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Electrocardiogram-Derived Tidal Volume During

Treadmill Stress Test
Javier Milagro, David Hernando, Jesús Lázaro, José A. Casajús, Nuria Garatachea, Eduardo Gil and Raquel Bailón

Abstract—Objective: Electrocardiogram (ECG) has been re-
garded as a source of respiratory information with the main
focus in the estimation of the respiratory rate. Although little
research concerning the estimation of tidal volume (TV) has
been conducted, there are several ECG-derived features that have
been related with TV in the literature, such as ECG-derived
respiration, heart rate variability or respiratory rate. In this
work, we exploited these features for estimating TV using a
linear model. Methods: 25 young (33.4 ± 5.2 years) healthy male
volunteers were recruited for performing a maximal (MaxT) and
a submaximal (SubT) treadmill stress test, which were conducted
in different days. Both tests were automatically segmented in
stages attending to the heart rate. Afterwards, a subject-specific
TV model was calibrated for each stage, employing features from
MaxT, and the model was later used for estimating the TV in
SubT. Results: During exercise, the different proposed approaches
led to relative fitting errors lower than 14% in most of the cases
and than 6% in some of them. Conclusion: Low achieved fitting
errors suggest that TV can be estimated from ECG during a
treadmill stress test. Significance: The results suggest that it is
possible to estimate TV during exercise using only ECG-derived
features.

Index Terms—tidal volume, electrocardiogram, respiration,
exercise, heart rate variability

I. INTRODUCTION

MONITORING respiratory activity is very important in

several applications, e.g., respiratory rate is a sensitive

clinical parameter in a multitude of pulmonary diseases [1].

Another important respiratory parameter is the tidal volume
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(TV), which is defined as the volume of air inhaled or exhaled

during a respiratory cycle. TV is useful for monitoring some

respiratory diseases, such as Cheyne-Stokes respiration and

sleep apnea. Both respiratory rate and TV have been studied as

indicators of the anaerobic threshold [2], [3], which is related

to the fitness level. The assessment of the fitness level results

interesting for heart failure patients [4] and for athletes. Respi-

ration monitoring techniques are usually based on plethysmog-

raphy, pneumography or spirometry. These techniques require

cumbersome devices which remain inconvenient for some

applications, and which may interfere with natural breathing.

Thus, some alternatives have been presented in the literature.

Although electrocardiogram (ECG) mainly represents the

electrical cardiac activity measured on the surface of the skin,

it is known to carry some respiratory information. Essentially,

ECG is modulated by respiration through three different mech-

anisms: respiratory sinus arrhythmia (RSA), changes in the

relative position of the recording electrodes, and changes in

thoracic impedance. RSA is an extra-cardiac modulation of

heart rate (HR) which reflects as a tachycardia during inspira-

tion followed by a bradycardia during expiration. The origin

of RSA is not completely understood, and three main non-

exclusive hypotheses have been proposed, suggesting a central

[5], baroreflex-mediated [6] or mechanical [7] origin, as well

as a combination of them [8]. On the other hand, variations

in the relative position of the recording electrodes due to

chest movement during respiration result in alterations of the

electrical pathway between them. Moreover, changes in the

amount and composition of air inside the lungs or in the flow

or composition of blood in the chest lead to different thoracic

impedance value and distribution. These impedance changes

directly affect electrical propagation, which is reflected as a

modulation of the ECG morphology.

ECG morphology changes, as synchronized with respi-

ration, have been exploited by several authors to extract

respiratory information from ECG features such as R or

R-to-S waves amplitude [9], the QRS-complex slopes [10]

and QRS-complex area [11] variations, or vectocardiogram

rotations [12]. This family of methods is usually referred

to as ECG-derived respiration (EDR), since they allow to

extract respiratory information only from ECG, without need

of additional sensors. Despite the interest in EDR, research

efforts have focused in estimating respiratory rate, with very

few publications concerning TV estimation. Moreover and to

the best of our knowledge, most of the studies aiming to

estimate TV are based on ECG-unrelated techniques such as

image acquisition [13], traqueal sounds [14] and inductive [15]

or opto-electronic plethysmography [16].
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Moody et al. already reported proportionality between TV

and EDR [11]. Almost 30 years later, Sayadi et al. conducted

a conceptual study aiming to derive TV using only ECG

or different intra-cardiac signals in a controlled environment

[17]. For this purpose, they employed mechanically ventilated

swines, varying both TV and respiratory rate ranging from

0 to 750 ml and from 7 to 14 breaths/min (0.12 to 0.23

Hz) respectively. Each configuration was maintained for a

minimum of 90 seconds, hence allowing stable measurement

periods. In this work, we addressed TV estimation from ECG

in rest and during a treadmill test, which constitutes a highly

non-stationary scenario. Subject-specific models for TV based

on ECG derived features were proposed and calibrated during

a maximal effort test. These models were then validated for

TV estimation in a submaximal treadmill test, conducted in a

different day.

II. MATERIALS AND METHODS

A. Dataset

25 male volunteers aged 33.4 ± 5.2 years were recruited.

