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a b s t r a c t

In this paper, a novel control scheme for systemswith input and output time-varying delays is provided in
discrete-time domain. The control strategy combines predictor-like techniques with a delay-dependent
gain-scheduled extended state observer. The main goal is twofold: (i) to minimize the negative effect
of time-varying delays in the closed-loop performance and, (ii) to actively compensate the effect of
mismatched disturbances in the controlled output. Moreover, a sufficient condition based on Linear
Matrix Inequalities (LMI) is provided to obtain themaximumdelay interval that ensures the stability of the
closed-loop system. Finally, the achieved benefits of the proposal are shown by simulation in open-loop
unstable plants, and experimentally validated in a test-bed quadrotor platform.

© 2018 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Time delays may cause performance deterioration, or even in-
stability of the control system if they are not taken into account
in the control design [1]. With the objective of counteracting the
negative effects of time delays in the closed-loop control, different
time delay compensation strategies have been proposed in the
literature (see, e.g., [2–4] and references therein). In particular, the
predictor-feedback approach uses a transformation that relates the
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original delayed system with another delay-free system, simplify-
ing thus the control design [5]. Nevertheless, the presence of time-
varying delays may degrade the closed-loop behavior and brings
extra difficulties in the control synthesis. In discrete-time frame-
work, some studies carried out the closed-loop stability analysis
and the design of the predictor-feedback controlwith time-varying
input delays [6,7], and time-varying output delays [8]. However,
these studies did not take into account the simultaneous presence
of time-varying delays in both channels.

On the other hand, a large number of control systems are
usually affected by unmeasurable external disturbances. In the aim
of minimizing their negative impact in the control loop, differ-
ent approaches were proposed under the so-called Disturbance
Observer-Based Control (DOBC) methods [9–13]. In particular, the
Extended State Observer (ESO) became more popular than other
DOBC approaches because no prior knowledge of the system plant
is required, except for the system relative degree [9]. In case ofmis-
matched uncertainties, that is to say, when the disturbance does
not affect the system in the same channel as the control action,
the disturbance rejection problem is more difficult to handle [14,
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15]. For systems with input delays, a modified ESO was proposed
in [16,17] by simply considering a delayed input in the ESO scheme
to improve the disturbance rejection. Other related contributions
directly integrated the ESO with predictor-feedback approaches
in [18]. However, these works assumed that the plant state is fully
measurable, and dealt only with matched uncertainties. Although
these limitations were further overcome in [19] and extended to
discrete-time systems under predictor-feedback control in [20–
22], all these works were restricted to time-constant input delays.
Therefore, to the best of the authors’ knowledge, the synthesis
of predictor-feedback control and ESO under the simultaneous
presence of time-varying input and time-varying output delays,
together with mismatched disturbances, has not been previously
investigated, which motivates our study.

In this paper, we combine a predictor-feedback control with
a properly designed gain-scheduled ESO to counteract the effect
of time-varying delays in both channels. Therefore, the closed-
loop performance is improved with respect to other recent related
works that only considers time-constant delays [20]. Moreover,
the mismatched disturbances are effectively compensated in the
controlled output. Furthermore, we give a sufficient condition
based on LMIs, which allows to easily obtain the maximum delay
intervals under which the system is stable for any time-varying
delay, no matter how fast it may vary.

The remainder of the paper is structured as follows. In Section
2, the problem statement and some preliminary results are intro-
duced. In Section 3, the proposed control structure is presented.
Section 4 presents the stability analysis for the control system.
In Section 5, simulation examples are presented. In Section 6,
the control solution is experimentally validated using a quadrotor
platform. Finally, some conclusions and perspectives are outlined
in Section 7.

2. Problem statement and preliminaries

Consider the following discrete-time system model:

xk+1 = Axk + Buk−dIk
+ Bwwk (1)

where xk ∈ Rn is the system, uk ∈ Rm is the control action
subject to the input delay dIk, wk ∈ Rq is a mismatched external
disturbance. Also, consider the output systems:

yk = Cxk−dOk
, ys,k = Csxk, (2)

where yk ∈ Rp is the measured output subject to the output delay
dOk , and ys,k ∈ Rps is the controlled output.

