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Abstract 7 

Mixed oxides of Mn-Fe have been identified as suitable materials for Chemical Looping Combustion (CLC) 8 

with solid fuels both via in-situ Gasification Chemical Looping Combustion (iG-CLC) and Chemical Looping 9 

with Oxygen Uncoupling (CLOU) processes. These materials show the property of react with gaseous fuels as 10 

well as release oxygen under given conditions, while cheap metals are used. In addition, these materials can 11 

show magnetic properties that can be used for an easy separation from ash in CLC with solid fuels. Thus, 12 

losses of oxygen carrier material in the ash drain stream would be reduced. Different cations have been 13 

proposed for improving the magnetic properties of manganese ferrites, including Ti
4+

. In this context, the 14 

present work accomplishes a screening of (MnxFe1-x)2O3 doped with 7 wt.% TiO2, with x ranging from 0 to 1. 15 

The influence of Mn:Fe ratio on their physical and chemical properties was evaluated. In general, particles 16 

with high crushing strength values (>4 N) were obtained, and magnetic characteristics were highlighted when 17 

x ≤ 0.66. The oxygen uncoupling capability depended on the Mn:Fe ratio and the oxidation conditions, i.e. 18 

temperature and oxygen partial pressure. Broader oxidation conditions to take advantage of the oxygen 19 

uncoupling capability were found for materials with low Mn content. On contrary, the reactivity with fuel 20 

gases (CH4, H2 and CO) increased with the Mn content. Thus, oxygen carriers with Mn/(Mn+Fe) molar ratio 21 

in the 0.5-0.9 interval showed interesting properties at suitable temperatures for the iG-CLC and CLOU 22 

processes (i.e. 850-980 ºC). The material with Mn/(Mn+Fe) = 0.55 was preferred considering a trade-off 23 

between reactivity and magnetic properties. 24 

 25 
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 28 

1. Introduction 29 

Nowadays, research involving the reduction of net CO2 emissions to the atmosphere from combustion systems 30 

is still a challenge. Emerging combustion processes with intrinsic CO2 capture, such as Chemical Looping 31 

Combustion (CLC), are of increasing interest since no energy or equipment is needed for gas separation as 32 

compared with the classic CO2 capture systems (pre, post and oxyfuel combustion) [1]. Chemical Looping 33 

Combustion (CLC) implies the use of an oxygen carrier, generally a metal oxide, to transfer the oxygen from 34 

the air to the fuel. A CLC system basically consists of two interconnected fluidized beds, namely fuel and air 35 

reactors, with a particulate oxygen carrier continuously circulating between them [2]. In the fuel reactor, the 36 

fuel is combusted taken oxygen from the oxygen carrier, while the oxygen carrier is re-oxidized with air in the 37 

air reactor. Thus, the direct contact between fuel and air is avoided and, the CO2 capture is inherent to the 38 

CLC process. 39 

Mainly, the use of solid fuels in CLC is being developed by two different approaches: in-situ Gasification 40 

Chemical Looping Combustion (iG-CLC) and Chemical Looping with Oxygen Uncoupling (CLOU) [3]. In 41 

iG-CLC, the solid fuel is gasified by steam and/or carbon dioxide; then the generated gaseous products 42 

(mainly CO, H2 and CH4) react with the oxygen carrier to produce the combustion products (CO2 and H2O). 43 

When coal is considered the fuel, loss of oxygen carrier particles is expected in the drainage flow of ash. 44 

Thus, low cost materials such as ilmenite [4-6], iron ore [7-9], manganese ore [10] or waste materials [11] 45 

have been mostly evaluated for iG-CLC in pilot units up to 1 MWth. In these cases, high CO2 capture was 46 

achieved, but complete combustion was not reached [12]. In CLOU, the oxygen carrier is able to evolve 47 

gaseous oxygen in the fuel reactor, thus allowing the combustion of the solid fuel with O2. The CLOU process 48 

was proposed by Mattisson et al. [13] to improve the combustion of solid fuels. Then, the proof of the concept 49 

was performed in a 1.5 kW CLOU unit by Abad et al. [14]. High CO2 capture rates with complete combustion 50 

of different solid fuels (coal, lignite, biomass) was achieved by using a Cu-based oxygen carrier [14-16].  51 

Alternatively to Cu-based materials, Mn-Fe mixed oxides have been identified as suitable materials for 52 

CLOU, while cheap and environmental friendly metals are used [17]. Bixbyite phase, (MnxFe1-x)2O3, must be 53 

formed during oxidation in order to show oxygen uncoupling capability during reduction to spinel phase, 54 
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(MnxFe1-x)3O4 [18]. Thus, coal combustion was improved by taking advantage of the oxygen uncoupling 55 

capability of bixbyite when oxidation in the air reactor was optimized [19]. In addition, spinel phase (MnxFe1-56 

x)3O4 can be reduced by fuel gases (e.g. H2, CO, CH4) to manganowüstite (MnxFe1-x)O, thus being active for 57 

iG-CLC [20-23].  58 

The influence of the Mn:Fe ratio on the suitability of Mn-Fe mixed oxides for CLOU have been evaluated in 59 

the literature [21-25]. In general, oxygen carriers with Mn:Fe ratios higher than 0.6 show better fuel gas 60 

conversion and oxygen uncoupling capability at lower temperature (850 ºC) than oxygen carriers with lower 61 

Mn:Fe ratios. But the potential for the oxidation to bixbyite improved as the Mn:Fe ratio was decreased [23]. 62 

i.e. they can be oxidized at higher temperatures, e.g. 950 ºC, than materials with high Mn:Fe ratio. 63 

Although manganese and iron can be considered as cheap materials, Mn-Fe mixed oxide materials must be 64 

synthetized, thus increasing its prize compared to low-cost materials such as natural ores. Therefore, it would 65 

be very interesting the recovering of lost oxygen carrier particles with the ash. In this sense, Mn-Fe mixed 66 

oxides show magnetic properties in the spinel phase [26, 27], which could be used for a magnetic separation 67 

from ash. In addition, different cations have been proposed for improving the magnetic properties of 68 

manganese ferrites, e.g. by dopping Mn-Fe mixed oxides with Ti
4+

 [28]. However, the magnetic properties of 69 

Mn-Fe mixed oxides in oxygen carriers for chemical looping applications have been not studied.  70 