All of them were apparently healthy and active, practicing

aerobic training at least 3 times per week. None of the subjects

were active smokers or reported any respiratory disorder by the

time of the study, and only one of them was under medication

intake (fluoxetine) during the recordings. They performed a

maximal and a submaximal treadmill (Quasar MED LT h/p

Cosmos, Nussdorf-Traunstein, Germany) test in different days,

denoted as MaxT and SubT respectively. Both tests were

divided in 3 stages: a 5-minute resting stage, during which the

subjects remained sat and without talking, an exercise stage

and a recovery stage. The resting stage was common to both

tests, whereas different protocols were followed in the exercise

stage. During MaxT, the volunteers started to run at a initial

speed of 8 km·h−1 which was increased 1 km·h−1 per minute

until they stopped due to volitional exhaustion. At this point,

maximum HR was annotated for each subejct. On the contrary,

during SubT the procedure was similar to MaxT, but speed

was kept constant once the subjects reached the 90% of their

maximum HR, and they were asked to keep running for 2

more minutes at the reached speed. Finally, the recovery stage

was shared by both tests and lasted between 3 and 5 minutes

during which the subjects were required to remain running at

a comfortable speed of 8 km·h−1.

Multi-lead ECG was acquired with a high-resolution

holter (Mortara 48-hour H12+, Mortara Instrument, Milwau-

kee,Wisconsin). Leads I, II, III, aVL, aVR, aVF, V4, V5 and

V6 were recorded at a sampling rate of 1000 Hz, whilst

an Oxycon Pro device (Jaeger/Viasys, Germany) was used

for recording breath-by-breath minute ventilation (VE) and

respiratory rate (Fr). A breath-by-breath HR signal was also

acquired with the latter device. Recordings were performed at

University of Zaragoza (Spain), and the protocol was approved

by the institutional ethics committee following the ethical prin-

ciples of the Declaration of Helsinki. Written informed consent

was received from all the volunteers, and demographics are

summarized in Table I.

TABLE I
DEMOGRAPHICS OF THE SUBJECTS IN THE PRESENTED DATASET. ALL THE

VALUES ARE GIVEN AS MEAN ± STANDARD DEVIATION, EXCEPT FROM

THE NUMBER OF SUBJECTS (N) AND THE MAXIMUM HEART RATE (THE

LATTER IS PROVIDED AS MEDIAN (25th PERCENTILE, 75th PERCENTILE)
SINCE IT WAS NOT NORMALLY DISTRIBUTED). (BMI: BODY MASS

INDEX).

N Age (years) Height (cm) Weight (kg) BMI (kg/m2) Max. HR (bpm)

25 33.4 ± 5.2 178 ± 5.5 74.8 ± 7.0 23.6 ± 2.1 180 (172, 186)

B. Preprocessing

Beat detection and delineation was accomplished in each

ECG lead using the wavelet-based approach proposed in [18].

Instantaneous HR, xHR(n), was derived from beat time occur-

rence series as 60/du
IF
(n), where du

IF
(n) represents the unevenly

sampled interval function [19]. The reference for TV was

obtained as VT(k) = VE(k)/Fr(k), where index k represents

the k-th breath, and xHR(n) was synchronized with VT(k).
Synchronization was performed by employing the derivatives

of xHR(n) and the HR signal provided by the Oxycon Pro

device, synchronized with VT(k). First, both HR signals were

resampled at 4 Hz by linear interpolation. Afterwards, cor-

relation between the derivatives of the interpolated signals

was calculated, and the time difference was obtained as the

maximum of this correlation. Finally, the interpolated and

synchronized version of xHR(n) was resampled at the time

instants k by linear interpolation, and xHR(k) and VT(k) were

smoothed using a 10-sample median filter.

The described preprocessing was applied in MaxT and

SubT. In order to distinguish the notation between signals

corresponding to each test, superindexes were employed so

that xm

HR
(k) and V m

T
(k) refer to MaxT whereas xs

HR
(k) and

V s

T
(k) allude to SubT.

Both stress tests were segmented into 5 different stages:

a rest stage, three exercise stages, and a recovery stage. Irest

corresponds to the initial resting stage during which volunteers

remained sat, and it lasts from the beginning of the recording

until 30 seconds before exercise onset, so that transition from

sat to the treadmill was discarded. Irecov refers to the recovery

stage, and it expands from 30 seconds after maximum HR

was reached until the end of the acquisition. The initial time

offset of 30 seconds was included to avoid transition from

exercise to recovery stage, since subjects did not behave in the

same way after reaching maximum HR: whereas some of them

remained running, some others jumped from the treadmill

and then started running again. The segmentation of the three

exercise stages was performed automatically from xm

HR
(k) as

percentages of the range of variations of the HR: 0-60% (I0-60),

60-80% (I60-80) and 80-100% (I80-100), considering the mean HR

at Irest as 0% and the maximum HR as 100%. Whereas the

definition of Irest and Irecov was similar for MaxT and SubT,

the percentages of maximum HR used for defining the other

3 stages were only calculated from xm

HR
(k), and these values

were employed in both tests. An example of this segmentation

process is displayed in Fig. 1.
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Fig. 1. Stage segmentation for MaxT, a), and SubT, b), of one subject is
shown. Vertical lines indicate onset and offset of the different stages for each
test, whereas horizontal lines mark the different percentages of maximum HR
used for segmentation. In both cases, there is a 30-second interval between
Irest and I0-60, and between I80-100 and Irecov, in order to exclude the transition
from rest to exercise and from exercise to recovery respectively.