In this paper, the following assumptions are made:

Assumption 1. The input and output delays dIk, d
O
k are assumed

to be unknown time-varying but measurable during control exe-
cution, and bounded by:

hI
1 ≤ dIk ≤ hI

2, (3)

hO
1 ≤ dOk ≤ hO

2 ,

where each pair (hI
1, h

I
2) and (hO

1 , h
O
2 ) are known.

Assumption 2. For some unknown initial value w0, the distur-
bance signal wk can be modeled as:

wk+1 = Awwk, (4)

being Aw a know matrix. This implies that the amplitude of the
disturbance is unknown, but the type of disturbance to be rejected
should be known: e.g., steps, ramps, or sinusoidals with a given
frequency.

Assumption 3. There exist K and L such that the matrices A+ BK
and A − LC are Schur stable, where

A =

[
A Bw

0 Aw

]
, C =

[
C 0p×q

]
. (5)

Note that time-varying perturbations on delays might cause
poor performance or even instability in the closed-loop control
when the delay intervals are large enough. Therefore, our objective
is to design a control law uk = f (yk) with time delay compensation
for system (1) such that: (i) the closed-loop is stabilizedwith larger
delay intervals, and (ii) the steady-state error in the controlled
output ys,k due to the disturbance wk is rejected, for any time-
varying delays dIk, d

O
k satisfying Assumption 1.

The following preliminary results will be useful for further
developments:

Lemma 1. Consider the following Artstein’s state transformation [2]:

zk = xk + Φk(hI
1) + Φk(hI

2), (6)

where

Φk(hI
f ) =

1
2

hIf −1∑
i=0

A−i−1Buk−hIf +i, f = 1, 2 (7)

Then, system (1) can be equivalently represented by the following
delay-free interconnected model:

MS :

⎧⎨⎩ zk+1 = Azk + Fuk +
τIB
2

wd,k + Bwwk,

yd,k = uk − uk−1,

∆ :
{

wd,k = ∆d,kyd,k, ∥∆d,k∥∞ ≤ 1,

where τI = hI
2 − hI

1, and

F =

(
A−hI1 + A−hI2

) B
2

(8)

Proof. The proof can be straightforwardly outlined from [23]. □

Theorem1 (Scaled Small Gain Theorem [24] Chapter 8). The intercon-
nected system on Fig. 1 is robustly stable for any interconnected time-
varying uncertain system∆with ∥∆∥∞ ≤ 1 if the following two con-
ditions hold: (i) The system MS is internally stable and (ii) there exist
regular matrices T1, T2 such that T1∆ = ∆T2 and ∥T2MST−1

1 ∥∞ < 1.

3. Gain-scheduled predictor–observer control strategy

In this section, we first present the control strategy. Second, we
demonstrate that an equivalent delay-free interconnected model
can be found for the closed-loop control system formed by (1)
and the proposed control law. Other key aspects, such as the ad-
vantages in terms of closed-loop performance enhancement under
time-varying delays, are discussed in Section 3.3.

3.1. Proposed control scheme

Let us introduce the following control strategy:

uk = Kẑk + Kwŵk, (9)

where ẑk and ŵk are obtained from the gain-scheduled predictive
ESO given below:

ˆ̄zk+1 = A ˆ̄zk + Fuk + AdOk L
(
ȳk − CA−dOk ˆ̄zk

)
, (10)
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where ˆ̄zTk =
[
ẑTk ŵT

k

]
, thematricesA and C are defined in (5), and

F = [F T 0]T , being F defined in (8). The prediction of the output
system is obtained as:

ȳk = yk + CA−dOk
(
Φk(hI

1) + Φk(hI
2) + Ωk(dOk )

)
, (11)

where the operators Φk(hI
1), Φk(hI

2) involved in the Artstein’s re-
duction method are defined in (7), and Ωk(dOk ) is defined as:

Ωk(dOk ) =

dOk −1∑
i=0

AdOk −i−1Buk−dOk +i−dI
k−dOk +i

. (12)

The control gainK in (9) is defined asK = 2K
(
A−hI1 + A−hI2

)−1
,

where K is determined in such a way that A + BK is Schur stable
(according to Assumption 3). In the same way, the observer gain L
in (10) is defined to beA−LC Schur stable. The parameter Kw in (9)
is tuned to compensate the steady-state error of the disturbancewk
in the controlled output ys,k (more details in Remark 1, at the end
of Section 3.3)

The gain-scheduled strategy is implemented through the delay-
dependent terms AdOk , A−dOk in (10) and (11), together with the
operator (12). Thus, the closed-loop poles are kept to be the same
as the eigenvalues ofA+BK andA−LC regardless of time delays, as
discussed later in Section 3.3. Notice also that the conventional ESO
is obtained from (10) in the absence of time delays (dIk ≡ 0, dOk ≡

0).