An oxygen carrier should accomplish the following characteristics: sufficient oxygen capacity, favorable 71 

thermodynamics regarding the fuel conversion to CO2 and H2O, high reactivity for reduction and oxidation 72 

reactions maintaining it during many successive redox cycles, resistance to attrition, negligible carbon 73 

deposition, good fluidization properties and environmental friendly characteristics [3]. In a previous work, Fe-74 

Mn mixed oxides particles were obtained by mechanical mixing of Mn3O4 and Fe2O3 powders (Mn:Fe molar 75 

ratio of 0.77:0.33), which showed relatively high reactivity and crushing strength values (> 1N) [29]. Also, 76 

particles were prepared by doping with TiO2 a material prepared by spray drying with Mn:Fe molar ratio of 77 

0.66:0.34. These particles were successfully tested in a continuously operated CLC unit burning coal [19]. 78 

In this context, in the present work a screening of the performance of Mn-Fe-Ti based oxygen carriers, 79 

prepared with different Mn:Fe molar ratios and a fixed TiO2 concentration, is performed. The characterization 80 

of the oxygen carriers has been based on the evaluation of their mechanical strength, the reduction and 81 
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oxidation rates through TGA experiments at temperatures suitable for the iG-CLC and CLOU processes (i.e. 82 

850-950 ºC), and the determination of the magnetic susceptibility of the particles as a reference value to 83 

evaluate the applicability of the magnetic separation from ash. 84 

2. Experimental  85 

2.1. Oxygen Carriers 86 

The oxygen carrier particles were prepared using as raw materials Mn3O4 (Strem Chemical, Inc), Fe2O3 87 

(Panreac, Prs), and TiO2 (Panreac, Prs), all of them in powder. The mass fraction of TiO2 was fixed to 7 wt.%, 88 

which was the fraction used in a previous tested material [19], but the Mn:Fe molar ratio was varied in a broad 89 

interval; see Table 1. To prepare the oxygen carriers, the reactants, in their respective mass fractions, were 90 

firstly ball-milled for 30 min and subsequently pelletized by pressure in a hydraulic press at 160 bar for 60 s, 91 

obtaining cylindrical pellets of about 1 cm in diameter and 3 cm in length. The pellets were further calcined at 92 

1200 ºC in a muffle furnace during 2 hours both, to increase the mechanical strength of the particles and to 93 

provide the material with permanent magnetic properties, considering results showed in [30]. In some cases, 94 

calcination at higher temperatures was required to provide magnetic properties. After calcination, materials 95 

with a general formula MnxFe1-xTiyOz were obtained. Finally, the pellets were crushed and sieved to obtain 96 

particles with a particle diameter of 100-300 m.  97 

 98 

Table 1. Chemical composition, calcination temperature, crushing strength, magnetic permeability and main 99 

phases (XRD) of the oxygen carriers. 100 

Oxygen carrier
*
 Mn/(Mn+Fe) 

molar ratio 

Mass fraction 

Mn3O4:Fe2O3:TiO2 

Tcalc (ºC) Crushing 

strength (N) 

Magnetic 

permeability (-) 

Main phases 

FeTi7 0.00 0:93:7 1200 3.8 

 

1.0 Fe2O3 

Fe2TiO4 

Mn28FeTi7 0.28 25:68:7 1200 5.8 

 

 

 

5.8 Mn1.03Fe1.97O4 

Mn2FeO4 

Fe2O3 

Fe1.5Ti0.5O3 

Mn55FeTi7 0.55 50:43:7 1200 4.3 

 

 

8.3 Mn2FeO4 

Mn3Fe3O8 

Fe2TiO4 

Mn66FeTi7 0.66 60:33:7 1200 3.8 

 

 

7.8 Mn2FeO4 

Mn1.58Fe1.42O4 

Fe2TiO4 

Mn87FeTi7 0.87 80:13:7 1200 

1300 

1350 

1400 

4.7 

4.4 

4.5 

5.4 

1.0 

1.2 

1.2 

1.2 

Mn2FeO4 

Mn3O4 

FeTiO4 
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MnTi7 1.00 93:0:7 1200 

1400 

5.1 

4.8 

 

1.0 

1.0 

Mn2O3 

Mn3O4 

MnTiO3 
*
 The nomenclature shows the stoichiometric coefficient x and y in the general formula MnxFe1-xTiyOz 

 101 

The crushing strength of the particles was measured using a Shimpo FGN-5X crushing strength apparatus. 102 

The value reported for each oxygen carrier is the average value of 20 measurements of the force needed to 103 

fracture a particle. The magnetic permeability was measured using a Bartington single frequency MS2G 104 

sensor connected to a magnetic susceptibility MS3 meter. Additional information about the determination of 105 

magnetic permeability is shown in the Supplementary material S1. 106 

The main phases of the Mn-Fe-Ti system were identified through characterization by X-ray diffraction 107 

(XRD). The XRD analysis was performed using a Bruker D8 Advance X-ray powder diffractometer equipped 108 

with an X-ray source with a Cu anode working at 40 kV and 40 mA and an energy-dispersive one-109 

dimensional detector. In particular, the diffraction pattern was obtained with a scanning rate of 0.019º over the 110 

2θ range of 10º to 80º, and the assignation and quantification of crystalline phases was performed through the 111 

use of the DIFFRAC.EVA and TOPAS software, on base of Joint Committee on Powder Diffraction 112 

Standards. The XRD results correspond to the analysis of the oxygen carrier particles obtained after the 113 

calcination of the pellets at 1200 ºC. 114 

The oxidation state of Fe, Mn and Ti was studied by XPS in an ESCAPlus Omicron spectrometer equipped 115 

with a non-monochromatized MgKα radiation (1253.6 eV). The hemispherical electron energy analyzer was 116 

operated at pass energy of 50 eV for surveys, and 20 eV for high-resolution spectra. Binding energies (BE) 117 

were referenced to the C1s peak (284.5 eV) from adventitious carbon contamination. Current region sweeps 118 

for O1s, Fe 2p, Ti2p, Mn2p and Mn3s were obtained. The CASA data processing software allowed 119 

smoothing, background subtraction, peak fitting and quantification. 120 

2.2. Thermogravimetric analyzer (TGA) and procedure 121 

The experiments were performed in a thermogravimetric analyzer (TGA CI Electronics). The detailed 122 

description of the TGA and procedure can be found elsewhere [31] and therefore only a brief description is 123 

given here. The oxygen carrier mass and gas flow used in the TGA experiments were chosen to avoid 124 

limitations in the external film mass-transfer and/or inter particle diffusion. For each test, around 50 mg of 125 

oxygen carrier particles were loaded in a platinum wired mesh basket and heated up to the desired temperature 126 
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(850, 900 or 950ºC) in an air atmosphere. After stabilization, the oxygen carrier particles were exposed to five 127 

successive reduction-oxidation cycles. Both, reduction and oxidation periods were, respectively, 30 minutes. 128 