C. Tidal Volume Estimation

The proposed TV estimation approach consists of a linear

model which was calibrated using the data in MaxT (training

set) and evaluated using the data in SubT (test set). Both

calibration and estimation were performed for each subject

and stage. For the calibration process of each stage all the

data samples in the current stage were used. Therefore, for

stage Ii, the offset and slope (αIi
and βIi

respectively) of

a linear model were estimated in a least squares sense by

fitting V m

T,Ii
(k) with a determined feature of MaxT, θm

Ii
(k).

The selection of appropriate features remains essential for a

proper TV estimation, and several options are described below.

Afterwards, TV was estimated in SubT as:

V̂ s

T,Ii
(k) = αIi

+ θs

Ii
(k)βIi

, (1)

where θs

Ii
represents the employed feature in stage Ii and in

SubT.

Several features were tested as possible TV predictors: the

amplitude of different EDR series (in a single-lead and a multi-

lead approach), the instantaneous HR, the high-frequency (HF)

power of the heart rate variability (HRV) signal and the respi-

ratory rate. Moreover, a multi-parametric model including two

or more of these features was also considered. The different

methodologies followed for feature extraction are described

below, and when not indicated the same procedure was applied

for feature extraction in MaxT and SubT. It is important to

note that all the features were normalized with respect to

MaxT in order to minimize inter-day changes in measurements

(different electrode position, different basal state, etc), so that:

θ̃m

Ii
(k) =

θm

Ii
(k)− µθm

Ii

σθm
Ii

,

θ̃s

Ii
(k) =

θs

Ii
(k)− µθm

Ii

σθm
Ii

, (2)

being µθm
Ii

and σθm
Ii

the mean and standard deviation of

θm(k) during interval Ii respectively. θ̃m

Ii
and θ̃s

Ii
represent

the normalized versions of θm(k) and θs(k) during interval

Ii respectively, although they will be referred to as θm(k) and

θs(k) for simplicity.

D. Single-lead EDR

Amplitude difference between peaks and nadirs of the

EDR series obtained from each lead were used as features

for TV estimation. For this purpose, several EDR signals

were considered: R-S amplitudes [9], QRS upslopes and

downslopes, and R wave angles [10]. The resulting series

were evenly sampled at 4 Hz and low-pass filtered at 1.5 Hz

in order to discard HF components that are unrelated with

respiration, and they were referred to as xEDR(t). As local

maxima/minima in the EDR signal amplitude should be related

with the end of expiration/inspiration, thus when electrodes are

closer to/farther from the heart, peaks and nadirs in xEDR(t)
were detected, and the difference between the amplitude of

each peak and its corresponding nadir was calculated. The

amplitude difference series were linearly interpolated at the

time instants when expirations occur and smoothed with a 10-

sample median filter, and the outputs of this process, θm(k),
were used as features for estimating the TV. An example of this

procedure using the R-S amplitude as EDR signal is displayed

in Fig. 2.

E. Multi-lead EDR

During inspiration and expiration processes thorax expands

or contract differently in the three spatial dimensions, and

hence the use of spatial information could result in a better TV

estimation. In this way, a multi-lead approach consisting in the

combination of EDR signals extracted from different leads is
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Fig. 2. Derivation of the amplitude difference series using R-S amplitude as
EDR. In a), R (green circles) and S (red circles) waves were detected in the
ECG signal, and the difference between them was calculated for each beat to
obtain a R-S amplitude series. xEDR(t) is a low-pass filtered version of this
series (b)). Finally, the peaks and nadirs in xEDR(t) were detected (magenta
and cyan circles respectively), and the series generated from the difference
between them was resampled at the times when breaths occur and smoothed
with a 10-sample median filter. The result, θm(k) (c)), was used as a feature
for our linear model.

proposed. The procedure is similar to the single-lead approach,

and only differs in the definition of xEDR(t). In order to account

for this three-dimensional behavior, in the multi-lead approach

the EDR signals of three different leads were combined using a

principal component analysis (PCA), and xEDR(t) was obtained

as the first component of this PCA. The employed leads were

selected as those forming the most orthogonal combination

possible, so that spatial information was maximized. In this

case, leads V4, V6 and aVF were selected. Also the possibility

of combining all the available leads was contemplated in the

analysis.

As in the single-lead approach, R-S amplitudes, QRS up-

slopes and downslopes, and R wave angles were used as EDR

signals.