3.2. Delay-free closed-loop model description

The following theorem finds a delay-free interconnected state-
space model for the closed-loop system formed by (1) and the
given control in (9):

Theorem 2. The closed-loop system formed by the system (1) and the
control law (9) can be expressed as the interconnected system formed
by the delay-free model MS and the feedback system ∆:

MS :

{
ξk+1 = Ākξk + Ḡwd,k + B̄w,kwk,

yd,k = H̄ξk,

∆ :
{

wd,k = ∆d,kyd,k, ∥∆d,k∥∞ ≤ 1,

where ξ T
k =

[
zTk uT

k−1 ẑTk ŵT
k

]
, and

Āk =

⎡⎢⎣ A 0 FK FKw

0 0 K Kw

Π1,k 0 A − Π1,k + FK Bw − Π2,k + FKw

Π3,k 0 −Π3,k Iq − Π4,k

⎤⎥⎦ , (13)

Ḡ =

⎡⎢⎣1
0
0
0

⎤⎥⎦ ⊗

(
τIB
2

)
, B̄w,k =

⎡⎢⎣ Bw

0
Π2,k
Π4,k

⎤⎥⎦ ,

H̄ =
[
0m×n −Im K Kw

]
,

τI = hI
2 − hI

1,

being Πi,k, i = 1, 2, 3, 4 the matrices obtained from the following
partition:

AdOk LCA−dOk =

[
Π1,k Π2,k
Π3,k Π4,k

]
, (14)

with Π1,k ∈ Rn, and the rest of matrices Π2,k, Π3,k, Π4,k of compat-
ible dimensions.

Fig. 1. Interconnected system:MS is a known system, and∆ is some unknown uni-
tary norm-bounded system, which contains all sources of time-delays variations.
Matrices T1, T2 are free and must satisfy T1∆ = ∆T2 .

Proof. Following the original ideas of the ESO [9], the following
state-space augmented model can be considered from (1) and (4):{
x̄k+1 = Ax̄k + Buk−dIk
yk = Cx̄k−dOk

, ys,k = Csx̄k,
(15)

where x̄T =
[
xTk wT

k

]
, thematricesA and C are defined in (5), and

B =

[
B
0

]
, Cs =

[
Cs 0

]
. (16)

Now, define the augmented state x̄k = [xTk wk]
T . From (15), we

have that the exact h-step ahead state prediction can be obtained
as:

x̄k+h = Ahx̄k + Ω̄k+h(h), (17)

where Ω̄k+h(h) =
[
ΩT

k+h(h) 01×q
]T and Ωk(h) is the operator

defined in (12). The h-step back of the above expression yields:

x̄k = Ahx̄k−h + Ω̄k(h). (18)

Multiplying both-sides of (18) by CA−h we obtain:

CA−hx̄k = Cx̄k−h + CA−hΩ̄k(h). (19)

which is equivalent to:

CA−hx̄k = Cxk−h + CA−hΩ̄k(h). (20)

Replacing h by dOk we have:

CA−dOk x̄k = Cxk−dOk  
yk

+CA−dOk Ω̄k(dOk ), (21)

which leads to:

yk = CA−dOk x̄k − CA−dOk Ω̄k(dOk ). (22)

Now, replacing ȳk defined in (11) into (10) we have:

ˆ̄zk+1 = A ˆ̄zk + Fuk + AdOk Lyk (23)

+ AdOk LCA−dOk
(
Φk(hI

1) + Φk(hI
2) + Ωk(dOk )

)
− AdOk LCA−dOk ˆ̄zk.