Reduction was carried out with H2 (5 % H2 + 40 % H2O), CO (15 % CO + 20 % CO2) or CH4 (15 % CH4 + 20 129 

% H2O). A lower concentration was used with H2 in order to avoid reduction of iron oxide to metallic iron, 130 

which is not interesting for CLC [32]. In addition, the oxygen uncoupling capability was evaluated by 131 

exposing the solid sample to an inert environment (100 % N2). The oxidation was carried out either in air or 5 132 

vol.% O2. A gas flow of 25 L/h (STP) was used in all cases. In general, except for the first cycle, no 133 

significant changes in the reactivity to the fuel gases, neither in the oxygen carrier regeneration, were 134 

observed through the successive redox cycles. All the results shown in the present work correspond to the 135 

third redox cycle. 136 

3. Results  137 

3.1. Phase diagram of the Mn-Fe-Ti-O system 138 

The phase diagrams for different Mn:Fe ratio in the Mn-Fe-Ti-O system as function of the temperature and 139 

oxygen partial pressure are shown in Figures 1(a) and 1(b), respectively. FToxid database from the FactSage 140 

software was used [33]. According to the phase diagrams shown in Figure 1, seven phases in the (MnxFe1-141 

x)Ti0.15Oz system are thermodynamically stable, which are distributed in different regions depending upon the 142 

given oxygen partial pressure, temperature and the Mn:Fe ratio.  143 

 144 

Figure 1. Phase diagram of the (MnyFe1-y)Ti0.07Ox system as function of the Mn-Fe composition and (a) 145 
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temperature in either 0.05 (solid lines) or 0.21 atm O2 (dot lines), and (b) partial pressure of O2 at 950 ºC. 146 

 147 

Focused in the oxidation of Mn-Fe mixed oxides, equilibrium conditions at the air reactor exit are evaluated in 148 

Figure 1(a); that is in 5 vol.% O2 assuming 25 vol.% of air excess, similar to the excess used in conventional 149 

combustion. In general, low temperature regions are dominated by bixbyite phases, while spinel phase appear 150 

in the upper temperature region. The temperature for the bixbyite to spinel transformation monotonically 151 

decreases from the transformation temperature for Fe2O3/Fe3O4 (1600 ºC) to Mn2O3/Mn3O4 (800 ºC) as the 152 

Mn:Fe ratio increases. In the lower temperature regions, the hematite Fe2O3 and rutile TiO2 phases coexist for 153 

Mn contents lower than about 0.1. At increased Mn ratios bixbyite phase appears separated from Ti-154 

containing phases at the expense of the hematite phase; eventually bixbyite and rutile coexist as separated 155 

phases for Mn/(Mn+Fe) ratios higher than 0.4-0.48. At higher temperatures, bixbyite or hematite is 156 

completely transformed to spinel. Rutile and -spinel dominates the regions with lower Mn content, while 157 

pyrophanite (i.e. the manganese rich ilmenite MnTiO3) and tetragonal spinel appear as the Mn content 158 

increases.  159 

3.2. Crushing strength, XRD and magnetic permeability evaluation 160 

The crushing strength of all the particles prepared in the present work are around 4-5 N; see Table 1. A 161 

minimum of 3.8 N was obtained for Mn66FeTi7, and the crushing strength was monotonically increased as 162 

the Mn content either increased or decreased, excepting for FeTi7 that showed a crushing strength of 3.8 N. 163 

Similar results were obtained by Azimi et al. [24], but higher crushing strength values are here obtained. 164 

Different preparation method, calcining temperature or the presence/avoidance of Ti can be argued to justify 165 

the different crushing strength here obtained. However, similar particles but without Ti showed crushing 166 

strength values around 2-3 N [29], suggesting that the improvement here shown could be mainly attributed to 167 

the presence of Ti. Usually, oxygen carriers with a crushing strength above 1-2 N [34,35] have been identified 168 

in previous works to be more likely resistant to attrition in continuous operation, which points to the potential 169 

of these Mn-Fe-Ti based oxygen carriers for providing a good mechanical stability for CLC applications. This 170 

is an interesting result since the material screening will not be conditioned by the mechanical strength of the 171 

particles, but to the analysis of the effect of Mn:Fe ratio on the redox kinetics and the magnetic properties. 172 
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The revealed phases by XRD and magnetic permeability values resulted a function of the Mn-Fe relation and 173 

the calcination temperature. Thus, only the oxygen carriers with Mn/(Mn+Fe) molar ratios between 0.28 and 174 

0.66 showed magnetic properties when they were calcined for 2 h at 1200 ºC, with magnetic permeability 175 

values in the 5.5-8.5 interval. These particles were characterized by the presence of Mn-Fe mixed oxides in 176 

the spinel form, i.e. (MnxFe1-x)3O4. Calcination conditions promoted the formation of the spinel phase (see 177 

Figure 1), which was not oxidized to bixbyite phase, (MnxFe1-x)2O3, during the cooling stage after calcination 178 

of the pellets in air. It is well known the magnetism showed by the Mn-Fe spinel [27-29], which justify this 179 

result. Nevertheless, the oxygen carrier particles are partially oxidized to bixbyite phase during the oxidation 180 

tests in TGA. Rutile, TiO2, was not detected by XRD, but rather Fe-Ti mixed oxides were formed.  181 

For the Mn87FeTi7 material, limited formation of spinel phase was observed because of the low iron content 182 

regardless the calcination temperature, but in any case bixbyite was not detected. However, magnetic 183 

permeability was raised from 1.0 to 1.2 when calcining temperature was increasing from 1200 to 1400 ºC. 184 

Therefore, the existence of magnetic properties is not only guaranteed by the presence of spinel phase, but 185 

also another factor should be considered. The reason for the effect of calcining temperature on the magnetic 186 

permeability could be found in the shifting of the following equilibrium: 187 

Mn
3+

 + Fe
2+

 ↔  Mn
2+

 + Fe
3+

   (R1) 188 

In a Mn-rich spinel, the spinel structure would show the following general distribution of cations: 189 