F. Instantaneous Heart Rate

When body metabolic demand increases, TV and HR in-

crease in order to enlarge gas exchange. In this way, it is

expectable that TV and HR present some correlation, so HR

was considered as a possible TV estimator. xm

HR
(k) and xs

HR
(k)

were used as features for the linear model in MaxT and SubT

respectively:

θm(k) = xm

HR
(k),

θs(k) = xs

HR
(k). (3)

G. Heart Rate Variability

Relationship between heart rate variability (HRV) and TV

has been a recurrent topic in the literature [20]–[22], where

association of an increased TV with a higher HF power

(PHF) has been reported. For this reason, we considered PHF

as a potential feature for estimating TV. Although HRV is

drastically reduced during moderate exercise [23], [24], the

mechanical effect that breathing exerts over the sinus node

appears to be responsible of increased PHF during high intensity

exercise [25]. However, PHF calculation should be addressed

carefully during physical activity, since the increased Fr during

exercise could yield to a shift of power towards higher

frequency components [26]. In this way, we adopted the

methodology proposed in [27] for the calculation of PHF, where

it was determined in a time-frequency basis (PHF(t)), using

an adaptive band centered in Fr. Moreover, the presence of

non-respiratory-related frequency components that might lay

within the HF band [24] was taken into account (see [27] for

details). The obtained PHF(t) was resampled at the time instants

when breaths occur, and the resulting discrete series (Pm

HF
(k)

and Ps

HF
(k) for MaxT and SubT respectively) were used as

features for TV estimation:

θm(k) = Pm

HF
(k),

θs(k) = Ps

HF
(k). (4)

Prior to HRV analysis, ectopic beats and misdetections were

identified and corrected using the method described in [28]

(less than a 0.1% of the beats were labeled as ectopics or

misdetections).

H. Respiratory Rate

Minute ventilation is defined as the volume of air inhaled

or exhaled per minute. In this way, it is proportional to both

TV and Fr. When an increase of gas exchange is required,

the request can be satisfied by increasing either TV or/and Fr.

However, in a very demanding situation such as a maximal

effort test, the role of both magnitudes is closely related

[29], so Fr was also considered as a possible TV estimator.

Respiratory rate was estimated from the ECG as proposed

by Lázaro et al. [10]. The EDR series calculated from the
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upslopes, downslopes and angles of the R waves of all the

available leads were employed. Same parameters than in [10]

were used for Fr estimation in Irest, whereas they were modified

in the exercise stages. Concretely, the Welch’s periodogram

parameters were set to Ts = 12 s, Tm = 4 s and ts = 1 s.

Also the peakness threshold for averaging was reduced to 50%

(ξ = 0.5), and faster changes in Fr were allowed by increasing

δ from 0.1 to 0.2 (see [10] for details). Finally, the upper limit

of the EDR signals filtering was set to 1.5 instead of 1 Hz in

order to adapt it to the studied scenario, where Fr can exceed

60 breaths/minute.

Afterwards, the estimated Fr for MaxT and SubT, F̂m

r
and

F̂s

r
, were used as features for TV estimation:

θm(k) = F̂m

r
(k),

θs(k) = F̂s

r
(k). (5)

I. Multi-parametric Model

Since in the literature TV has been related with all the

previously described parameters independently, it might occur

that combining the TV information obtained from different

sources yields to a better estimation, so we considered the

possibility or merging information from all the presented

parameters using a multi-linear model, so that the final TV

estimation was obtained as:

V̂ s

T,Ii
(k) = αIi

+θs, 1

Ii
(k)β1

Ii
+θs, 2

Ii
(k)β2

Ii
+ · · ·+θs, L

Ii
(k)βL

Ii
, (6)

where θs, l

Ii
(k) represents the different proposed features, i.e.,

parameters extracted from the single-lead and multi-lead EDR

approaches, instantaneous HR, HRV and Fr. αIi
and βl

Ii

represent the parameters of the multi-linear model estimated

from MaxT, and L is the number of parameters considered in

the model.

J. Subject-independent Model

The possibility of having a single model which can be

applied in a subject-independent basis was also addressed. For

this purpose, the median of each of the coefficients of all the

subject-specific multi-parametric models described above was

calculated:

αIi
= median([αIi

(1), αIi
(2), . . . , αIi

(N)]),

β
l

Ii
= median([βl

Ii
(1), βl

Ii
(2), . . . , βl

Ii
(N)]),

∀l ∈ [1, . . . , L], (7)

being αIi
and β

l

Ii
the coefficients of the subject-independent

multi-parametric model, αIi
(n) and βl

Ii
(n) the coefficients of

the multi-parametric model for subject n, and N and L the

total number of subjects and parameters considered in the

model respectively.

K. Performance Measurement

Median and interquartile range (IQR) of the absolute (ǫa)

and relative error (ǫr) were calculated for each methodology,

stage and subject in order to quantify the accuracy of the

estimation. Medians of medians and IQRs were computed

among subjects for each methodology and stage. Moreover,

accuracy in the estimation of Fr was quantified as the inter-

subject median of the median absolute error in each stage.