Substituting yk from (22) into the above expression (23), and taking
into account that CA−dOk Ω̄k(dOk ) = CA−dOk Ωk(dOk ), we have:

ˆ̄zk+1 = A ˆ̄zk + Fuk (24)

+ AdOk LCA−dOk
(
Φk(hI

1) + Φk(hI
2)

)
+ AdOk LCA−dOk

(
x̄k − ˆ̄zk

)
.

Note from the definition of x̄k and Φ̄k(h) that the equivalence xk =

zk − Φk(hI
1)− Φk(hI

2) deduced from (6) implies x̄k = z̄k − Φ̄k(hI
1)−

Φ̄k(hI
2), where Φ̄k(hI

i ) =
[
ΦT

k (h
I
i ) 01×q

]T
, i = 1,2 and z̄k =
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[zTk wT
k ]

T . Then, replacing x̄k into (24), and taking into account that
CA−dOk Φ̄k(hI

i ) = CA−dOk Φk(hI
i ), i = 1,2, we obtain:

ˆ̄zk+1 = A ˆ̄zk + Fuk + AdOk LCA−dOk
(
z̄k − ˆ̄zk

)
. (25)

Consider the matrix partition defined in (14). Then, (25) is equiva-
lent to:⎧⎨⎩

ẑk+1 = Aẑk + Fuk + Π1,k
(
zk − ẑk

)
+

(
Bw − Π2,k

)
ŵk + Π2,kwk

ŵk+1 =
(
Iq − Π4,k

)
ŵk + Π3,k

(
zk − ẑk

)
+ Π4,kwk

(26)

On the other hand, by virtue of Lemma 1, system (1) can be put
as the interconnected model between:[
zk+1
uk

]
=

[
A 0
0 0

][
zk

uk−1

]
+

[
F
Im

]
uk +

[
τIB
2
0

]
wd,k (27)

+

[
Bw

0

]
wk,

yd,k = uk − uk−1

and wd,k = ∆d,k yd,k with ∥∆d,k∥∞ ≤ 1.
Therefore, the augmented state-space representation of (26)

and (27) yields:⎡⎢⎣ zk+1
uk
ẑk+1
ŵk+1

⎤⎥⎦ =

⎡⎢⎣ A 0 0 0
0 0 0 0

Π1,k 0 A − Π1,k Bw − Π2,k
Π3,k 0 −Π3,k Iq − Π4,k

⎤⎥⎦
⎡⎢⎣ zk
uk−1
ẑk
ŵk

⎤⎥⎦

+

⎡⎢⎣ F
Im
F
0

⎤⎥⎦ uk +

⎡⎢⎢⎢⎣
τIB
2
0
0
0

⎤⎥⎥⎥⎦wd,k +

⎡⎢⎣ Bw

0
Π2,k
Π4,k

⎤⎥⎦wk. (28)

Finally, replacing uk from (9) into the above expression (28) and
yd,k we obtain the interconnected system (13), concluding the
proof. □

3.3. Discussion

Notice that the input and output delays cannot be gathered into
a single round-trip delay in the closed-loop system due to their
time-varying nature. Therefore, theymust be treated separately for
compensation purposes: the input delay is compensated through
the Artstein’s reduction method using Lemma 1, leading to the
equivalence between (1) and (27). The output delay is compen-
sated by the gain-scheduled ESO (10) togetherwith the output pre-
diction defined in (11). Therefore, as demonstrated in the corollary
given below, the eigenvalues of the closed-loop matrix Āk in (13)
are those of the matrices A + BK and A − LC, regardless of the
time-varying delays.

Corollary 1. The eigenvalues of the matrix Āk in (13) are the same as
A + BK and A − LC, plus m eigenvalues at 0, for any instant value of
time-varying delays.

Proof. Consider the following regular matrix:

T =

⎡⎢⎣ In 0 0 0
0 Im 0 0

−In 0 In 0
0 0 0 Iq

⎤⎥⎦ . (29)

Pre- and post multiplying Āk by T and its inverse T −1, we obtain:

˜̄Ak = T ĀkT −1 (30)

=

⎡⎢⎣A + FK 0 FK FKw

K 0 K Kw

0 0 A − Π1,k + FK Bw − Π2,k + FKw

0 0 −Π3,k Iq − Π4,k

⎤⎥⎦
Note that ˜̄Ak can also be written as:

˜̄Ak =

⎡⎢⎣
([

A 0
0 0

]
+

[
F
Im

] [
K 0

]) [
F
Im

] [
K Kw

]
0

(
A − AdOk LCA−dOk

)
⎤⎥⎦ .