3+ 2+ 3+ 2+
1-x x 1+x 1-x 4

A B
Mn Fe Mn Fe O       ; where subscripts “A” and “B” denote tetrahedral and octahedral sites, 190 

respectively [CITA??]. In fact, XPS results revealed that Mn is in the Mn
3+

 oxidation state for the Mn87FeTi7 191 

material when the calcining temperature is 1200 ºC. However, XPS analysis revealed the presence of both 192 

Mn
3+

 and Mn
2+

 in the samples calcined at higher temperatures (i.e. 1300, 1350 and 1400 ºC), which means 193 

that part of the Mn
3+

 is transformed to Mn
2+

. Consequently, some Fe
2+

 should be transformed into Fe
3+

, 194 

according to equilibrium (R1). The variation in the oxidation state of Mn and Fe modifies their disposition in 195 

the crystal structure, which also modifies the magnetic permeability of the material [28]. 196 

Taking into account XRD, XPS and magnetic permeability results, the following theory is postulated to 197 

address the magnetic behavior of Mn87FeTi7 material as function of the calcining temperature. Mn87FeTi7 198 

calcined at 1200 ºC would show the 3+ 2+ 3+ 2+
1-x x 1+x 1-x 4

A B
Mn Fe Mn Fe O        spinel structure, which does not show 199 
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magnetic properties. The calcination at a higher temperature promoted the presence of Mn
2+

 and Fe
3+

 at the 200 

expense of Mn
3+

 and Fe
2+

 both in the tetrahedral and octahedral sites leading to the formation of 201 

3+ 2+ 2+ 3+ 3+ 2+ 2+ 3+
1-x-y y x-y y 1+x-z z 1-x-z z 4

A B
Mn Mn Fe Fe Mn Mn Fe Fe O       . The presence of Fe3+ ions both in the tetrahedral and 202 

octahedral sites provides magnetic properties to the spinel structure [CITAS]. Thus, a higher calcining 203 

temperature could result in higher magnetic properties. 204 

On the contrary, neither the ilmenite surrogate (FeTi7) nor the Mn-Ti based oxygen carrier (MnTi7) showed 205 

magnetic behavior independently on the calcination temperature (1200 to 1400 ºC). In these cases, the 206 

presence of Mn2O3 and/or Mn3O4 is highlighted. In addition, pyrophanite, MnTiO3, was detected by XRD, 207 

according to the phase diagram in Figure 1. 208 

As a conclusion, high values of the magnetic permeability correspond to a ferrimagnetic behavior, and thus 209 

would allow an easy separation of these carriers from the ashes. This property can be exploited for particles 210 

with Mn/(Mn+Fe) ratios between 0.28 and 0.66. Particles calcined at 1200 ºC were selected for further testing 211 

and characterization, with the exception of Mn87FeTi7 which was calcined at 1300 ºC. 212 

3.3. Oxygen transport capacity 213 

The typical reaction involving the oxygen release for CLOU in these materials is the decomposition of 214 

bixbyite (MnxFe1-x)2O3) to spinel (MnxFe1-x)3O4. Thus, bixbyite should be formed to take advantage of the 215 

oxygen uncoupling capability of these materials; see reaction R1. 216 

3 (MnxFe1-x)2O3 (bixbyite)   ↔   2 (MnxFe1-x)3O4 (spinel) + 0.5 O2 (g) (R2) 217 

Between bixbyite and spinel phases there is a miscibility gap where bixbyite and spinel phases co-exist; see 218 

Figure 1. This region is especially relevant for Mn/(Mn+Fe) < 0.5. However, the miscibility gap is 219 

characterized by a low temperature difference for Mn/(Mn+Fe) ratios in the 0.5-0.8 interval.  220 

It is very interesting to note that a fraction of the Mn can also evolve oxygen via the formation of pyrophanite, 221 

MnTiO3, in the presence of Ti; see reactions R3 and R4 –additional information about the determination of 222 

coefficients b, c and y in reactions R3 and R4 is shown in the Supplementary material S2–. This fact is 223 

especially relevant for Mn/(Mn+Fe) > 0.8, when this transformation can occur at the vicinity of 900 ºC. 224 

However, for materials with high Mn content, bixtyite in the form of Mn2O3 only would be formed at a 225 

temperature lower than 800 ºC, which is not a temperature of interest for CLC with solid fuels. 226 
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(MnxFe1-x)2O3 (bixbyite)  +  a TiO2   ↔   a MnTiO3 (pyrophanite)  +  b (MnyFe1-y)3O4 (spinel) +  c O2 (g)(R3) 227 

(MnxFe1-x)3O4 (spinel)  +  a TiO2   ↔  a MnTiO3 (pyrophanite)  +  b’ (Mny’Fe1-y’)3O4 (spinel) +  c’ O2 (g)(R4) 228 

In addition, Mn-Fe mixed oxides can be highly reduced to manganowüstite, MnxFe1-xO, in the presence of a 229 

fuel gas, e.g. H2, CO or CH4 [21]. To evaluate this issue, the phase diagram as a function of the oxygen partial 230 

pressure is presented; see Figure 1(b). Regions in the upper oxygen pressure values are characterized by 231 

bixbyite rich phases. As the oxygen partial pressure decreases, spinel rich phases are formed, following 232 

reaction R2. As well, pyrophanite is formed for highly Mn-rich material following reactions R3 or R4. In 233 

these cases, the oxygen uncoupling capability can be used due to these reactions take place spontaneously in 234 

the fuel reactor where oxygen partial pressure is low. But manganowüstite, i.e. the more reduced phase 235 

MnxFe1-xO, is formed at lower oxygen partial pressures. For practical purposes, this phase would be formed in 236 

the presence of a reducing gas.  237 

Considering re-oxidation in the air reactor, spinel phase can be easily formed at the air reactor conditions. 238 