III. RESULTS

Median TV estimation errors obtained for each stage and

approach are displayed in Tables II and III. Also graphical

examples of the different methodologies are depicted in Figure

3. From the 25 volunteers recruited for this study, a total of

11 subjects had to be discarded due to missing TV signal or

ECG, or bad quality signals either in MaxT or SubT.

The estimation errors obtained with the single-lead approach

are summarized in Table II, where the results obtained for the

different EDR methods can be compared. Although similar

results were obtained for all the leads, lead II was the best

performing independently of the considered EDR. The use of

the downslopes of the R waves led to the lowest estimation

errors in Irest, I60-80 and I80-100, with median relative errors of

11.68, 7.40 and 5.81%, respectively. On the other hand, the

upslopes led to the best results in I0-60, whereas the R-S

amplitude was the best performing EDR in Irecov, with median

relative errors of 17.01 and 14.07% respectively. Median IQRs

of the estimation error were similar for all the approaches and

stages.

Estimation errors obtained with the multi-lead, HR, HRV,

Fr and multi-parametric approaches are reflected in Table III.

Lowest relative fitting errors were obtained when combining

the downslopes series in lead II and the instantaneous HR

with the multi-parametric approach, except in Irest, where the

multi-lead approach remained the best option. Scatter plots of

the performance of the multi-parametric approach for all the

subjects and in the different stages are displayed in Fig. 4.

Nevertheless, similar estimation errors were achieved in the

multi-lead, HR, Fr and the multi-parametric approaches for

all the stages, except for Irest in Fr and the multi-parametric

option, and I0-60 in Fr and multi-lead, where larger errors were

observed. On the other hand, slightly increased errors in most

of the stages were obtained for the HRV approach. In most of

the cases, median relative error was lower than 14%, being it

lower than 7.5% in I80-100 for all the approaches, and as low as

5.06% in the multi-parametric approach. Highest estimation

errors were generally obtained for HRV and Fr, although their

performance is comparable to the other approaches in the

majority of the stages. Median IQRs of the estimation error

were similar for all the approaches and stages, except for

increased values in I0-60 for all the approaches excluding the

HR and the multi-parametric options.

In Table IV, the median value of each coefficient obtained

for the subject-specific multi-parametric models, as well as the

ratio of the contributions of the downslopes and the HR are

summarized. Whereas the contribution of the HR is in median

always higher than the contribution of the EDR calculated
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TABLE II
INTER-SUBJECT MEDIANS OF MEDIAN AND IQR OF THE FITTING ERRORS OBTAINED WITH THE SINGLE-LEAD EDR APPROACH. BEST RESULTS WERE

ACHIEVED FOR LEAD II, SO RESULTS OBTAINED IN LEAD II WITH EACH OF THE CONSIDERED EDRS ARE DISPLAYED. THE MEDIAN AND IQR OF THE

ABSOLUTE AND RELATIVE ERROR CORRESPONDING TO THE LOWEST RELATIVE ERROR IN EACH STAGE ARE HIGHLIGHTED IN BOTH TYPE.

IIR-S IIupslope IIdownslope IIangle

Median IQR Median IQR Median IQR Median IQR

Irest
ǫa (liters) 0.11 0.11 0.10 0.11 0.11 0.12 0.09 0.09

ǫr(%) 13.06 11.36 13.38 12.42 11.68 12.26 12.40 12.11

I0-60
ǫa (liters) 0.37 0.33 0.27 0.31 0.39 0.30 0.31 0.36

ǫr(%) 20.31 22.80 17.01 16.80 22.34 22.49 19.77 26.57

I60-80
ǫa (liters) 0.27 0.23 0.24 0.23 0.18 0.23 0.29 0.21

ǫr(%) 11.35 6.95 9.17 6.56 7.40 7.28 10.86 7.00

I80-100
ǫa (liters) 0.19 0.11 0.19 0.13 0.16 0.14 0.17 0.12

ǫr(%) 6.03 4.57 5.96 4.48 5.81 4.62 6.27 4.24

Irecov
ǫa (liters) 0.42 0.32 0.49 0.34 0.39 0.29 0.48 0.32

ǫr(%) 14.07 12.76 15.26 11.43 15.77 11.32 16.68 12.30

TABLE III
INTER-SUBJECT MEDIANS OF MEDIAN AND IQR OF THE FITTING ERRORS OBTAINED WITH THE MULTI-LEAD, HR, HRV, FR AND MULTI-PARAMETRIC

APPROACHES. RESULTS CONCERNING THE MULTI-LEAD APPROACH WERE ACHIEVED CONSIDERING THE LEADS V4, V6 AND AVF, WHEREAS THOSE OF

THE MULTI-PARAMETRIC APPROACH WERE OBTAINED FROM A COMBINATION OF THE SINGLE-LEAD AND HR APPROACHES (IN THE SINGLE-LEAD

APPROACH, LEAD II AND QRS DOWNSLOPES WERE EMPLOYED). THE MEDIAN AND IQR OF THE ABSOLUTE AND RELATIVE ERROR CORRESPONDING TO

THE LOWEST RELATIVE ERROR IN EACH STAGE ARE HIGHLIGHTED IN BOTH TYPE.

