
Subscriber access provided by Kaohsiung Medical University

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Policy Analysis

Is seasonal households' consumption good for the nexus
carbon/water footprint? The Spanish fruits and vegetables case

Maria Angeles Tobarra, Luis Antonio López, Maria-Angeles Cadarso, Nuria Gomez, and Ignacio Cazcarro
Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.8b00221 • Publication Date (Web): 25 Sep 2018

Downloaded from http://pubs.acs.org on September 26, 2018

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289999399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 1

Is seasonal households’ consumption good for the 1 

nexus carbon/water footprint? The Spanish fruits and 2 

vegetables case  3 

Maria A. Tobarra*
†
, Luis A. López

†
, Maria A. Cadarso

†
, Nuria Gómez

†
, Ignacio Cazcarro

‡ 4 

† Universidad de Castilla-La Mancha, School of Business and Economics, Plaza Universidad, 1, 5 

Albacete, 02071, Spain 6 

‡ ARAID (Aragonese Agency for Research and Development) researcher, Department of 7 

Economic Analysis, University of Zaragoza, Zaragoza, Spain. Research associate at BC3 Basque 8 

Centre for Climate Change, UPV/EHU, Leioa, Bizkaia, 48940, Spain 9 

* MariaAngeles.Tobarra@uclm.es, +34 967 599200 (2382). 10 

 11 
  12 

0

June '11

[42]

Importing fruits saves water Buying local fruits saves water

September '11 October '11 November '11 December '11

January '11 February '11 March '11 April '11

May '11 July '11 August '11

Page 1 of 37

ACS Paragon Plus Environment

Environmental Science & Technology



 2

ABSTRACT 13 

Proximity and in-season consumption criteria have been suggested as solutions for fruits and 14 

vegetables consumers to drive the economy to a more sustainable development. Using a new 15 

concept, seasonal avoided footprint by imports, we disentangle the role of period and country of 16 

origin. Although, as a general rule, consumers could reduce its footprint by choosing domestic 17 

produce, this is not always the case. Due to the high efficiency of Spanish domestic production in 18 

terms of both CO2e and water use (except for scarce water), imports from some regions, like 19 

Africa (green beans, pepper, tomato, banana, strawberry, oranges), contribute to significantly 20 

increase both water and carbon impacts. However, a monthly-basis analysis shows unsustainable 21 

hotspots for domestic production. Importing from France (apple, potato) or Portugal (tomato, 22 

strawberry) reduces both footprints, so Spanish local consumption would be bad for the 23 

environment. Hotspots are mainly concentrated in scarce water and, especially, for out-of-season 24 

vegetables during eleven months a year (savings up to 389%), nine months for out-of-season 25 

fruits and five months for in-season fruits. The results suggest the difficulty to generalize an easy 26 

environmental recommendation based on buying local fruits and vegetables: consumption must 27 

be analyzed on monthly/seasonal, products and countries basis. 28 

I. INTRODUCTION 29 

Globalization has allowed for the year-long availability of a wide variety of fruits and 30 

vegetables, as Southern Hemisphere products can quickly reach northern countries’ consumers. 31 

Therefore, consumption has become greatly independent of seasons and offers an advantage to 32 

consumers that originates the environmental impact that we propose to quantify. Consumers in 33 

Spain spend 14.8% of their total expenditure on food, and 2.9% is spent specifically on fruits and 34 

vegetables1. The related carbon footprint ranges from 9.2 to 13.8 tCO2 equivalent (CO2e)  per 35 
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capita (of which food is responsible for 23% and plant-based food for 2.8%), depending on the 36 

region2.  37 

While most drives to promote local in-season fruits and vegetables are based on the argument 38 

that they are healthier and of better quality3,  the literature on food miles4 and the impact of trade  39 

on the environment could also be used for promotion. This statement emphasizes the importance 40 

of the transport stage in the emissions of the whole cycle of food, disregarding the importance of 41 

the production and complementary processes that have been found to be more polluting5-7. Due 42 

to environmental efficiency and/or use of fewer resources, it is not always the case that the 43 

environmental impact from domestic production is lower8, 9 than that in other countries for fruits 44 

and vegetables that are in-season there. Innovative production, storage and transportation 45 

technologies are also challenging previous ideas about the potential reduction of environmental 46 

impacts due to in-season production and consumption.  47 

The study of environmental impacts from different patterns of food consumption is a very 48 

relevant topic in the recent literature, including studies that use life cycle assessment (LCA) or 49 

input-output methodology10-13. LCA focuses on particular food types6, 14-16 to calculate the 50 

impact of importing out-of-season products. Conclusions in this previous literature appear to 51 

point to a minimal consensus that although no large environmental benefits are expected by 52 

seasonal consumption17, they could be important if seasonality is combined with local 53 

production6,7, particularly in countries with high agriculture efficiency18. Bottom-up LCA studies 54 

of specific products have the advantage of including very detailed information but show certain 55 

disadvantages: 1) comparisons between studies are complex, as the environmental impact 56 

depends crucially on the production technique (for example, greenhouses) and the scope reached, 57 

not only on the season of the year; and 2) the focus of these studies on a small portion of the total 58 
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food expenditure makes it difficult to obtain more general conclusions. To evaluate the potential 59 

impact of changing consumption of domestic and seasonal produce, a more encompassing 60 

method is required17. An input-output methodology combined with actual data on seasonal food 61 

purchases appears to be an appropriate alternative.  62 

The two main questions addressed by this paper are the following: What would the effect on 63 

the water and carbon footprint be if the Spanish households substituted imported fruits and 64 

vegetables for local production? Is the impact similar for in-season and out-of-season local 65 

production? These questions are encountered by developing, for the first time to our knowledge, 66 

an environmentally extended multiregional input-output model (MRIO) for the monthly demand 67 

of out-of-season imported fruits and vegetables. We introduce the innovative concept of seasonal 68 

avoided footprint by imports (SAFM); therefore, we compare emissions from imported and 69 

domestic produce avoided by these imports on a monthly basis. This new element allows us to 70 

assess the emissions and water content of our current consumption of fresh fruits and vegetables 71 

given their composition and country of origin and compare them to the emissions and water use 72 

of the alternative domestic crops. While this comparison can be assimilated to the concept of a 73 

balance of avoided emissions19-25 or water use, there is a principal novelty in terms of 74 

seasonality. The proposed measure considers fresh fruits and vegetables that may not be locally 75 

available at that time of the year (or that may require more costly and less environmentally 76 

friendly production technologies, such as greenhouses) and that need to be consumed within 77 

days. Using technology data from input-output tables does not allow us to distinguish among 78 