However, to take advantage of the oxygen uncoupling potential during successive cycles in the CLC system, 239 

bixbyite needs to be effectively formed at the conditions of the air reactor via reverse of reaction R2. At the 240 

relatively low partial pressure (5 vol.% O2) the bixbyite regeneration is allowed for Mn/(Mn+Fe) molar ratios 241 

lower than 0.5 at 950 ºC. For higher Mn/(Mn+Fe) ratios a higher oxygen partial pressure or lower temperature 242 

would be required to form bixbyite; see Figure 1.  243 

From the above analysis it is concluded that oxygen carrier can be oxidized to bixbyite at suitable O2 partial 244 

pressure and temperature conditions. Then, bixbyite can transfer oxygen via oxygen uncoupling by reduction 245 

to spinel, and a further reduction to manganowüstite can be exploited by reaction with a fuel gas. To evaluate 246 

the fraction of available oxygen for every redox system, the oxygen transport capacity for a reaction i, 
i
OCR , is 247 

defined as the mass fraction of the oxygen carrier being transferable as oxygen: 248 

i i

i o r

OC i

oxid

m m
R

m


  (1) 249 

i

om  being the initial mass of the sample, i

rm  the mass of the reduced sample and i

oxidm  the sample mass 250 

assuming oxidation under a determined condition. Distinction among i

om  and i

oxidm  was done to consider 251 

uncomplete oxidation of the oxygen carrier particles after calcination or oxidation stages, i.e. i

om  < i

oxidm . In 252 
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addition, the maximum oxygen transport capacity, 
i
OC,maxR , was calculated assuming that all material was 253 

oxidized to bixbyite. 254 

By knowing the theoretical oxygen transport capacity, the oxygen carrier conversion was calculated using 255 

Eqs. 2 and 3 for reduction and oxidation, respectively. 256 

𝑋𝑟𝑒𝑑
𝑖

 𝑟𝑒𝑑
=  

𝑚𝑜−𝑚

,
i
OC thR 𝑚𝑜𝑥𝑖𝑑

 (2) 257 

𝑋𝑜𝑥
𝑖 =  

𝑚−𝑚𝑟

,
i
OC thR 𝑚𝑜𝑥𝑖𝑑

 (3) 258 

For the oxygen uncoupling reaction, 
ou
OCR  is defined for reduction of bixbyite to spinel. When required, the 259 

presence of pyrophanite was also considered for the calculation of
ou
OCR . But for reduction with a fuel gas, 

g
OCR  260 

is defined for reduction of the spinel phase to manganowüstite. The accumulated or total mass loss from 261 

bixbyite to manganowüstite is defined by
t
OCR =

ou
OCR +

g
OCR . Table 2 summarizes the theoretical and maximum 262 

values of these parameters, 
ou
OCR  and

t
OCR , for every oxygen carrier prepared in this work. The specific Mn-Fe 263 

composition of the different materials prepared in this work has been stablished to cover a wide range of 264 

Mn/(Mn+Fe) ratios on the basis of the phase diagram results shown in Figure 1. Theoretically, all the Ti 265 

substituted Mn-Fe mixed oxides materials show oxygen uncoupling, but FeTi7 does not show any interesting 266 

phase transformation unless a reducing gas was present. 267 

Table 2. Oxygen transport capacity for gas-solid reactions, 
t
OCR , and oxygen uncoupling, 

ou
OCR  at 950 ºC; the 268 

subscripts “max”, “th” and “exp” denote maximum, theoretical and experimental values, respectively. 269 

 FeTi7 Mn28FeTi7 Mn55FeTi7 Mn66FeTi7 Mn87FeTi7 MnTi7 

,max
ou
OCR  0 3.1 3.1 3.6 3.6 3.6 

,
ou
OC thR  0 3.1 3.1 3.6 2.8 0.47 

,exp
ou
OCR  0 0.47 1.5 1.3 1.9 0.38 

Xou,exp - 0.15 0.47 0.36 0.67 0.81 

,max
t
OCR  9.3 9.4 9.4 9.4 9.4 9.4 

,
t
OC thR  9.3 9.4 9.4 9.4 8.7 6.5 

,exp
t
OCR  4.0 4.8 7.3 7.4 7.8 6.2 

Xt,exp 0.49 0.51 0.78 0.80 0.90 0.96 

 270 

For all the cases, the maximum oxygen uncoupling capacities are within the 3.1-3.6 interval, and the 271 
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maximum oxygen transport capacities for gas-solid reaction are within the 9.3-9.4. The maximum oxygen 272 

carrier capacity achievement requires a suitable selection of the oxidation conditions in the air reactor, as 273 

shown in Figures 1(a) and 1(b). Thus, according to this Figure, decreasing the Mn content of the carrier will 274 

allow its fully oxidation to bixbyite at higher temperatures and/or lower partial pressure of O2. 275 

To evaluate the oxygen transport capability of prepared materials in this work, TGA experiments were carried 276 

out by oxidizing the samples at 950 ºC in air. Thus, the ,
ou
OC thR  values are calculated by considering the stable 277 

phase after oxidation at 950 ºC in air. Under these conditions, Mn28FeTi7, Mn55FeTi7 and Mn66FeTi7 can 278 

be fully oxidized to bixbyite with 3.7, 7.4 and 12.6 vol.% O2, respectively. Thus, both the maximum and 279 

theoretical ( ,
ou
OC thR  and ,

ou
OC thR ) were calculated to be 3.1 for Mn28FeTi7 and Mn55FeTi7, and 3.6 wt.% for 280 

Mn66FeTi7. The higher ,max
ou
OCR  and ,

ou
OC thR  values for Mn66FeTi7 was due to the higher utilization of the 281 

oxygen in the formation of some pyrophanite, MnTiO3, with respect to the spinel. This was the case also for 282 

,max
ou
OCR  in Mn87FeTi7. But in this case, only a partial oxidation to bixbyite would be only possible in air at 283 

950 ºC due to the miscibility gap observed for this material, and ,
ou
OC thR  was correspondingly decreased to 2.8 284 

wt.%. For MnTi7, bixbyite is not formed in any extension at 950 ºC in air. However, oxygen uncoupling was 285 

associated to the appearance of pyrophanite, MnTiO3, which allows a certain capability of oxygen uncoupling 286 

for the spinel phase; see reaction R4.  287 

Experimentally, any of the oxygen carriers reach their respective theoretical oxygen transport capability. The 288 

differences between 
,exp

ou
OCR  and ,

ou
OC thR  are in general increased as the Fe content is increased. Thus, the 289 

maximum conversion of Mn28FeTi7 is 0.15 and that of MnTi7 is 0.81. The oxygen carriers with intermediate 290 

Mn/(Mn+Fe) molar ratios (0.55-0.87 interval) showed intermediate conversion values. 291 

