
189

Alire: a Library Repository Manager for the Open
Source Ada Ecosystem

Alejandro R. Mosteo
Instituto de Investigación en Ingeniería de Aragón, Mariano Esquillor s/n, 50018, Zaragoza, Spain
Centro Universitario de la Defensa de Zaragoza, 50090, Zaragoza, Spain; email: amosteo@unizar.es

Abstract

Open source movements are main players in today’s
software landscape. Communities spring around pro-
gramming languages, providing compilers, tooling and,
chiefly, libraries built with these languages. Once a
community reaches a certain critical mass, management
of available libraries becomes a point of contention. Op-
erating system providers and distributions often support
but the most significant or mature libraries so, usually,
language communities develop their own cross-platform
software management tools. Examples abound with
languages such as Python, OCaml, Rust, Haskell and
others.

The Ada community has been an exception to date, per-
haps due to its smaller open source community. This
work presents a working prototype tailored to the Ada
compiler available to open source enthusiasts, GNAT.
This tool is designed from two main principles: zero-cost
infrastructure and a pure Ada work environment. Ini-
tially available for Linux-based systems, it relies on the
semantic versioning paradigm for dependency resolu-
tion and uses Ada specification files to describe project
releases and dependencies.

Keywords: Library Management, Dependency resolu-
tion, Open Source, Ada 2012.

1 Introduction

“If I have seen further it is by standing on ye sholders of Giants”
wrote Sir Isaac Newton in a letter to Robert Hooke [1]. Be-
lievers in the virtues of open source licenses may recognize
the sentiment; in nowadays rapidly evolving technological
landscape, reuse of code is critical to adapt to new technolo-
gies, avoid past errors, stay on top of vulnerabilities, and
foster collaboration. In the communities built around pro-
gramming languages this can be seen in the publishing of free
software under more or less permissive licenses [2]. Open
source programmers want their code to be run and built upon.

However, the availability of code and simplicity of distribu-
tion, compared to pre-Internet generalization, has brought
with itself its own problems, such as a difficulty to be aware
of available libraries, obsolescence of code that becomes

unmaintained (a form of bit rot [3]) and incompatibilities be-
tween versions of a same library, or among different libraries
being used simultaneously.

To address those problems, one of the most notable efforts in
the open source world are the different Linux distributions.
Either based on distribution of source code, like Gentoo [4],
or of binaries, like Debian [5], these communities have since
long dealt with the problem of packaging consistent systems
for different architectures. The difficulty of such a task is
captured in the dependency or DLL hell expressions [6], and
one of the most dreaded experiences is ending in a broken
configuration during an upgrade.

Programmers, however, do not all use the same distribution,
nor even the same operating system, since today they can
resort to about half a dozen generalist operating systems.
Given the polarizing nature of programming languages [7] it
is then unsurprising that many languages have seen efforts
aimed at providing an easy way of distributing libraries for
those languages, as we shall discuss in Section 2. In some
cases, like Rust [8], the tool for the distribution of libraries is
an integral effort of the team developing the language.

The Ada language, perhaps because of its ties to closed devel-
opment and today’s considered niche place in the language
landscape [9], has not seen such a tool appear (to the best of
our knowledge), despite the notable amount of open source li-
braries available [10]. This work presents a tool that could be
a first step in this direction, with the main contribution being
the tool itself. The tool tries to appeal to the Ada programmer
by using native Ada code to describe releases and its depen-
dencies, thus avoiding the need to learn new formats. To use
this information, the tool uses self-compilation to incorporate
the required data into its catalog of libraries. A contributed
byproduct is the semantic versioning library1 that is used to
describe dependencies among releases.

The project started as an informal discussion2 under the name
of Alire (from Ada Library Repository), and this work reflects
the view of the author on how a tool that addressed the low-
hanging problems of the open source Ada community could
be brought to life. The tool itself is termed alr,3 in the vein

1https://github.com/alire-project/semantic_versioning
2https://github.com/mosteo/alire/issues
3A monospace font is used throughout the paper to denote actual exe-

cutable commands or logical entities such as files.

Ada User Jour na l Vo lume 39, Number 3, September 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289998603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/alire-project/semantic_versioning
https://github.com/mosteo/alire/issues

190 The Al i re Ada Librar y Repos i tor y Manager

of other venerable command-line tools such as git, svn, etc.,
and to distinguish it from the general project.

The paper is structured as follows: Section 2 examines the
situation in other languages and points the referents taken
for this tool. Section 3 introduces the design of alr and
some use cases. Next, Section 4 presents details about the
implementation mechanisms underpinning the design. A brief
discussion follows on the open questions this design leaves
and, lastly, concluding remarks and future directions close
the paper in Section 5.

2 Related Work
The problem of library distribution has been tackled in two
main ways, namely distribution of binaries and of source code.
The former has the advantage of speed for the user, because it
saves the step of compilation. The latter allows the complete
tailoring of the building process to one’s environment, and
reduces the work load and hardware requirements on main-
tainers. Furthermore, for purely interpreted languages the
distribution of sources is unavoidable.