Therefore, from the block-triangular form of ˜̄Ak, it can be de-
duced that its eigenvalues are those of the matrices:([

A 0
0 0

]
+

[
F
Im

] [
K 0

])
and

(
A − AdOk LCA−dOk

)
.

Finally, the proof can be completed from the fact that:

• (i) The eigenvalues of ˜̄Ak and Āk are the same.

• (ii) The eigenvalues of:
([

A 0
0 0

]
+

[
F
Im

] [
K 0

])
and

(
A − AdOk LCA−dOk

)
are the same as (A + BK ) (plus m

eigenvalues at 0) and (A − LC) respectively, for any value of
dOk . □

Remark 1. In light of Corollary 1, it can be deduced that the
closed-loop poles of system (13) are not affected by Kw . There-
fore, provided that the dimensions of wk and ys,k are the same,
or the generalized rank conditions [14] hold, the parameter Kw

can be designed to cancel the steady-state error due to the dis-
turbance wk on the controlled output ys,k. The proper value of
Kw can be deduced from the Final Value Theorem by considering
the augmented system state-space model of system (26) with[
xTk , uT

k−1, · · · , uT
k−hI2

, x̂Tk , ŵT
k

]T
, and the transfer function from

wk to the controlled output ys,k. In case of wk is in step form, we
have that Kw = −Ξ̄−1

1 Ξ̄2, where:

Ξ̄1 =

(
C̄s

(
I − Ā − F̄ K̄

)−1
F̄
)

, (31)

Ξ̄2 =

(
C̄s

(
I − Ā − F̄ K̄

)−1
B̄w

)
,

and

C̄s =

[
Cs γ1CsA−1B · · · γhI2

CsA−hI2B 0 0
]
,

γi, i = 1, . . . , hI
2 =

{
1 if i ≤ hI

1
0 otherwise,

(32)

Ā =

⎡⎣A 0 0
0 0m×(m−1)·hI2

0m×m

0 I(m−1)·hI2
0

⎤⎦ ,

F̄ T
=

[
F T Im 0m×m(hI2−1)

]
,

K̄ =

[
K 0 0m×m(hI2−1)

]
,

B̄T
w =

[
BT

w 0q×m(hI2)

]
.

4. Stability analysis

The following theorem allows to prove the stability with decay-
rate 0 < β ≤ 1 of the closed-loop system (1) with the control law
(9) and the predictor–observer scheme (10), for any arbitrary fast-
time varying delays dOk , d

I
k:
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Theorem 3. Given some control and observer gains K, and L, the
closed-loop system (1) with the control law (9) and the predictor–
observer scheme (10) is robustly asymptotically stable with decay rate
β if there exists a symmetric matrix P ∈ R2n+m+q > 0 such that the
following LMIs are satisfied, ∀i = 1, . . . , hO

2 − hO
1 + 1:

Γ̂i < 0, (33)

where

Γ̂i =

⎡⎢⎢⎢⎢⎣
−β2P 0 ˆ̄AT

i P H̄T

(∗) −I ḠTP 0

(∗) (∗) −P 0

(∗) (∗) (∗) −I

⎤⎥⎥⎥⎥⎦ , (34)

and

ˆ̄Ai =

⎡⎢⎣ A 0 FK FKw

0 0 K Kw

Π1,i 0 A − Π1,i + FK Bw − Π2,i + FKw

Π3,i 0 −Π3,i Iq − Π4,i

⎤⎥⎦ , (35)

where

AdiLCA−di =

[
Π1,i Π2,i
Π3,i Π4,i

]
, (36)

being di = hO
1 + i − 1 and matrices Ḡ, H̄ defined in (13).