The differences found in the ,
t
OC thR  values, depending upon the Mn/(Mn+Fe) ratio, are also related to the 292 

phase transformations shown in Figure 1 when the oxygen partial pressure is varied. For the oxygen carriers 293 

with a Mn/(Mn+Fe) ratio between 0.66 and 1, the ,
t
OC thR  values shows a decreased tendency as the 294 

Mn/(Mn+Fe) ratio is increased, whereas the ,max
t
OCR values are kept unaltered. This issue is related to a 295 

progressive transformation of some of the mass in the oxidized state to spinel structures, with a more 296 

pronounced degree of conversion as the Mn content is increased, due to the specific oxidation conditions 297 
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considered in the air reactor (i.e. 950 ºC in air). This transformation counteracts the utilization of oxygen in 298 

the system and consequently the ,
t
OC thR  decreases with increased Mn/(Mn+Fe) ratios. 299 

The experimental oxygen transport capacity for each oxygen carrier and operating condition was obtained 300 

from reduction with H2 in TGA; see Table 2. Only for MnTi7 the experimental 
,exp

t
OCR  value lay within the 301 

theoretical one, i.e. the solid conversion Xt,max was close to unity; for the other carriers, the 
,exp

t
OCR  values are 302 

lower than the corresponding theoretical ones, with increased differences in Xt,max as the Fe content in the 303 

carrier is increased. This fact was related to the low degree of oxidation to bixbyite observed for these 304 

materials; see Xou,max in Table 2. Nevertheless, the oxygen carriers with Mn/(Mn+Fe) molar ratios in the 55-87 305 

interval showed the maximum experimental oxygen transport capacities.  306 

3.4. Reactivity results 307 

The evaluation of the oxygen carrier reactivity towards H2, CO and CH4, as well as its potential for oxygen 308 

release have been done through isothermal redox cycles at 950 ºC in TGA. Also, the regeneration with 309 

different partial pressures of oxygen is analyzed.  310 

3.4.1. Reactivity towards oxygen uncoupling 311 

To analyze the oxygen release, Figure 2 shows normalized conversion vs. time curves for the different oxygen 312 

carriers when decomposed in N2 and oxidized with air at 950 ºC. In general, the oxygen release rate is 313 

increased as the Mn content in the oxygen carrier is increased; see Figure 2(a). Also the maximum oxygen 314 

carrier conversion increased with the Mn content.  315 

 316 
Figure 2. Solids conversion vs. time during (a) oxygen uncoupling in N2, and (b) oxidation in air at 950 ºC. 317 

 318 

However, the oxygen carrier conversion was limited by the conversion reached during the oxidation stage; see 319 
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Figure 2(b). For screening purposes, the oxidation was carried out at 950 ºC in air to force the formation of 320 

bixbyite as much as possible. The oxidation rate considerably slowed with the reaction progress, not achieving 321 

the full transport oxygen capacity at this temperature (950 ºC) for each redox system, in accordance with 322 

results shown in Table 2. The rate of oxygen transference per unit of mass, 𝑟𝑂2
, was a function of both the 323 

conversion-based reaction rate and the oxygen transport capacity:  324 

𝑟𝑂2
 (

𝑘𝑔𝑂2

𝑠·𝑘𝑔𝑂𝐶
) = 𝑅𝑂𝐶,𝑡ℎ

𝑜𝑢 ·
𝑑𝑋𝑜𝑢

𝑑𝑡
 (4) 325 

Figure 3 shows that the oxygen transference rate was higher for oxidation than for reduction, excepting for 326 

MnTi7. The oxygen transference rate during reduction, i.e. oxygen release, is in the 1·10
-5

 to 4·10
-5

 kgO2/s per 327 

kg of oxygen carrier, with Mn87FeTi7 showing the highest reaction rate. These values can be compared to the 328 

oxygen transference rate values of about 1·10
-3

 kgO2/s per kg of highly reactive Cu-based materials [36,37] 329 

and about 3.5·10
-4

 kgO2/s per kg of promising CaMnO3 based materials [31,38]. 330 

 331 

Figure 3. Instantaneous oxygen generation rate, 𝑟𝑂2
, for the different oxygen carriers at 950 ºC. 332 

3.4.2. Reactivity towards reduction with H2, CO and CH4 333 

Figure 4(a)-4(c) shows the conversion vs. time curves for the different oxygen carriers when reduced with 334 

CH4, CO and H2. All the oxygen carriers analyzed react faster with H2 than with CO and CH4, in spite of the 335 

concentration of H2 is 3 times lower than the one corresponding to CO or CH4. In addition, the reduction 336 

degree depended on the given Mn/(Mn+Fe) ratio and the reducing gas considered. Thus, decreasing the Mn 337 

content results into lower conversions, except for the FeTi7 carrier due to further reduction of magnetite to 338 

wüstite. Nevertheless, further reduction of magnetite is not of interest for CLC system based on 339 
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interconnected fluidized bed reactors [32], and only the part of the curve corresponding to reduction to Fe3O4, 340 

i.e. Xred < 1 for FeTi7, was here considered.  341 

To go further into the evaluation of both reduction and oxidation reaction rates, the normalized rate index was 342 

calculated as [39]: 343 

𝑅𝑎𝑡𝑒 𝑖𝑛𝑑𝑒𝑥 (
%

𝑚𝑖𝑛
) = 60 · 100 · 𝑅𝑂𝐶,𝑡ℎ

𝑡 · (
𝑑𝑋𝑖

𝑑𝑡
)

𝑛𝑜𝑟𝑚
  (5) 344 

(
𝑑𝑋𝑖

𝑑𝑡
)

𝑛𝑜𝑟𝑚
 being the normalized rate calculated for a partial pressure of 0.15 atm for fuel gases and 0.10 atm 345 

for oxygen.  346 

 347 

Figure 4. Oxygen carrier conversion with time during reduction with: a) H2 (5% H2 + 40% H2O), b) CO (15% 348 

CO + 20% CO2) and c) CH4 (15% CH4 + 20% H2O), and oxidation with: d) air, at 950 ºC. 349 