different techniques for each fruit; however, we obtain information on the average technology 79 

used in our imported fresh products depending on their country of origin by month. 80 
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Another interesting aspect of our analysis is the consideration of two different types of 81 

environmental impact, as we consider both CO2e emissions and water use. This procedure 82 

emphasizes the water-energy-food nexus, since these three elements are inextricably linked in a 83 

complex manner such that human decisions affect the three differently. The previous literature 84 

on this nexus (see for the UK26 and for China27) notes that agricultural products occupy the top 85 

positions in terms of water and energy footprints. It is also relevant that as different alternative 86 

production techniques substitute certain inputs for others, the effects by footprint type are 87 

different. The production systems differ in input requirement intensity. However, in many cases, 88 

agricultural produce occurs in locations with sufficient water resources that need the use of 89 

energy to produce artificial heat, while locations with adequate climatic conditions frequently 90 

require water inflows in a water-scarcity context28-30. Clear trade-offs appear, in particular 91 

between water use and energy (and therefore GHG), such that conclusions cannot be based on 92 

standalone indicators.  93 

II.  METHODS AND MATERIALS 94 

II.1. MRIO model and seasonal MRIO models 95 

On the basis of an MRIO, environmental extensions have been used to evaluate the impact of 96 

international trade on different factor contents31: CO2
32, 33, water34, materials35, energy36, and 97 

nitrogen37. The usual expressions of an environmentally extended MRIO for a global economy 98 

aggregated to two regions (r, s) and two sectors of activity (i, j), in time period t, normally a 99 

natural year, is as follows in expression (1): 100 
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where � denotes environmental factors embodied in production by the world economy; and �� is 102 

the diagonal matrix of environmental factor coefficients. � is defined as the matrix of input 103 

coefficients, which we can decompose in ���, the matrix of domestic production coefficients of 104 

country r and ��� the matrix of imported coefficients from country r to country s. The 105 

diagonalized matrix of final demand is ��, which includes the diagonalized vector ���� of the 106 

domestic final demand and the diagonalized vector ���� of the final exports of country r to 107 

country s. Utilizing the identity matrix I, reading by columns, the Leontief inverse is � =108 

�� − ����, which captures all direct and indirect inputs required for providing a monetary unit of 109 

final demand of country r all over the world; this process is done in the same country r by ��� in 110 

the main diagonal and in other regions s and by ���  in the off-diagonal positions.  111 

However, evaluating a seasonal balance requires economic and environmental information 112 

regarding a unit of time that coincides with the season of fresh fruits and vegetables in which the 113 

products analyzed are produced. Constructing a full-season MRIO from an annual MRIO would 114 

require disaggregating the annual data into seasonal information (see SI for a detailed 115 

explanation): a) final demand; b) intermediate consumption and value added; and c) resources 116 

and impacts. Considering z seasons, the expression to explain the production for each season 117 

considering full information would be as follows:  118 

��� = ����� − �������� = �������� = �����  (2) 119 

Expression (2) is a seasonal extension of expression (1), where matrix result ��� provides 120 

environmental factor f embodied in production by the world economy in season z with full 121 
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information. The required information in expression (2) is not available; thus, there is no 122 

previous literature that builds MRIO models from a seasonal perspective. An interesting initial 123 

approach analyses the quarterly impact of production in Brazil38, using estimated input-output 124 

tables with quarterly national accounting data. However, this approach is not developed in a 125 

MRIO framework and for an environmental implementation. In any case, in a context of 126 

increasingly available microdata and MRIO time series, in which possibilities for IO models are 127 

also further developing39, and of increasing computing capabilities (plus the extension of 128 

updating/regionalization methods), we foresee in a not distant future the ability to accomplish 129 

explain the full “seasonal MRIO model” presented in the Supplementary Information (SI from 130 

now onwards). One important objective of this article is to open minds and experiences to the 131 

attempt of doing such a full temporalization. 132 

Our proposal for the empirical section is to build a partial-information seasonal MRIO model, 133 

allowing for seasonal variation in the final demand. The expression for this MRIO model with 134 

seasonal variation in the final demand or partial information is as follows: 135 

�� = ���� − ������� = ������ = ����  (3) 136 

 137 

where the resulting matrix �� provides the environmental factor, f embodied in production by the 138 

world economy caused by seasonal variation in final demand in season z. The seasonal variation 139 

in the final demand captures the different monthly mix of countries of origin of agricultural 140 

imported products (for example, a larger presence of South American countries in winter and a 141 

higher proportion of European countries in summer); however, the annual model would only 142 

consider the average annual proportions. Indeed, the sum of domestic and imported final demand 143 

for fruits and vegetables for all seasons is equal to their final domestic and imported annual 144 

demand. Furthermore, in comparison with the ideal full-information seasonal model, the partial-145 
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data implementation we do have has the interesting feature of isolating that “country effect” from 146 

the impact of the other two missing changes (change in the production structure, A, and change 147 

in the emission intensity, f).  148 

Our MRIO with seasonal final demand model continues to consider, as any MRIO model 149 

implicitly does, that production and emission coefficients (A and f, respectively) are similar for 150 

all products within a group and months as an annual average. However, our model explains 151 

changes in consumption, imports and export patterns for agricultural products by month (both the 152 

countries of origin of imports and the countries of exports destination are different), while the 153 

conventional MRIO does not allow one to consider this variability throughout the year. In this 154 

case, similar to the argument that the disaggregation of IO data, even if based on few real data 155 

points, is superior to aggregating environmental data in determining input-output multipliers40, 156 

we find that temporalization (disaggregation in time) of the final demand data, even if not 157 

accompanied by other changes in the structures, provides interesting and (we consider) more 158 

realistic results for the environmental metrics associated with the agri-food sectors. (Refer to 159 

section S1.5 in the SI where we analyze the changes in the resulting monthly coefficient in 160 

relation to the annual average from changes in the country mix.)   161 

II.2. Seasonal avoided footprint by imports (SAFM) 162 

Building on the concepts of the balance of embodied emissions32, 41-46 and the balance of 163 

avoided emissions19-25, we define the seasonal avoided footprint by imports (SAFM) as the 164 

difference between embodied emissions in fruits and vegetables from imports for region r by unit 165 

of time (month of season) minus domestic avoided emissions (emissions required to domestically 166 

produce and substitute those imports). The idea behind the SAFM can be extrapolated to any 167 

factor content: emissions, water, materials, and energy. The formula for this �������  for region r 168 
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due to its trade with region s in the month or season z of agriculture product i is shown by 169 

equation (4) and for all the fruits and vegetables by equation (5):  170 

������� = ���� − � �������� − ���� − � ������∗��      (4) 171 
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 173 