Proof. Consider the Lyapunov function Vk = ξ T
k Pξk, where P > 0

and ξ T
k defined in (13). The system MS in (13) is asymptotically

stable with decay rate β , say ∥ξk∥ ≤ Ω∥ξ0∥
−β , ∀k ≥ 0, for some

arbitrary Ω > 0 and any initial condition ξ0, if the following
condition holds:

∆βVk = Vk+1 − β2Vk < 0. (37)

On the other hand, it iswell-known that the following condition
along (MS):

∆βVk + yTd,kyd,k − wT
d,kwd,k, (38)

< ϵ
(
||ξk||

2
+ ∥w̄d,k∥

2)
≤ 0,

for some ϵ > 0, guarantees that the H∞ norm of system T2MST−1
1

is less than 1, where T1 = T2 = Im. From (13), the expression (38)
yields:

ξ T
k

(
ĀT
kPĀk − β2P + H̄T H̄

)
ξk + ξ T

k Ā
T
kPḠwd,k (39)

+ wT
d,kḠ

TPĀkξk + wT
d,k

(
ḠTPḠ − Im

)
wd,k < 0

Note that Āk =
∑r

i=1 µi(dOk )
ˆ̄Ai, where r = hO

2 −hO
1 +1, ˆ̄Ai is defined

in (35), and

µi(dOk ) =

{
1 if dOk − hO

1 + 1 = i
0 otherwise

(40)

Applying Schur Complement and the above expression for Āk, the
inequality (39) is equivalent to:

r∑
i=1

µi(dOk )Γ̂i < 0, (41)

where Γ̂i is defined in (34). Taking into account that the functions
µi(.) in (40) satisfy the convex sum properties:

∑r
i=1 µi(.) =

1, 0 ≤ µi(.) ≤ 1, a sufficient condition for (41) is given in
(33). □

5. Simulation results

Twoexamples are provided in this section. Example 1 gives sim-
ulation results to show the effectiveness of the proposed control

Fig. 2. Comparative results (Example 1) between two control settings given in [20]
(dashed and dash-dotted lines) and the proposed control (solid line) for dIk = 5 and
1 ≤ dOk ≤ 6. Output system ys,k (upper-side) and control action uk (lower-side).

strategy by comparison with other similar approaches published
in literature therein, and Example 2 simulates the closed-loop
response of an open-loop unstable system, which corresponds to
the experimental platform of Section 6.

5.1. Example 1

Let us consider the following example, already studied in [20].
The plant consists in an injection molding process with input
and output delays subject to load disturbance. The discrete-time
system model is (1) with system matrices:

A =

[
1.607 1

−0.6086 0

]
, B =

[
1.2390

−0.9282

]
, Bw =

[
1
1

]
, (42)

C =
[
1 1

]
, Cs =

[
1 0

]
The simulation results given in Fig. 2 compare the time evolution
of the output system ys,k (upper-side) and the control action uk
(lower-side) under the two different control settings given in Ex-
ample 1 [20] (dash-dotted and dashed lines respectively) with our
proposed control scheme (9) (solid-line). A time-varying output
delay 1 ≤ dOk ≤ 6 has been assumed, together with an input delay
dIk = 5. Fig. 3 depicts the same comparative results as Fig. 2, but
assuming an input delay dIk = 15.

A time-constant disturbance wk in the form (4) with Aw = Iq
has been assumed in all the performed simulations, corresponding
to the following step signal:

wk =

{
0 0 ≤ k ≤ 100
−2 k > 100.

(43)

For a fair comparison, the control and observer gains have been
chosen to be the same as in [20]:

K =
[
−1.297 −0.8071

]
, (44)

LT
=

[
1.307 −0.4461 0.0875

]
.

Moreover, the same time-varying output delay pattern for dOk has
been used in all the performed simulations.

5.2. Example 2

Consider the system model (1) (which is a discrete-time ap-
proximatemodel of the experimental platformused afterwards for
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Fig. 3. Comparative results (Example 1) between two control settings given in [20]
(dashed and dash-dotted lines) and the proposed control (solid line) for dIk = 15
and 1 ≤ dOk ≤ 6. Output system ys,k (upper-side) and control action uk (lower-side).

a given sampling period Ts), where the system matrices are given
below:

A =

[
1 Ts
0 1

]
, B = Bw =

[
0

0.1Ts

]
, (45)

C = Cs =
[
1 0

]
.