Multi-lead HR HRV Fr Multi-parametric

Median IQR Median IQR Median IQR Median IQR Median IQR

Irest
ǫa (liters) 0.09 0.12 0.10 0.10 0.12 0.10 0.17 0.13 0.16 0.12

ǫr(%) 11.87 14.23 12.74 12.57 16.19 14.10 17.37 16.85 17.61 15.87

I0-60
ǫa (liters) 0.39 0.35 0.25 0.22 0.38 0.39 0.56 0.54 0.23 0.25

ǫr(%) 21.86 22.31 15.12 14.36 20.41 25.38 28.85 40.43 12.96 15.87

I60-80
ǫa (liters) 0.29 0.22 0.15 0.13 0.27 0.18 0.21 0.23 0.14 0.11

ǫr(%) 11.24 6.80 7.64 5.66 10.98 7.02 9.02 7.49 7.41 4.68

I80-100
ǫa (liters) 0.15 0.14 0.16 0.13 0.16 0.14 0.18 0.11 0.14 0.12

ǫr(%) 6.97 5.02 6.14 4.13 5.32 4.03 7.14 4.81 5.06 4.01

Irecov
ǫa (liters) 0.37 0.31 0.27 0.28 0.54 0.34 0.36 0.35 0.28 0.28

ǫr(%) 15.33 8.66 11.55 12.04 18.58 15.74 13.75 14.61 11.41 12.03

from the downslopes, the former turns highest during the

I0-60 and the Irecov stages. On the other hand, and since best

performance was generally achieved with the multi-parametric

model, the subject-independent model was composed by the

median of the coefficients of all the subject-specific multi-

parametric models, which are those displayed in Table IV.

The performance of this subject-independent model is also

summarized in Table IV, where larger absolute and relative

errors when compared with the subject-specific model were

obtained in all the stages, except from Irest.

Although not displayed in the tables, median Fr estimation

error was computed for all the stages in MaxT and SubT

independently. Estimation errors lower than 0.035 Hz were

obtained for most of the stages in both MaxT and SubT, whilst

a maximum error of 0.077 Hz was obtained for I0-60 in SubT.

IV. DISCUSSION

In this work, we addressed the possibility of estimating TV

only from ECG recordings. The use of a dataset composed

by signals acquired during maximal and submaximal treadmill

stress tests results in a challenging but suitable environment for

testing the behavior of the proposed methodologies in a highly

non-stationary scenario. Also rest periods were considered,

thus representing a more stationary situation. Although several

different approaches were proposed, all of them are based on

a first order lineal model, so that the complexity relies in the

selection of adequate ECG-derived features.

Both MaxT and SubT were automatically divided in five

stages, according to the exercise onset and offset and different

percentages of the maximum reached HR. Afterwards, TV

estimation was performed for each stage. For this purpose,

we calibrated the parameters of the linear model in (1) using
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Fig. 3. Real (blue) and estimated (red) TV (V̂ s
T ) for a given subject is displayed. The different estimations were obtained from the best performing lead (II in

this case) of the single-lead EDR approach (a)), the muli-lead EDR approach (b)), the instantaneous HR (c)) approach, the HRV approach (d)), the respiratory
rate approach (e)) and the best performing feature combination (lead II in the EDR approach plus instantaneous HR in this case) of the multi-parametric
approach (f)).

all the samples in the stage of interest of MaxT, and used

them for estimating the TV in the same stage of SubT.

Moody et al. suggested that the amplitude of an EDR signal

(calculated using the QRS-complex area) obtained from any

set of electrodes should be roughly proportional to the TV

[11]. In order to test this hypothesis, we applied four different

EDR techniques to all the available leads: the R-S amplitudes

[9], and the upslopes, downslopes and angles of the R waves

[10]. Although results obtained for all the leads were similar,

best estimation accuracy was obtained when using lead II,

independently of the employed EDR. When comparing the

different EDRs, lowest error was achieved with the downslopes

in most of the stages, as displayed in Table II, which might

suggest a more linear relationship with TV than the other

EDRs. For all the leads and EDRs, a lower performance was

observed in the I0-60 stage. The most likely explanation for the

performance reduction is the fast changes that occur during

this stage, with a sudden increase in TV, HR and Fr that are

not completely followed by the EDRs or the first-order linear

model. Also changes in the position of the electrodes used for

ECG acquisition (since both tests were performed in different

days, it is probable that they were attached in slightly different

places) or in the basal state of the subjects could constitute

additional sources of estimation error.