While *+,-./ are exports from s to r (or imports by r from s), the vector *+,-∗./ is defined as a 174 

diagonalized vector of avoided imports in season z; it includes the imported agricultural products 175 

that can be substituted by in-season domestic products. A positive sign of SAFM will indicate 176 

that imported fruits and vegetables generate more emissions or water use than do the domestic 177 

in-season produce and that therefore trade is environmentally harmful. In that case, a better result 178 

could be obtained by substituting imported fruits and vegetables by domestic production, which 179 

would be more environmentally efficient. Otherwise, a negative sign of SAFM will imply that 180 

importing those products is better for the environment as the emissions embodied are lower than 181 

those that would result from producing domestically. A change in diet from consuming local in-182 

season goods in the analyzed region would increase emissions or resource use since imported 183 

products are more environmentally efficient or use fewer resources. 184 

Regarding the substitution of imports by domestic production, there are three possible options: 185 

prices, kg or calories. Our proposal, in substitution in value terms, is respectful of budget 186 

restrictions, ensuring that final consumers would spend the same amount of money on domestic 187 

fruits and vegetables as they currently do on imported products. Therefore, substitution is 188 
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economically viable for households, since total expenditure is fixed. The three options have both 189 

advantages and disadvantages; those aspects are fully discussed in S.5 in the SI.  190 

II.3. Materials. 191 

Despite the growing number of global multiregional input-output databases that provide annual 192 

data for the different countries/regions, there are no monthly or seasonal data. Therefore, we 193 

have built our “temporalization of the MRIO” combining information from different sources. We 194 

have used EXIOBASE version 2.2. for 200747-50, which provides data for an extended 195 

environmentally multi-regional input-output (EE-MRIO) model for 163 industries and 48 196 

countries and regions. CO2e emissions are defined using the Global Warming Potential 100, 197 

defined so kg CO2e = 1x kg CO2 + 25 x kg CH4 + 298 x kg N2O + 22800 x kg SF6, as 198 

characterized in the EXIOBASE v2.2.2. For the satellite accounts of water, we utilize the data 199 

both on the blue water (ground and surface water) and green water (from precipitation that is 200 

stored in the root zone of the soil and evaporated, transpired or incorporated by plants). In 201 

addition, to not simply examine the blue water consumption or uses but to also particularly focus 202 

on the effects for “scarce water” (increasing arguments in favor of placing the focus more on this 203 

aspect are appearing in the literature, in a context of increasing demands, vulnerabilities derived 204 

from climate change, etc.), we  apply to the blue water the ratio of the freshwater withdrawal to 205 

the total renewable water resources51, 52, obtaining “scarce blue water” volumes. For all the 206 

countries, we preferably used this information for the period 2008-2012; otherwise, the periods 207 

2003-2007 and 2013-2017 (average if existing in both) were used; and in exceptional cases, the 208 

period 1998-2002 was used. The ratio of “scarce water” for the rest of the world regions was 209 

obtained at country level; with it, a weighted (by the total renewable water resources) “scarce 210 

water” ratio was obtained for the 5 regions (WA, WE, WF, WL, WM, see SI). Using the Spanish 211 
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Ministry of Agriculture data and different references for calendars of fruits and vegetables for the 212 

different fruits and vegetables, we have classified the months of harvest and best consumption in 213 

Spain (see the “Specification and calendar” in the SI). In-season fruits and vegetables in a 214 

particular month are those that can be produced in Spain in that month (for example, watermelon 215 

from May to September), while out-of-season fruits and vegetables are not generally produced in 216 

that month (watermelon from October to April). Data for traded (imported/exported) agricultural 217 

products are provided by the Spanish Customs Office for 201153 with details on weight, value, 218 

country of origin/destination and mode of transportation. Scheme 1 summarizes the procedure 219 

for calculation and interpretation. 220 

Scheme 1. Calculation and interpretation of results from SAFM 221 

 222 

Note: SAFM = Emissions or water embodied in imported fruits and vegetables from region r in a 223 
particular month minus emissions or water avoided by imports. If SAFM <0, emissions 224 
embodied in imports are lower than the emissions required to domestically produce and 225 
substitute those imported fruits and vegetables. 226 

 227 

III.  MAIN RESULTS 228 
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The production capacity of Spain in fruits and vegetables both for domestic consumption and 229 

for foreign demand is remarkable54, resulting in its ability to implement measures of import 230 

substitution by domestic production depending on the country of origin and the environmental 231 

pressures resulting from the imported products (see section SI2 of the supporting information for 232 

a detailed analysis of Spanish trade of fruits and vegetables). Our results show a positive sign in 233 

the annual Spanish seasonal avoided footprint by imports (SAFM) for both fruits and vegetables 234 

in 2011, except for scarce blue water for out-of-season fruits (Tables 1 and 2), revealing a 235 

general increase in CO2e and water footprints because of fruit and vegetable imports. Due to the 236 

higher efficiency of domestic production in terms of both CO2e and water use for these products, 237 

Spanish final consumers could reduce annual carbon emissions and water use in important 238 

quantities if the imports of fruits and vegetables are replaced by domestic production.  239 

1. Fruits seasonal avoided emissions by imports (SAFM). 240 

Focusing on fruits, the annual results support the idea of a highest efficiency in natural 241 

resources use for the four metrics used (except for one category, see Table 1). The substitution 242 

of imports by domestic production would have saved 317 tCO2e emissions to the atmosphere 243 

(33% in relative terms to the total emissions embodied in imports in 2011), 1.6 km3 of blue and 244 

green water (72%), 0.3 km3 of blue water (45%), while the reduction in scarce blue water will 245 

be minimal (1 Mm3, 1%). The results are now analyzed conditional to seasonality: 246 

Substituting imports by domestic production for fruit seasonal consumption would have saved 247 

the environment 79.29 tCO2e (24%) and 0.5 km3 (65%), 0.07 km3 (35%) and 0.002 km3 (5%) 248 

of green and blue, blue and scarce blue water, respectively. The results are similar for out-of-249 

season fruits, with potential reductions for tCO2e, total green and blue water, and blue water of 250 

39%, 75%, 50%, respectively, while trade actually reduces the content of scarce blue water by 251 
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2%. These impressive figures are due to the much higher embodied emissions for fruits 252 

originating from a certain dataset of aggregated regions such as the Rest of Africa, Rest of 253 