Let Ts = 0.01 s. The proposed control and observer gains K
and L, used to perform the simulation, are chosen such that the
matrices A+BK andA−LC are Schur stable, with their respective
eigenvalues {0.98, 0.975} and {0.50, 0.96, 0.97}:

K = −
[
50 45

]
, LT

=
[
0.57 3.62 60

]
, (46)

Simulation results (controlled output ys,k and control action
uk) are depicted in Fig. 4. The controlled output corresponds to
the pitch angle in degrees, and tracks a reference consisting of a
sequence of steps with an amplitude of 5◦, also depicted in Fig. 4.
Moreover, it is assumed a step disturbancewk with amplitude−2.5
V, introduced at t = 15 s The first simulation (dash-dotted line) has
been performedusing a conventional state-feedback controlwith a
ESOwithout delays (nominal case). The second simulation (dashed
line) implements the same control law as the first simulation, but
assuming a randomly generated time-varying input and output
delays: 1 ≤ dOk ≤ 17 and 1 ≤ dIk ≤ 17. The third simulation
(solid-line) implements the proposed control strategy (9) with the
same time-varying delay pattern as the previous simulation, for a
fair comparison.

In order to check the closed-loop performance of the proposed
control scheme for greater sampling periods, the simulations have
also been performed assuming Ts = 0.05 s and Ts = 0.1 s with the
following input and output delay intervals: 1 ≤ dIk ≤ 3, 1 ≤ dOk ≤ 4
for Ts = 0.05 s, and 1 ≤ dIk ≤ 1, 1 ≤ dOk ≤ 2 for Ts = 0.1 s.
The obtained results have been compared in Fig. 5 with the case
Ts = 0.01 s and delay intervals 1 ≤ dIk ≤ 17, 1 ≤ dOk ≤ 17.

5.3. Discussion of the results

In light of Figs. 2 and 3 (Example 1), it can be seen that the sys-
tem becomes unstable with the two control settings given in [20]
(dashed and dash-dotted line, respectively). Indeed, the closed-
loop instability is due to time variations in the output delay dOk ,
which are not considered in [20]. However, the closed-loop control

Fig. 4. Simulation results (Example 2). Dash-dotted line: state-feedback with ESO
(nominal response with no delays), dashed line: state-feedback with ESO and time-
varying delays : 1 ≤ dOk ≤ 17 and 1 ≤ dIk ≤ 17, and solid-line: proposed control
scheme (9) with the same time-varying delay pattern.

Fig. 5. Comparative results (Example 2) using the proposed control strategy for
different sampling periods.

system is stabilized with the proposed control strategy (solid line)
because such variations are properly counteracted by the imple-
mented gain-scheduled approach. Furthermore, the steady-state
error in the controlled output ys,k coming from the disturbance
wk in (43) is canceled, despite the presence of time-varying delays
(upper side of Figs. 2 and 3).

On the other hand, Theorem 3 confirms that the closed-loop
system is guaranteed to be stable for any arbitrarily fast time-
varying output delays 1 ≤ dOk ≤ 3 for dIk = 5, and 1 ≤ dOk ≤ 2
for dIk = 15, respectively. Notice that the maximum time delay
intervals obtained by Theorem 3 are smaller than the obtained by
simulation in both cases. This fact reveals thatmaximumallowable
delay intervals obtained by applying Theorem 3 are more conser-
vative, since the LMIs (33) are only sufficient conditions, that is to
say, the most unfavorable time-varying delay pattern (worst-case)
is taken into account in our analysis.

In Example 2, both time-varying delay intervals (1 ≤ dIk ≤ 17,
1 ≤ dOk ≤ 17) have been chosen to force the closed-loop system
to the limit of stability using a conventional state-feedback control
with ESO considering a sampling period Ts = 0.01 s. Indeed, it can
be seen in Fig. 4 that the system is almost unstable (dashed line).
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Fig. 6. 3-DOF Hover of Quanser (experimental platform).