In a second approach, we addressed the possibility of

including spatial information by a combination of EDRs

extracted from three ”quasi-orthogonal” leads (as lead V2

was missing, there were not three leads that were completely

orthogonal) through PCA, so that the main variations in those

EDRs, which are expected to be produced by respiration,

were maximized. Also the option of combining all the avail-

able leads was considered, although it did not outperformed

the three-lead option. Despite the similar results obtained

in the single-lead and multi-lead EDR approaches, median

relative error was slightly higher when accounting for spatial

information, except for Irest and Irecov, probably due to fact

that sources of noise such as movement during running may

contribute to the first component of PCA. Nonetheless, since

the different spatial dimensions of thoracic expansion do not

contribute equally to the total TV, most of the information

might be obtained from a single lead capturing variations along

a preferable dimension. Additionally, the non-standard leads

employed by Lázaro et al. in [10] were considered, although

their performance was not higher than that of the multi-lead

approach.

HRV has also been related with TV in the literature,

as PHF has been reported to be affected both by TV and

respiratory rate [20]–[22]. In a previous study using the same

dataset, Hernando et al. proposed a method for calculating

PHF in a time-frequency basis and considering the presence

of non-respiratory-related components [27], so we adopted

this methodology and used the obtained PHF as a feature for

estimating the TV. Results displayed in Table III revealed

that the performance using HRV was similar than for the

single-lead EDR approach in I80-100 and in I0-60, but fitting error

was higher in Irest, I60-80 and Irecov (although it increased less

than a 5% in all the cases). The lowered performance during

I60-80 and Irecov could be related with the fact that HRV is

drastically reduced during moderate exercise [23], [24] and so

its variations might uncouple from those in TV, thus resulting

in an increased estimation error in these stages, whereas during

high intensity exercise (as in I80-100) PHF might recover the
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Fig. 4. Scatter plots of the TV estimated from the multi-parametric approach

when combining the downslopes of lead II and the HR (V̂ s
T ) against the real
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T ) for all the subjects and each of the stages (a): Irest, b): I0-60, c):

I60-80, d): I80-100 and e): Irecov). Dashed lines indicate V̂ s
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coupling with TV (possibly due to mechanical stretching of

the sinus node [25]), thus resulting in a reduced estimation

error. In the case of Irest, decreased performance could have

its origin in the fact that low respiratory rates might result in

wrong estimations of PHF, due to spectral shift towards low

frequency band. Differences in the metabolic demands and in

the autonomic nervous system state (reflected in HRV) from

day to day could also contribute to estimation error.

Since metabolic demands of the body increase during

exercise, the demanded gas exchange increases as well, so

both minute ventilation and HR increase consequently. Due

to the very close relation between TV and Fr in the control

of minute ventilation during exercise [29], Fr was considered

for estimating the TV. First, Fr was estimated as proposed by

Lázaro et al. [10]. Essentially, Fr is calculated from the EDRs

derived from the upslopes, downslopes and angles of the R

waves of all the available leads, which are combined in a short-

term basis when they spectra are peaky enough. Although

the same parameters employed in [10] were employed in Irest,

they were modified during the exercise stages attending to the

fast and wide changes observed in Fr in the studied scenario.

Median absolute Fr estimation error was generally lower than

0.035 Hz. Results in Table III reveal a relative error lower than

10% in I60-80 and I80-100, lower than 18% in Irest and Irecov and

higher than 28% in I0-60 respectively. The decreased accuracy in

the latter stage might be explained by the different response of

the subjects to the increasing ventilation demands, as observed

by Carey et al. during incremental exercise [30]. Whereas in

some subjects Fr increased in parallel with the exercise load,

some others satisfied the ventilation demands during moderate

exercise by mainly regulating the TV, with a lower contribution

of Fr, which increased slowly as exercise became more intense.

In order to study the effect of Fr estimation in the results, we

repeated the calculations using the original Fr provided by the

Oxycon Pro device, concluding that the error in Fr estimation

did not contribute noticeably to the error in TV estimation.

On the other hand, HR increases together with exercise

intensity. In this way, we observed that the use of HR as TV

estimator resulted in low fitting errors, with a median relative

error lower than 13% in all the stages except in I0-60, where

it increased up to 15.12%. Despite the high performance of

this approach (especially in I0-60, when compared to the other

approaches), these results should be regarded carefully, since

the relation between HR and TV could be not that direct in

other scenarios.

Finally, we also considered the combination of several

features using a data fusion algorithm such as a multi-linear

model. From all the possible feature combinations, lowest

fitting errors were obtained when combining the single-lead

EDR and the HR approaches. This feature combination outper-

formed all the other approaches in all the stages, except in Irest,

thus highlighting the multi-source origin of the physiological

mechanisms underlying the respiratory-related modulation of

cardiac activity. In this way, although the EDR and HR signals

may share some information regarding respiratory activity,

they also contain non-redundant information that is exploited

by this multi-parametric approach, thus resulting in a better TV

model than any of the considered features separately. However,

and as displayed in Table IV, the contribution of the HR was

always dominant, independently on the considered stage. This

dominance was weak during Irest, but increased in the other

stages, especially during I0-60 and Irecov. This behavior is most

likely related with the similar profile of the instantaneous HR

and the TV during the treadmill tests, so that when abrupt

transitions occurs (such as those in I0-60 and Irecov), HR turns

in the best estimator of the TV, whose changes are poorly

followed by the other considered features. As displayed in

Fig. 4, the performance of this approach was similar for all the

subjects, with larger variations occurring in Irest, I0-60 and Irecov.