America and Asia and Pacific (see Table S7 in the SI), together with the high weight of those 254 

imports, particularly for the Rest of America. Some of these countries have coefficients for 255 

embodied CO2e and water from 3.2 to 9.2 times those of the Spanish ones. For blue water, 256 

which is linked to water management and water alternative uses other than agriculture, 257 

potential reductions are small and close to zero in absolute values, and even slightly negative 258 

for out-of-season fruits. However, strong reductions are possible for specific regions; that is, 259 

the blue scarce water intensity embodied in fruits imported from Africa is 9.2 times the 260 

Spanish value. The aggregated nature of the main actors, the Rest of Africa, America and Asia 261 

warrants a cautious interpretation of the results55. 262 

The SAFM analysis by month for both types of fruit allows further insight of these results. The 263 

analysis reinforces the conclusion of a higher efficiency for Spanish production of fruits that 264 

holds during the year for all footprints with the exception of scarce water, for which the saving 265 

potential follows a seasonal pattern. Spanish production is more efficient than importing from the 266 

countries of origin; this is particularly the case for out-of-season fruits. This finding allows 267 

approximately 2 to 3 times higher savings, as an annual mean, if trade were to be more highly 268 

regulated for CO2e, blue and green and blue water. However, there is no clear pattern for blue 269 

scarce water. There is a potential reduction in blue scarce water consumption by substituting 270 

imports with domestic production for in-season fruits; however, the reduction is small. 271 

Therefore, scarce blue water consumption would be the main shortcoming of the fruit production 272 

processes. Imported fruits have less embodied water in various months: 6 for in-season fruits and 273 

9 for out-of-season ones. Country of origin is, to a large extent, the main factor behind these 274 
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differences; that is, the results show that scarce blue water savings are mainly due to the France, 275 

Rest of Latin America, Italy, Portugal, the Netherlands and the United Kingdom in-season fruit 276 

imports, as shown on the left side of Figure 1. In contrast, imports from the Rest of Africa, Asia, 277 

and Rest of Middle East imply increases in scarce blue water, as shown on the right side of 278 

Figure 1. For out-of-season fruits, savings in scarce blue water are generated by imports 279 

originating mainly from the Rest of Latin America, France, Brazil, Italy and the Netherlands; 280 

however, the increases in scarce blue water are concentrated, more than 90%, in imports from the 281 

Rest of Africa (Figure S8 of the SI). Although the quantities are small in absolute/annual terms 282 

because the different sign effects of different countries balance out, the changes are marked in 283 

relative terms, given that scarce water efficiency is higher in most countries of origin. The large 284 

quantity of fruits that are produced in semi-desert areas in Spain explain these results. 285 

 286 

 287 

Figure 1. SAFM of scarce blue water for in-season fruits (main countries), 2011.  288 

Note: SAFM = Emissions or water embodied in imported fruits and vegetables from region r in a 289 
particular month minus emissions avoided by imports. If SAFM <0, emissions embodied in 290 
imports are lower than the emissions required to domestically produce and substitute those 291 
imported fruits and vegetables. 292 

 293 
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Moreover, our results show a degree of substitutability among hydrological resources and 294 

carbon emissions for both types of fruits. Accordingly, months where imports imply a high 295 

increase in carbon emissions (i.e., 46% for out-of-season in December) accompany a reduction in 296 

scarce blue water (-2%). Therefore, the reduction (increase) in GHG impacts imply an increase 297 

(reduction) in water depletion (see comment on Figure S4 in section S3 of SI for detailed 298 

analysis). 299 

Table 1. Fruits’ monthly seasonal avoided CO2e emissions and water by imports, SAFM (In-300 

Season and Out-of-Season, also with respect to the metric embodied in imports, EM) for 2011, kt 301 

for CO2e and Mm3 for water uses.  302 

In-season Fruits 
 CO2e Emissions Green and Blue Blue Scarce Blue 

 
SAFM 
(kt) 

SAFM/EM 
(%)  

SAFM 
(Mm3) 

SAFM/EM 
(%) 

SAFM 
(Mm3) 

SAFM/EM 
(%) 

SAFM 
(Mm3) 

SAFM/EM 
(%) 

January 3.59 15% 21.6 51% 0.45 4% 0.2 6% 
February 3.39 14% 29.1 60% 2.8 21% 0.9 22% 
March 3.64 18% 35.4 68% 5.3 38% 1.7 38% 
April 2.50 18% 23.1 67% 3.5 37% 0.6 24% 
May 3.72 22% 54.4 81% 10.4 61% 3.7 63% 
June 6.93 26% 45.5 70% 7.7 44% 0.5 14% 
July 5.70 27% 37.5 71% 6.2 44% -0.1 -5% 
August 6.92 26% 40.6 68% 6.1 38% -0.8 -35% 
September 7.55 26% 40.6 66% 8.2 43% -0.8 -29% 
October 18.26 33% 83.7 70% 17.2 48% -0.2 -4% 
November 10.84 25% 39.7 56% 2.8 15% -1.9 -56% 
December 6.25 19% 20.2 44% 0.0 0% -1.5 -52% 
Annual 79.29 24% 471.5 65% 70.6 35% 2.4 5% 
Out-of-Season Fruits 

 CO2e Emissions Green and Blue Blue Scarce Blue 

 
SAFM 
(kt) 

SAFM/EM 
(%)  

SAFM 
(Mm3) 

SAFM/EM 
(%) 

SAFM 
(Mm3) 

SAFM/EM 
(%) 

SAFM 
(Mm3) 

SAFM/EM 
(%) 

January 15.63 43% 75.9 79% 10.8 51% -0.6 -20% 
February 19.42 41% 87.1 76% 10.1 41% -2.1 -84% 
March 19.02 32% 89.84 70% 10.7 35% -1.5 -29% 
April 23.24 31% 160.2 76% 25.5 50% 5.9 41% 
May 28.69 35% 142.8 73% 31.8 54% -0.4 -5% 

Page 15 of 37

ACS Paragon Plus Environment

Environmental Science & Technology



 16

June 21.09 36% 95.1 72% 20.0 51% -0.6 -10% 
July 13.29 36% 71.2 76% 15.0 56% 0.9 18% 
August 25.11 43% 92.0 74% 21.4 56% -1.2 -29% 
September 21.97 43% 75.8 73% 15.2 51% -1.5 -44% 
October 12.44 43% 42.4 72% 6.3 43% -0.3 -13% 
November 16.25 51% 80.1 84% 10.7 58% 0.1 5% 
December 21.47 46% 110.1 82% 15.2 54% -0.1 -2% 
Annual 237.63 39% 1122.6 75% 192.7 50% -1.5 -2.4% 
Note: A positive sign for the seasonal balance of avoided footprint (SAFM) indicates that the 303 
Spanish fruit trade with other regions increases global emissions, as the emissions from the 304 
imports are higher than the emissions that would be generated if it produced its imports. Spain 305 
would then produce fruits that incorporate a lower virtual (carbon/water) footprint than that of 306 
the imported, more intensive (carbon/water) goods. The substitution of imports by domestic 307 
production would imply global savings with respect to a baseline (the current trade patterns). A 308 
negative sign indicates that Spanish trade avoids emissions/water, as that country imports goods 309 
with a lower carbon/water embodied, which replaces higher polluting domestic production. The 310 
SAFM is obtained in absolute quantities but also as a proportion of the metric in question, which 311 
is embodied in imports (EM).  312 