Nevertheless, by comparing the nominal delay-free time-response
(dash-dotted line) to the obtained one with the proposed control
strategy under the same time-varying delays dIk, d

O
k (solid line), it

can be seen that closed-loop performance is almost recovered. On
the other hand, it is proved by Theorem 3 that the stability of the
closed-loop control system is guaranteed for any arbitrarily fast
time-varying delay satisfying 1 ≤ dIk ≤ 5 and 1 ≤ dOk ≤ 7
respectively. Notice again that the maximum time delay intervals
obtained by Theorem 3 are smaller than the ones obtained by
simulation, such as expected from the same arguments already
given in Example 1. Moreover, the proposed control strategy is
shown to stabilize the system for greater sampling periods in Fig. 5.
Nevertheless, it can be appreciated how the closed-loop response
degrades as long as Ts is higher, as it could be expected from the
fact that the open-loop system is unstable.

6. Experimental results

The proposed control strategy has been implemented in the
3-DOF Hover of Quanser (see Fig. 6). It consists of a quadrotor
mounted on a 3-DOF pivot joint so that the body can freely rotate
in roll, pitch, and yaw angles. Our control strategy has been imple-
mented and executed using a computer running Linux with a soft
real-time patched kernel, which allows to run the full algorithm
with a sampling time Ts = 0.01 s. The computer is connected
to the Quanser hardware by means of a data acquisition board.
The angular positions are measured by optical encoders with an
accuracy of 0.04◦, and the control inputs of the system are the
voltages applied to the four motors, which have an input range of
±10 V, and present a dead zone between ±0.5 V.

The controlled variable represented in the experiments is the
pitch angle, which is denoted as θ (t). Assuming the yaw and roll
angles are zero, the dynamics of θ (t) can be approximated by [25]:

θ̈ (t) = Ksu(t) + w(t), Ks = 0.1, (47)

where u(t) is the input voltage of the propeller, which is used to
control the pitch axis torque, Ks = 0.1 is a constant representing
the inertia moment, and w(t) represents a load disturbance.

The discrete-time system model with sampling period Ts =

0.01 s is the same as Example 2,with systemmatrices given in (45).
Moreover, the control and observer gains are given in (46).

In order to experimentally validate the proposed-control law
(9), three simulation have been carried out: (i) the nominal (delay-
free) case with the ESO-based control, (ii) the ESO-based control
with time-varying delays: 1 ≤ dOk ≤ 11, and 1 ≤ dIk ≤ 10, and
(iii) the proposed control strategy (9) with the same time-varying
delays as in case (ii).

Fig. 7. Experimental results. Pitch response and the control action. A video clip of
this experiment is available as complementary material.

For a fair comparison between cases (ii) and (iii), the time-
varying delay patterns have been induced by software in both
channels using a fixed seed of the random number generator for
the repeatability of the experiments. In addition, the delay inter-
vals have been intentionally chosen to lead the closed-loop system
with the conventional ESO-based control to instability (case (ii)).
The experiments have been carried out for changes of the set-
point of 5◦, and a time-constant disturbance of w(t) = −2.5 V is
introduced in t = 47 s. The response of the experiments is shown
in Fig. 7, in which the improvement of our proposed strategy can
be clearly appreciated: whereas the ESO-based control strategy is
unstable, the proposed algorithm achieves a response very similar
to the delay-free case.

7. Conclusions and perspectives

In this paper, a novel predictor-feedback control scheme with a
delay-dependent gain-scheduled ESO has been proposed for sys-
tems with mismatched disturbances and time-varying delays in
the input and output channels. Differently to other similar tech-
niques, the proposed control scheme is able to counteract varia-
tions in time delays by means of gain-scheduled strategies, while
actively compensating the steady-state error due to mismatched
disturbances in the controlled output. As a result, the closed-loop
poles are kept as the nominal (delay-free) behavior, improving the
closed-loop performance under time-varying delays. Moreover, a
sufficient LMI-based condition has been given to determine the
closed-loop stability for any arbitrarily fast time-varying delays
bounded by given time delay intervals.
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The effectiveness of the proposed control strategy has been
illustrated through comparative simulation results and tested in
open-loop unstable plants. Furthermore, it has been validated in
an experimental real-time test-bed consisting in a quadrotor plat-
form. However, the applicability of the proposed control scheme
is limited to the case of unknown but measurable time-varying
delays. Therefore, an appealing extension of this work could be
to analyze the robustness of the proposed control scheme against
uncertainties on time delay measurements.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.isatra.2018.09.024.
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