Whereas the presence of outliers in I0-60 was to be expected due

to abrupt changes in TV, larger performance variations during

Irest are most likely due to a lower linear coupling between the

target features and the TV during spontaneous breathing in

some of the subjects. On the other hand, the subjects behaved

distinctly after reaching the maximum HR in MaxT (some

of them jumped from the treadmill and started running again),

and therefore it is difficult to establish whether large deviations

in Irecov are explained by this fact or by an uncoupling between

TV and the estimation features.
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TABLE IV
MEDIAN (IQR) OF THE PARAMETERS OF THE MULTI-PARAMETRIC MODEL FOR EACH STAGE (PARAMETERS OF THE MULTI-LINEAR MODEL WHEN THE

QRS DOWNSLOPES IN LEAD II AND THE INSTANTANEOUS HR ARE CONSIDERED, SO THAT αII
IS THE OFFSET, AND β

1

II
AND β

2

II
ARE THE

CONTRIBUTIONS OF THE DOWNSLOPES AND THE HR RESPECTIVELY). ALSO THE MEDIAN (IQR) OF THE ABSOLUTE AND RELATIVE ERRORS OBTAINED

WHEN ESTIMATING THE TV USING THE MEDIAN MODEL ARE DISPLAYED.

αIi
β

1

Ii
β

2

Ii
|β

2

Ii
/β

1

Ii
| ǫa (liters) ǫr(%)

Irest 0.800 (0.232) 0.021 (0.088) 0.036 (0.101) 1.128 (1.594) 0.10 (0.08) 14.04 (11.77)

I0-60 1.734 (0.488) 0.016 (0.070) 0.358 (0.352) 6.186 (21.097) 0.48 (0.28) 22.72 (22.19)

I60-80 2.410 (0.561) -0.020 (0.042) 0.110 (0.084) 3.076 (4.743) 0.45 (0.14) 18.74 (4.88)

I80-100 2.828 (0.728) 0.001 (0.054) 0.089 (0.1849) 5.791 (14.302) 0.32 (0.14) 10.23 (5.47)

Irecov 2.561 (0.942) 0.001 (0.094) 0.230 (0.257) 7.955 (52.689) 0.49 (0.39) 19.75 (12.33)

Nevertheless, since the multi-parametric approach was gen-

eraly the best performing, it was used for estimating a subject-

independent model, built as the median of all the previously

trained subject-specific models. As summarized in Table IV,

relative errors lower than 20% were obtained for most of the

stages (relative error raised to 23% in I0-60). As expected, the

median absolute and relative errors were larger than in the

case of the subject-specific model for all the stages, except

in the case of Irest. This is possibly related with the fact that,

for those subjects presenting large estimation errors in this

particular stage, a median model results in a better approach,

given that the average TV during rest is similar for people

with similar characteristics.

There are also some limitations that must be highlighted.

First, the dataset was composed only by healthy men in

a relatively small age range, which were used to aerobic

training. In this way, the algorithm performance in subjects

with a different age range or physical condition, or with

cardiorespiratory disorders remains unknown and should be

evaluated in further studies. Regarding the high linear relation

between TV and HR, the scope of this work was limited to

a treadmill test, and hence this coupling might be reduced in

other scenarios.

In summary, we proposed a simple method for estimating

TV from only the ECG. Several different features that are

related with respiration were considered as TV estimators,

and all the methodologies were tested in rest and also in a

highly non-stationary scenario such as an effort treadmill test.

The promising results with low fitting errors suggest that it

might be possible to develop a subject-specific model that

could be applied to estimate the TV in a day-independent

basis. Nevertheless, further research should be conducted in

order to improve TV estimation from ECG. In this study

we only considered estimation during an exercise test, but

this method could be useful in many other applications, e.g.,

in the monitoring of respiratory disorders such as Cheyne-

Stokes respiration, chronic obstructive pulmonary disease or

asthma. For this purpose, validation in these scenarios remains

crucial. Moreover, the proposed model could be regarded as

an interesting tool in several activities that are centered in the

control of respiration, like meditation, yoga or mindfulness,

and in different fields of sports science.

V. CONCLUSION

A methodology for estimating TV from several features

derived from ECG during a treadmill stress test has been

presented, considering the possibility to develop a subject-

oriented model independent on the measurement day. Record-

ings from two different days were employed, being the first

used for calibrating the model and the second for testing.

During exercise, the different proposed approaches led to

fitting errors lower than 14% in most of the cases and than 6%

in some of them, suggesting that TV can be estimated from

ECG in non-stationary conditions. Best results were obtained

when combining the information provided by a single-lead

EDR signal based on the downslopes of the R waves and the

instantaneous HR.
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