Key: 3.59 kt of CO2e emissions of Spain for in-season fruits in January show how much greater 313 
emissions are from its imports than the emissions that would be generated if it produced its 314 
imports. This difference represents 15% of the CO2e emissions embodied in imports in that 315 
month for these products. 316 

Source: Own elaboration from the modeling exercise, departing from the data of EXIOBASE 317 
and trade data. 318 

 319 

 320 

2. Vegetables seasonal avoided emissions by imports (SAFM).  321 

Seasonal patterns are better defined for vegetables than they are for fruits. The results again 322 

show a higher efficiency for Spanish production than that of its imports as an annual average for 323 

all the analyzed footprints for in-season vegetables and two out of four for out-of-season; 324 

however, the exceptions are numerous at the monthly level. All year long, domestic vegetable 325 

consumption would have reduced emissions to the atmosphere by 53.66 tCO2e (11% in relative 326 

terms) and water use by 0.84 km3 of blue and green water (67%), by 0.10 km3 of blue water 327 

(31%) and by 0.06 km3 of scarce blue water (48%). Although the blue and scarce blue water use 328 
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change sign during the year, the potential savings if imports were avoided would 329 

overcompensated those periods were Spanish efficiency lags those countries that produce its 330 

substitutes. For vegetables, the out-of-season type shows more moderate potential reductions and 331 

even negative results for blue and scarce blue water, such that total results are mainly led by 332 

seasonal vegetable consumption patterns, contrary to the fruits case. Conversely, there are certain 333 

marked similarities with fruits; again as scarce blue water, the footprint that would clearly 334 

worsen if Spanish imports were suppressed.  335 

Monthly results for vegetables SAFM are shown in Table 2. Focusing on in-season vegetables, 336 

the results show that international vegetable trade entails a reduction of water used for blue and 337 

scarce blue water for the summer period; however, for any other month for these two impacts 338 

and all year long for carbon emissions and green and blue water, all measured environmental 339 

impacts increase due to imports. Potential savings due to imported substitution by domestic 340 

production are explained for the water case for those imports originating from African countries, 341 

which, as previously noted, have an intensity of scarce blue water that is nearly ten times that of 342 

the Spanish. For out-of-season vegetables, imports allow saving on scarce blue water in every 343 

month but July, with a peak value in March of 389%. In addition, green and blue water savings 344 

appear between February and May, and CO2e and blue water savings due to imports appear from 345 

January until May. Since, for most cases, vegetables production requires larger quantities of 346 

water than fruits, savings are remarkable whenever imported out-of-season vegetables originate 347 

from a region where production is in-season. As an example, more detailed analysis for in-season 348 

vegetables shows how savings in scarce blue water related to imports are important for the Rest 349 

of Latin America, France, Italy, Belgium and Portugal (left side in Figure 2). In contrast, imports 350 

from the Rest of Africa, Rest of Asia and Rest of Middle East generate important increases in the 351 
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use of scarce blue water (right side in Figure 2). For out-of-season vegetables, although 352 

variations are less positive or more negative than for fruits, savings or increases of scarce water 353 

originate from the above cited regions; however, savings are mainly concentrated in France and 354 

the Rest of Latin America, with the increases in imports from the Rest of Africa (Figure S9.of 355 

the SI).  356 

 357 

 358 

Figure 2. SAFM of scarce blue water for in-season vegetables (main countries), 2011. 359 

Note: SAFM = Emissions or water embodied in imported fruits and vegetables from region r in a 360 
particular month – emissions avoided by imports. If SAFM <0, emissions or water embodied in 361 
imports are lower than the emissions or water required to domestically produce and substitute 362 
those imported fruits and vegetables. 363 

 364 

For CO2e, colder months require the use of greenhouses, with an undesirable effect on carbon 365 

emissions. This case did not apply for fruits since their production within greenhouses is much 366 

less common. The relative figures for avoided impacts are very impressive, particularly for blue 367 

,and even more scarce blue, water in winter, and lead to a negative annual mean for vegetable 368 

overall, although the absolute figures are small. Moreover, our results show a clear 369 

complementarity relationship among hydrological resources and carbon emissions for both types 370 
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of vegetables. These results provide environmental arguments that justify the idea of substituting 371 

domestically produced greens by imported ones for certain products and months, in-season in 372 

summer and out-of-season in winter, while imported ones should be substituted by domestically 373 

produced any other month (see comment to Figure S4 in section S3 of SI for a detailed analysis). 374 

 375 

  376 
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Table 2. Vegetable monthly seasonal balances of avoided CO2e emissions and water (In-Season 377 

and Out-of-Season, also with respect to the metric embodied in imports, EM) for 2011, kt for 378 

CO2e and Mm3 for water.  379 

In-Season Vegetables 
 CO2e Emissions Green and Blue Blue Scarce Blue 

 
SAFM 
(kt) 

SAFM/EM 
(%)  

SAFM 
(Mm3) 

SAFM/EM 
(%) 

SAFM 
(Mm3) 

SAFM/EM 
(%)  

SAFM 
(Mm3) 

SAFM/EM 
(%) 

January 4.23 13% 114.2 80% 18.7 56% 11.3 70% 
February 4.87 14% 116.4 80% 19.3 56% 11.4 70% 
March 11.47 23% 141.9 79% 24.3 55% 14.9 70% 
April 5.63 16% 106.1 78% 16.9 53% 11.3 70% 
May 4.99 16% 88.2 77% 13.6 50% 9.1 67% 
June 2.04 11% 34.8 69% 4.1 33% 3.0 53% 
July 0.02 0% 2.4 19% -2.0 -60% -0.5 -43% 
August 0.34 3% -0.9 -9% -3.0 -109% -1.1 -123% 
September 0.57 4% 1.6 11% -2.5 -55% -0.9 -71% 
October 1.07 6% 22.9 57% 1.5 15% 1.6 36% 
November 1.46 6% 78.6 78% 11.9 52% 8.7 71% 
December 2.52 8% 86.2 76% 12.1 47% 9.2 67% 
Annual 39.20 13% 792.3 75% 114.8 45% 78.0 63% 
Out-of-Season Vegetables 