 350 

Rate index values obtained for reduction reactions are shown in Figure 5. Independently of the Mn/(Mn+Fe) 351 

ratio considered, the normalized rate index is considerably higher for reduction with H2 than with CO or CH4, 352 

as already noticed from the results shown in Figure 4. Considering the influence of the Mn/(Mn+Fe) ratio, the 353 

highest rate index values were found in the extremes, i.e. for Mn- or Fe-rich materials. In general, lower 354 
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values of rate index were found for materials with Mn/(Mn+Fe) ratios between 0.2 and 0.9, but interestingly 355 

these materials showed magnetic properties, In any case, rate index values for H2 were similar to those of 356 

promising low cost materials for iG-CLC, e.g. ilmenite, Fe-ESF and Tierga Fe-ore [40,41], but lower rate 357 

index values were found for Mn-Fe mixed oxides with CH4 and CO. 358 

 359 
Figure 5. Normalized rate index for the reduction reactions of the different oxygen carriers with CH4, CO and 360 

H2, and their subsequent oxidation with air. T = 950 ºC, Pref = 0.15 for reduction gases and Pref = 0.10 for air. 361 

 362 

The reaction kinetics and thermodynamic restrictions are very dependent on temperature. In order to analyze 363 

to what extent the reactivity are affected by the temperature, Figure 6(a) shows the normalized rate index 364 

during reduction with CH4 at 850, 900 and 950 ºC. The effect of temperature on the reduction rate is low for 365 

the oxygen carriers with low Mn conten (Mn/(Mn+Fe)=0.28-0.66), and increases as the Mn concentration is 366 

increased (Mn/(Mn+Fe)≥0.87), with a promoted rate of reduction by increasing the reaction temperature. At 367 

850 ºC the rate of reduction is considerably low for all the oxygen carriers studied and therefore higher 368 

temperatures (≥900 ºC) would be needed in the fuel reactor for a good performance of these redox systems. 369 
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Figure 6. Normalized rate index for the (a) reduction and (b) oxidation reactions of the different oxygen 371 

carriers with CH4 and air, respectively, at 850, 900 and 950 ºC. Pref = 0.15 for CH4 and Pref = 0.10 for O2. 372 

 373 

 374 

3.4.3. Reactivity towards oxidation 375 

The oxidation of manganowoustite to spinel phase is not problematic, and shows fast reaction kinetics for all 376 

the cases analyzed; see Figures 4(d) and 5. The most pronounced oxygen carrier regeneration is produced 377 

within the first 20 seconds. Eventually, the conversion reaches the value attained in the previous reduction 378 

cycle indicating the potential of these carriers for regeneration in the air reactor under these conditions. In 379 

addition, the oxidation rates are considerably high in the 850-950 ºC temperature range; see Figure 6(b). The 380 

rate index values for the oxidation of Mn-Fe mixed oxides are higher than those showed by other materials 381 

tested, such as ilmenite or Fe-ore [40,41]. Therefore, this step is not a determining factor when deciding the 382 

optimal composition of the oxygen carrier selected.  383 

The oxidation of spinel to bixbyite phase following reverse of reaction R1, which is of interest in CLOU, is 384 

highly dependent on the reacting temperature and the oxygen concentration [29]. A preliminary evaluation 385 

was done using air for oxidation. Thus, oxidation in air was relatively high during the first 100 seconds and 386 

are almost independent of the Mn:Fe ratio considered; see Figure 2(b). In this case, the instantaneous oxygen 387 

generation rate (see Figure 3) shows the highest values for Mn/(Mn+Fe) ratios in the 0.28-0.55 interval and a 388 

minimum for the Mn rich material. However, the complete oxidation to bixbyite was not allowed in air at 950 389 

ºC; see Xou,exp values in Table 2. Remarkable effect of the Mn:Fe ratio was found on conversion achieved, with 390 

higher maximum conversion values as the Mn content is increased. For the oxygen carrier with the highest 391 

Mn conten (MnTi7) the oxygen uncoupling observed is due to the spinel to pyrophanite transformation 392 

(reaction R3). Thus, these results indicate that after pyrophanite formation, the regeneration to spinel is 393 

possible. 394 

Considering the effect of the oxygen concentration on the bixbyite regeneration, the phase diagram in Figure 1 395 

shows that materials with Mn/(Mn+Fe) ratios higher than 0.55 are not able to oxidize to bixbyite with a 5 396 

vol.% O2 at 950 ºC. Thus, the air reactor should operate at lower temperatures for these materials. Thus, for 397 
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Mn55FeTi7 a temperature of 930 ºC is required to be completely oxidized to bixbyite, and a theoretical 398 

oxygen transport capacity of ,
ou
OC thR  = 3.13 wt.% is exploitable for CLOU. But a temperature lower than 850 399 

ºC is required to allow complete oxidation to bixbyite for Mn87FeTi7, while a temperature between 850 and 400 

900 ºC would allow a partial oxidation of spinel to bixbyite due to the existence of a relevant miscibility gap. 401 

In this case, the usable oxygen transport capacity for CLOU, ,
ou
OC thR , are 1.77 and 3.60 wt.% at 900 and 850 ºC, 402 

respectively. However, despite the favorable thermodynamics shown at 850 ºC, the regeneration of 403 

Mn87FeTi7 was not possible at this temperature due to slow kinetics. In this context, Figure 7 shows the 404 

conversion vs. time curves during oxidation in 5 vol.% O2 at 930 ºC for Mn55FeTi7 and at 900 ºC for 405 

Mn87FeTi7. Mn87FeTi7 achieved higher conversion values for longer periods. But during the first seconds of 406 

the oxidation period (< 300 s), the oxidation rate of both carriers was almost similar. Considering that the 407 

mean residence time in the air reactor would be lower than 300 s, both Mn87FeTi7 and Mn55FeTi7 would be 408 

able to be oxidized in the air reactor with a similar behavior at their respective optimal temperatures. 409 

 410 

Figure 7. Conversion with time during oxidation with 5 vol.% O2 at 900 ºC with Mn87FeTi7 and 930 ºC with 411 

Mn55FeTi7. 412 

4. Discussion 413 

A comprehensive evaluation of physical and chemical properties of the materials prepared with different 414 

Mn:Fe ratios is done regarding their capability to be used in iG-CLC and CLOU processes. All particles 415 

showed high enough crushing strength values (above 4 N in most of cases) to be used as oxygen carrier in the 416 

fluidized bed reactors of a CLC unit.  417 

On the one hand, Mn28FeTi7, Mn55FeTi7 and Mn66FeTi7 showed high magnetic permeability values when 418 
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calcined at 1200 ºC. In addition, similar reactivity with fuel gases was found for these materials. If the oxygen 419 

uncoupling property is considered as well, bixbyite formation is favored for the Mn55FeTi7 material 420 

regarding results on oxygen transport capacity and regeneration reactivity. Therefore, under the same 421 

conditions for the rest of parameters, Mn55FeTi7 would be preferred among these materials to be used in the 422 

