm,γ).

Proposition 4.1. For γ > 2 and any m ∈ N,
‖Dm,γ‖ = 1.

Proof. The inequality ‖Dm,γ‖ ≤ 1 is already
proved (4.1). For the other, if we take f = 1,

‖Dm,γ(f)‖∞
‖f‖∞ = 1,

according to the previous lemma, and thus 1 ≤
‖Dm,γ‖.

The operator Dm,γ does not amplify errors in L2-
sense either since

‖Dm,γ(f)‖2
2 =

1
2π

∫ π

−π
|Dm,γ(f)|2dx

≤ ‖Dm,γ(f)‖2
∞ ≤ ‖f‖2

∞.

Consequently

‖Dm,γ(f) − Dm,γ(f̃)‖2 ≤ ‖f − f̃‖∞,

where f̃ is the perturbed function of f .
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