 CO2 Emissions Green and Blue Blue Scarce Blue 

 
SAFM 
(kt) 

SAFM/EM 
(%)  

SAFM 
(Mm3) 

SAFM/EM 
(%) 

SAFM 
(Mm3) 

SAFM/EM 
(%)  

SAFM 
(Mm3) 

SAFM/EM 
(%) 

January -0.56 -3% 2.3 11% -3.8 -63% -2.4 -263% 
February -1.47 -8% -3.0 -19% -5.3 -118% -2.4 -302% 
March -1.30 -7% -4.1 -28% -5.5 -136% -2.5 -389% 
April -0.67 -5% -6.4 -73% -5.0 -176% -1.8 -231% 
May 0.43 3% -2.3 -23% -3.3 -110% -1.1 -118% 
June 2.27 21% 1.6 16% -0.9 -26% -0.7 -102% 
July 3.66 26% 14.1 58% 1.5 22% 0.3 17% 
August 3.65 23% 9.7 45% -0.0 0% -0.5 -33% 
September 2.46 20% 11.8 54% 1.3 21% -0.3 -24% 
October 2.75 29% 8.2 56% 1.1 24% -0.5 -84% 
November 1.80 22% 8.3 57% 1.0 23% -0.5 -98% 
December 1.45 14% 8.9 50% 0.6 11% -0.9 -151% 
Annual 14.46 9% 49.0 25% -18.5 -32% -13.4 -117% 
Note: A positive sign for the seasonal avoided footprint by imports (SAFM) indicates that 380 
Spanish vegetables trade with other regions increases global footprint, as the emissions or water 381 
from its imports are higher than the emissions or water that would be generated if it produced its 382 
imports. Spain then would produce vegetables that incorporate a lower virtual (carbon/water) 383 
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footprint than that of the imported, more intensive (carbon/water) goods. A negative sign 384 
indicates that Spanish trade avoids emissions/water, as that country imports goods with lower 385 
carbon/water embodied, which replaces a more polluting domestic production.  386 

Key: 4.23 kt of CO2e emissions of Spain of in-season vegetables in January, show how bigger 387 
are emissions from its imports than the emissions that would be generated if it produced its 388 
imports. This difference represents 12% of the CO2e emissions embodied in imports in that 389 
month for these products. 390 

Source: Own elaboration from the modeling exercise, departing from the data of EXIOBASE 391 
and trade data. 392 

  393 

3. Fruits and vegetables SAFM by country of origin of imports.  394 

Disregarding the seasonal patterns, we focus now on annual impacts of the origin of products. 395 

It is possible to identify the Rest of Africa as the main responsible region for a higher quantity of 396 

scarce water impacts and America (mainly South America, see S4 in SI) as the main responsible 397 

region for CO2e impact (see Figure S6 of supporting information). The results show that the Rest 398 

of Latin America imports imply an important increase in CO2e emissions together with a 399 

reduction in scarce water use, which is consistent with the discussed idea of substitutability 400 

between water and energy. Belgium shows a similar pattern with moderate figures. The main 401 

fruit import providers for Spain are Brazil (mainly melons, watermelons and pineapple) with 402 

high linked carbon emissions, Costa Rica (mainly pineapple and banana), which is included in 403 

the Rest of Latin America and Peru. Additionally, for scarce blue water, SAFM show potential 404 

savings with very low values among most countries, with the Rest of Africa as a notable 405 

outsider. In contrast, there are no major CO2e emitters; emissions embodied in imports are 406 

homogeneously distributed. 407 

The country of origin analysis of annual in-season vegetables SAFM leads to the conclusion 408 

that negative impacts on scarce blue water are mainly due to African imports, which represent 409 
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over 90% of the total (see Figure S7 of supporting information). In contrast, European and the 410 

Rest of Latin America-originated purchases allow water savings compared to that of Spanish 411 

production. The graph shows the important weight of water savings for products originating from 412 

France (potatoes and cabbage), Portugal (tomatoes in October-November), South American 413 

countries (mainly onions, shallots, garlic and leeks), Italy (artichoke, tomato), Belgium (due to 414 

its re-export market strategy for potatoes and lettuce), and the Netherlands (with a profile similar 415 

to the Netherlands for onions, potatoes, cabbage, cucumber and pepper and tomatoes, citrus 416 

fruits, apples and pears). For approximately every country, both water use savings and 417 

increments are higher for in-season than for out-of-season vegetables, mainly because out-of-418 

season imports are smaller in quantity. Green and blue water consumption would also be smaller 419 

if imported vegetables were substituted by domestic production, mainly for those originating 420 

from the Rest of Africa (with embodied water coefficients 9.2 times those of the domestic ones). 421 

The substitution of these Rest of Africa imports would be reduced by 0.8 km3, virtually the 422 

whole impact, and its effect would basically occur from November to May. 423 

The SAFM concentration for vegetables is also high for CO2e but at a lower level. Among the 424 

countries that are the origin of Spanish vegetable imports with a negative environmental impact, 425 

we find BE (mainly potatoes and leeks), the Rest of Latin America (onions, asparagus and 426 

garlics), the Middle East (artichokes from Egypt and early potatoes from Israel) and the Rest of 427 

Africa (mainly beans but also tomatoes and peppers) and China (mainly garlics). Imports in 428 

terms of kilograms from France (mainly potatoes, and beans and carrots) or Portugal (mainly 429 

tomatoes, followed by potatoes and leeks) are much more important; however, those imports are 430 

more efficient both in terms of CO2e and water usage. France and Portugal allow the reduction of 431 

emissions for both water and carbon. The Rest of Africa and Rest of Middle East import results 432 
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show an increase in both types of impacts. An exception is Belgium and a small number of 433 

countries whose imports reduce the Spanish water impact but increase CO2e emissions. 434 

In the following four maps, we illustrate visually the SAFM of CO2e and scarce blue water, 435 

which quantifies reductions (if negative) or increases (if positive) in these variables when 436 

comparing current trade patterns to domestic production technology (i.e., if the imports were 437 

produced in Spain itself). The analysis then is done for Spain, in reference to the trade partner 438 

countries and regions. In the months selected, which generally are very representative of the 439 

directions of the yearly changes per country, both the positive or negative variations of scarce 440 

blue water and carbon emissions are very relevant. In the case of the two maps (Figure 3) of in-441 

season fruits in October, we find many regional differences for blue water and CO2e emissions, 442 

highlighting a kind of trade-off for the two variables in the savings with respect to many of those 443 

origins. For example, with Brazil, one may observe the negative balance in scarce blue water 444 