CLOU process.  423 

On the other hand, oxygen carriers with Mn/(Mn+Fe) molar ratios in the 0.87-1 interval showed better 424 

reactivity towards CH4, CO and H2. However, only the Mn87FeTi7 showed soft magnetic properties after 425 

calcination at 1300 ºC; the MnTi7 carrier is not magnetic. The oxygen uncoupling property of this material is 426 

highly restricted by the oxidation conditions, as bixbyite formation requires a relatively high oxygen partial 427 

pressure and/or low oxidizing temperature. Therefore, the Mn87FeTi7 would be selected to be used in coal 428 

combustion in iG-CLC mode.  429 

Following, the capabilities of selected materials, i.e. Mn55FeTi7 and Mn87FeTi7, to be used in iG-CLC 430 

and/or CLOU is assessed. The optimal conditions in the iG-CLC process would include the operation of the 431 

fuel reactor at the highest temperature possible. Considering the reactivity with fuel gases, Mn87FeTi7 shows 432 

a clear advantage compared to Mn55FeTi7 to be used in the iG-CLC mode. Mn87FeTi7 shows also higher 433 

reactivity and oxygen transport capacity for CLOU; see Table 2 and Figure 3. But some difficulties could be 434 

expected for the bixbyite regeneration in the air reactor compared to Mn55FeTi7, which is mandatory to take 435 

advantage of the oxygen uncoupling effect. Thus, more restricted conditions and lower temperature in the air 436 

reactor would be required for Mn87FeTi7 (see Figure 7), which would have also influence on a lower 437 

temperature in the fuel reactor due to the heat management of a CLC unit [42]. Considering the global 438 

reaction in the fuel reactor is exothermic when bixbyite-spinel redox system is considered for CLOU [17,43], 439 

the fuel reactor can operate at higher temperatures than the air reactor. Considering the optimal temperatures 440 

for the air reactor showed above, fuel reactor temperatures of 950 ºC for Mn87FeTi7 and at 980 ºC for 441 

Mn55FeTi7 seem reasonable. This option sacrifices the reaction rate with gases in order to exploit the oxygen 442 

uncoupling capability. To evaluate the performance of these oxygen carriers at these fuel reactor temperatures, 443 

Figure 8 shows the normalized rate index for the reduction with CH4, H2 and CO, as well as the instantaneous 444 

oxygen generation rate, for Mn87FeTi7 and Mn55FeTi7 at 950 ºC and 980 ºC, respectively. At their 445 
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respective optimal temperatures, both carriers exhibit similar reactivity towards reduction with H2, CH4, CO 446 

and oxygen uncoupling.  447 

 448 
Figure 8. Normalized rate index (%/min) for the reduction of Mn55FeTi7 and Mn87FeTi7 with CH4, H2 and 449 

CO, and the instantaneous oxygen generation rate (%/min), at 980ºC and 950ºC, respectively. 450 

 451 

As a consequence of the results here shown, Mn55FeTi7 and Mn87FeTi7 materials are basically oxygen 452 

carriers to be operated in iG-CLC mode. Note that reaction rate of oxygen generation by oxygen uncoupling 453 

(3.7·10
-5

 s
-1

 for Mn55FeTi7 at 980ºC) are much lower than purely CLOU oxygen carriers such as Cu-based 454 

materials [36,37]. However, even in this case, exploitation of the oxygen uncoupling capability would be very 455 

beneficial, improving the performance of the CLC process via oxygen uncoupling in the so-called Chemical 456 

Looping assisted by Oxygen Uncoupling (CLaOU) [19]. In addition, the Mn55FeTi7 oxygen carrier shows a 457 

high magnetic permeability,  = 8.3. Therefore, the ferromagnetic behavior showed by Mn55FeTi7 would 458 

allow an easy separation from ashes in the CLC process with coal. In this context, the results of this study 459 

settle Mn55FeTi7 as the most promising oxygen carrier for coal combustion via CLOU. Another option to be 460 

considered is to operate the air reactor with a higher air excess, which would allow an increase of both fuel 461 

and air reactors temperature. The adequacy of the utilization of oxygen uncoupling will take place in future 462 

work on continuous plant operation. 463 

5. Conclusions 464 

The present work accomplishes a screening of the performance of Mn-Fe-Ti based oxygen carriers, prepared 465 
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100-300 particle size interval. The potential of the resultant oxygen carrier particles for the Chemical Looping 468 

Combustion process was determined theoretically through the prediction of the stable phases by 469 

thermodynamics and calculation of the oxygen transport capacity, and the subsequent comparison to solid 470 

phases found after characterization by XRD; and, experimentally through crushing strength, magnetic 471 

properties and redox reactivity analysis at suitable temperatures for the iG-CLC and CLOU process, using a 472 

thermogravimethic analyzer.  473 

All the oxygen carriers prepared showed crushing strength values around 4-5 N. The magnetic permeability of 474 

the oxygen carriers increased as the Mn content decreased, but neither the FeTi7 carrier nor the MnTi7 475 

showed any magnetic property. 476 

The oxygen carriers with Mn/(Mn+Fe) molar ratios in the 0.55-0.87 interval showed the maximum values of 477 

either the oxygen uncoupling capacity and the oxygen transport capacity for gas-solid reactions. However, to 478 

take advantage of the oxygen uncoupling capability, the oxidation conditions should allow the formation of 479 

bixbyte in the air reactor. For highly Mn-rich materials, where this oxidation is very limited due to 480 

temperature limitations, oxygen uncoupling was also observed via the formation of pyrophanite in the 481 

presence of Ti. 482 

Oxygen carriers with Mn/(Mn+Fe) molar ratios ≥ 0.87 showed the highest reactivity towards reduction gases 483 

(CH4, CO and H2) at 950ºC. However, oxygen carriers with lower Mn content (i.e. Mn/(Mn+Fe) = 0.55) 484 

showed similar reactivity during reduction at its optimal temperature, 980ºC. 485 

Therefore, considering the balance between reactivity and magnetic properties, the oxygen carrier with 486 

Mn/(Mn+Fe) molar ratio of 0.55 would be very interesting for CLC with solids. In addition, regardless of 487 

MnTi7 did not show neither magnetic properties nor significant O2 release, the good reactivity exhibited by 488 

this carrier with CO and H2 would make it suitable for syngas combustion. 489 
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