(savings with current trade patterns) and very positive in CO2e (increases with current trade 445 

patterns). This result also occurs with Italy, similar to that in Portugal and other European 446 

countries with whom Spain mainly trades, having a negative balance in the blue water (global 447 

savings with current trade patterns) and a positive balance in CO2e. The results for this month, 448 

October, for South Africa are also very interesting, because they provide a more marked negative 449 

balance for scarce water (savings with current trade patterns) and a more markedly positive 450 

balance for CO2e. These two maps of in-season fruits for October clearly illustrate the described 451 

concept of a “positive hotspot” of France, with avoided blue water and CO2e emissions with 452 

current trade patterns; this finding is in contrast to China, the Rest of Asia and the Rest of Latin 453 

America. 454 

 455 
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 456 

Figure 3. SAFM of in-season fruits in October for CO2e (kg) emissions (A) and blue water 457 

(1000 m3) (B), 2011 458 

Source: Own elaboration from the modeling exercise, departing from the data of EXIOBASE 459 
and trade data. QGIS software (www.qgis.org).  460 

Note: The analysis follows the same regional classification as in all the article, i.e., the 2nd 461 
column of Table S3, “Name (Regions in all other figures)”. Hence, all countries within a region 462 
show the same color. 463 

In the case of the two maps (Figure 4) of scarce blue water for out-of-season vegetables, we 464 

may observe how the differences across months for the same variable are less marked than the 465 

differences among variables. In this regard, the cited important (global) avoidance of scarce blue 466 
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water with the imports from France is maintained, and the same applies for the increase in 467 

(global) scarce blue water with the current imports from Rest of Africa and Middle East. In any 468 

case, we may continue to observe certain key differences between March and August. In March, 469 

the United Kingdom and Brazil show more negative balances (negative SAFM, which imply 470 

savings with current trade patterns), and the the Rest of Africa shows more positive balances. 471 

 472 

 473 

Figure 4. SAFM of scarce blue water (1000 m3) for out-of-season vegetables March (A) and 474 

August (B), 2011  475 
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Source: Own elaboration from the modeling exercise, departing from the data of EXIOBASE 476 
and trade data. QGIS software (www.qgis.org). 477 

Note: See note in Figure 1.  478 

 479 

IV.  DISCUSSION IN TERMS OF ENVIRONMENTAL POLICIES 480 

The development of a MRIO with a seasonal final demand model has allowed us to show that 481 

timing by month is a key factor to evaluate the potential environmental impact of local and 482 

seasonal consumption when substituting fruits and vegetables imports for domestic production. 483 

The proposed substitution implies that consumers are open to replace products, i.e., imported 484 

pineapples by domestic oranges, instead of considering an immutable consumption pattern for 485 

households.  486 

Although, in 2011, the Spanish economy had an environmentally efficient agricultural sector, 487 

local and seasonal consumption does not always imply a lower carbon and water footprint. In 488 

particular, importing from France contributes to reduce both CO2e and scarce blue water, while 489 

the opposite is true for imports from Africa. For imported fruits and vegetables from Latin 490 

America, a trade-off appears as they require less water but have a greater CO2e content (see 491 

section S4 in the SI). 492 

Once local and seasonal consumption of fruits and vegetables is temporalized, we find that for 493 

a significant number of months, domestic consumption would have a greater environmental 494 

impact in terms of water and CO2e emissions. The savings from international trade are more 495 

pronounced for out-of-season fruits, due to a more scarce water intensity in domestic production 496 

than that in imported alternatives, and for out-of-season vegetables, due to higher domestic 497 

intensity not only in scarce water but also in blue water and CO2e. The highest savings by trade 498 

are shown for out-of-season vegetables; they range from 15% of CO2e in April to 389% of scarce 499 
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water in March. Instead, domestic production substitution leads to CO2e, green and blue water 500 

reductions in all the months for all fruits and most months for in-season vegetables, ranging the 501 

highest savings from 23% of CO2e in February to 80% of green and blue water in January and 502 

February, both for in-season vegetables.  503 

Focusing on the water results, which have been shown to be more significant in terms of 504 

potential to reduction, 25% (close to 5.5 km3) of all the blue water consumed in Spain is directly 505 

used for fruits and vegetables. Regarding the consumption side, we estimate that the 506 

consumption of fruits and vegetables represents approximately 11% of the total water footprint 507 

in Spain and close to 20% of the water footprint related to food sectors. Within this context and 508 

focusing on scarce water as sensitive resource to over-exploitation, the results show that regional 509 

differences matter. Trade with Africa and Asia leads to water stress; therefore, it should be 510 

reduced. However, imports from Latin-American and Europe lead to a reduction in water use 511 

when compared to that of Spanish production. Analyzed by product, it is always in-season 512 

imports, for fruits and most months for vegetables, that require more water; the highest water 513 

requirement due to imports occurs in May for fruits, 63%, and from November to May for 514 

vegetables, ranging from 67% to 71%. In terms of products and origins, this finding is 515 

particularly true for fruits from Africa (banana, strawberry, oranges). Imported products that save 516 

water are apples from France and banana from Ecuador for in-season fruits; pineapple form 517 

Costa Rica and melon from Brazil for out-of-season fruits; and potatoes from France for 518 

vegetables. Top driving products by origin can be found in Tables S6 and S7 in the SI. 519 

We have observed that when combined, the substitution of imports by having domestic 520 

production of fruits and vegetables would have saved globally 2.44 km3 of green and blue water, 521 

0.4 km3 of blue water and 0.06 km3 of scarce blue water. Therefore, producing imported fruits 522 
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and vegetables domestically would imply moving from needing 5.4 km3 of blue water to 6.0 523 

km3, i.e., needing additional 0.5 km3 while simultaneously globally avoiding 0.9 km3 of blue 524 

water. This increase obviously could generate additional water challenges in Spain, e.g., 525 

increases of scarce water (around 10%). Another means to consider the maximum potential of 526 

water saving would be to substitute those imports with higher embodied water intensities than 527 

Spain, e.g., producing domestically current large imports of fruits and vegetables from a few 528 

regions with very high-water intensities (the Rest of Africa, Rest of Asia, Middle East, and 529 

India). This result could lead to saving globally 0.5 km3 of blue water (increasing blue water in 530 

Spain by 0.2 km3 for producing them but avoiding 0.7 km3). This is particularly the case for 531 

banana from Ecuador, avocado from Peru, pineapple from Costa Rica and melon from Brazil 532 

(see Table S6 in SI). Obviously, these type of changes call for additional investigation, 533 

particularly on the climatic conditions that make those productions possible and on the 534 

dietary/nutritional characteristics of the substitution; in any case, this study calls for additional 535 

focus on the possibilities of these type of substitutions. 536 

Calling for domestic fruit and vegetable consumption is not an adequate all-year-around 537 

option. The examination of the time patterns shows that, for vegetables, local and seasonal 538 

consumption should be avoided in July, August and September for in-season vegetables, since 539 

imports save water, while the emissions are increased by only 0 to 4%. For out-of-season 540 

vegetables between January and May, we find savings in emissions, blue and scarce blue water 541 

due to imports, a total of 3.6 kt of CO2e, 23.0 Mm3 and  10.2 Mm3 respectively for the 5 months, 542 

a mean reduction of 4% for CO2e, 112% for blue water and 250% for scarce blue water. 543 

Regarding fruits, potential import substitution savings are much more isolated and less 544 

significant. In addition, in relation to fruits, there is a monthly substitution between the blue 545 
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water and carbon footprint that makes it impossible to clearly identify the months for which the 546 

substitution is more appropriate; it is not easy to prioritize one footprint over the other. We can 547 

only say that the fact that relative changes in trade impacts of any sign are higher (in %) in CO2e 548 

emissions than those in blue water reveals that carbon is more sensitive than water when it comes 549 

to changes in food supply origin.  550 

Although the seasonal adjustment is not present, a comparison with the input-output previous 551 

literature that focuses on the effect of diet changes on carbon emissions shows a modest impact 552 

on emissions explained by the low weight of these kind of products on the diet56. Tukker et al.57 553 

find a potential reduction of 9% in CO2e emissions when switching to a vegetarian diet, while 554 

the results of Pairotti et al.58 and Cazcarro et al.59 show a potential reduction of 12.7% for CO2e 555 

and 9% for the water footprint, respectively, for switching to a more healthy diet. The results 556 

found in this paper are more substantial in terms of CO2e, blue water and, particularly, scarce 557 

water, for out-of-season fruits and vegetables. These differences lead us to the conclusion that 558 

less significant results in previous studies were due to yearly averages that hide fluctuating 559 

changes, with a remarkable potential in curbing emissions and resource overuse goals when 560 

temporalization is considered. However, although potential reductions on environmental impacts 561 

are found, more meaningful results would be achieved if this measure was combined with a 562 

reduction in meat consumption and in overconsumption60, 61. 563 

We have identified the months in which the substitution produces savings in the carbon and 564 

water footprints. Conversely, for those that generate a greater footprint, we have arguments to 565 

evaluate when it can be more efficient to modify the consumption of foreign fruits and 566 

vegetables. Two complementary lines are required to conform a curbing emissions-water use 567 

strategy: production and consumption-side policies. We begin by considering consumer 568 
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strategies; however, we should state that changes in consumption decisions are difficult to cause. 569 

This can be especially limiting when considering tropical fruits that represent 11% of total 570 

imported fruits (in euros). Regarding transferring information to consumers, a strategy could be 571 

to accentuate local consumption campaigns in those months in which the impact of trade is more 572 

negative. In addition, the message of the campaigns should regard the potential environmental 573 

impact mitigation and the health-based information that proves to be more effective in changing 574 

household’s patterns 62. Since patterns are complex and change for different product groups and 575 

the considered footprint,  perhaps the best thing would be to have local and seasonal campaigns 576 

in time to avoid conveying confusing information to consumers  if we want to mitigate the 577 

effects of teleconnection 63. 578 

The significant changes in footprint found by the substitution between domestic and imported 579 

consumption of fruits and vegetables lead us to propose an environmental certification system. A 580 

simple eco-label informing the imported product footprint in comparison to the local 581 

consumption alternative (average, cleaner or dirtier) will be a nudge towards environmentally 582 

friendly consumption. This information would allow the consumer to know that when consuming 583 

imported pineapples in relation to local in-season fruits (oranges in January or mandarins in 584 

October), there is a smaller water impact. As with the challenges for other types of labels 585 

(particularly on footprints64-67), the proposed eco-label would need to track the produce and 586 

country, in addition to the season, on a monthly basis. Obviously, all these activities should be 587 

weighted by acknowledging the research on information campaigns and on their limits to change 588 

behavior in this complex topic68, 69. 589 

Certain production-and distribution policies should be implemented to ensure far-reaching 590 

changes. Supermarkets could nurture consumers’ cleaner choices by launching a fruits and 591 
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vegetables range that provides a sustainable basket of domestic and imported produce, without 592 

entering into conflict with households’ freedom to choose. Another alternative could be carbon 593 

and water taxes on both domestic production and imports, which would encourage the shift 594 

towards consumption with a lower environmental footprint. Nevertheless, this type of policy 595 

encounters serious design and implementation problems for carbon (and water) border taxes70, 71 596 

and could conflict with WTO legislation.  In addition, a carbon tax could have a limited effect by 597 

moderately increasing the price of agricultural products in the Spanish economy33; in addition, 598 

such a tax would be regressive since food is a very important part of the consumption basket of 599 

low income groups72, 73. 600 

Returning to the more technical aspects of the framework and the technical implementation 601 

presented, we recapitulate that the advantage of an MRIO is that it incorporates the total 602 

emissions, direct and indirect, associated with the carbon and water footprints of fruits and 603 

vegetables, without generating double counting and without needing to truncate the data. The 604 

practical limitations stem from the level of disaggregation of the environmental coefficients for 605 

the different products and the timing of these coefficients. In relation to the disaggregation, an 606 

improvement strategy for the future of alternative research could be the construction of hybrid 607 

IO-LCA models that would allow one to incorporate the impact detail in direct emissions of 608 

Scope 1, while striving to compute the remaining impacts through the MRIO13. In relation to the 609 

timing, in our case, only the fruit and vegetable imports of the Spanish economy have been 610 

temporized to the different months of the year. The improvements would derive from using 611 

timed environmental intensities16 and, if possible, to disaggregate the agriculture sector 612 

temporarily, depending on the consumption of intermediate inputs required in each production 613 

period. For water, we have obtained the monthly consumptive (blue) water use by using the 614 
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basins of monthly blue water consumption74. However, this information would only be useful for 615 

the analysis if the output data and the MRIO data, at least for the agriculture sector, were also 616 

obtained monthly, to obtain meaningful monthly water coefficients and transactions of goods. 617 

All these lines of research are promising, and their interest is supported by this research, which 618 

has opened new possibilities by highlighting the importance of the different environmental 619 

pressures obtained monthly. The use of an advanced and comprehensive tool, a multiregional 620 

input-output (MRIO) model, has also provided support. 621 
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