Once libraries are obtained, we see yet two possibilities: in-
stallation of packages system-wide, as if they where integral
parts of the platform, or local installation in a confined or user
sandbox (that sometimes can be the default user environment).
In Python’s pip [11], e. g., libraries are installed globally if
run as superuser. If run as a regular user, they will be installed
in the user’s environment. These two options present to the
user a default environment that can become broken [6] when
dependencies are improperly managed, and for that reason
it is recommended [11] to use a sandbox or virtual environ-
ment for each development context (Fig. 1). Some packagers,
like OPAM [12] or Nix [13], avoid that duplication by using
a common store where individual releases are isolated (i.e.,
there is not a “current” version of any library).

Mainstream languages such as Java, C, and C++ also have
a variety of tools at their disposal, the problem being in this
case the lack of a standardized unique (or prevalent) go-to
tool. Since these languages do not natively consider the build
consistency problem as Ada does, their tools may also include
complex building aspects, like Gradle/Maven do for Java [14].
A main player for the C/C++ world, Conan [15], is instead a
build-system agnostic package manager that however relies
on YAML configuration files and Python scripts, increasing
the technical burden.

When one inspects the many solutions out there, like Rust’s
cargo, Python’s pip and easy_install, OCaml’s opam, D’s
dub, Haskell’s stackage and cabal-install, to name more
examples, a few common traits arise. The backend is usually
some kind of database that in its simplest form is merely a
set of files under version control in a public repository or in
dedicated servers. Submission of new libraries becomes then
the merging of a pull request into the stable branch of the
catalog. Fetching of a library involves the download of a file
bundle or checkout of a particular commit.

The other salient aspect these tools address is dependency
resolution. When building a project with a complex set of

Figure 1: Library management problems have reached the level
of Internet running joke (https://xkcd.com/1987/)

dependencies, it may happen that two (or more) subprojects
depend on the same libraries with some version restrictions.
From all the possible combinations, only one that satisfies all
dependent projects can be chosen, or if an incompatible re-
quest is made a resolution conflict appears. Again, a common
approach is to use semantic versions [16] of the form M.m.p,
where M stands for major version (one that is backwards in-
compatible), m is the minor version (one that is backwards
compatible within the same major version) and p is a patch,
a mere bug fix release that should be API compatible with
other M.m releases. These dependencies are usually repre-
sented in some textual description of a release, like key-value
lists, JSON, XML, or the own language syntax when it is
interpreted.

Semantic versioning is not the only solution to the depen-
dency upgrade issue, but in many cases semantic versions can
encompass other paradigms like calendar versioning [17] that
are less strict in their specification. At a minimum, pinning of
versions and careful manual updating is a worst-case scenario
that often is unavoidable if projects do not follow a strict
backwards-compatible release policy.

3 Design objectives and use cases
For alr, after reviewing these solutions, the following deci-
sions were taken, given the constraints of a lack of guaranteed
funding and the idiosyncrasies of the Ada language and GNAT
build tools:

• The objective is to help develop software, but not to
configure the system. Hence, the mode of operation
cannot depend on installing the compiled libraries, thus
entirely avoiding any possibility of breaking the user’s
system. The tool operates in user-space and the libraries
are stored as source code.

Volume 39, Number 3, September 2018 Ada User Jour na l

https://xkcd.com/1987/

A. R. Mosteo 191

• A sandbox approach is applied for every working project
to avoid variations due to build scenarios of a same
dependency, which in turn ensures reproducible builds
given a compiler/platform combination.

• To not depend on private servers nor live processes, the
Alire catalog and code releases are stored in public Ver-
sion Control System (VCS) services such as GitHub,
BitBucket, etc., with which the open source community
is used to work.

• New releases are incorporated into Alire by means of a
pull request into the catalog repository. Since this is a
manual process, at this time Alire can only be considered
a curated system.4

• An indexed release is described using Ada code that
is verified by means of compiling it, relying only on
a single specification file that is part of the alr source
code. The aim is to stay within the Ada realm as much as
possible. In its present form, the alr tool only requires
familiarity with the GNAT [18] compiler.

• Library developers should be minimally impacted for in-
tegration into Alire, if at all. This is achieved ultimately
by only requiring a GNAT project file (GPR file) that
can be created by Alire maintainers without bothering
library authors uninterested in this tool.

Ada adopted the idea of library items [19] that can be submit-
ted to the compiler independently. This concept, together with
the well-defined dependency and elaboration rules, has spared
Ada developers to an extent the quagmire of dependency-
building tools such as autoconf, automake and CMake [20].
Given that nowadays there is a single open source Ada com-
piler, namely GNAT in its GPL and FSF editions, at this time
alr relies on GNAT aggregate project files to completely
manage the building process, without the need to modify the
environment. This solution lets programmers use dependen-
cies as usual, merely “with-ing” their project file.

3.1 Components of the Alire project
The Alire project is divided in the following main parts:

• The catalog of projects is a repository hosted under the
name of alire.5 It fulfills the same role as, e.g., the
crates.io-index6 project in the Rust community. It
comprises the database of known projects and the mini-
mal Ada types needed to represent that information. This
way, commits to its repository should be for the most
part, once development stabilizes, just additions to the
catalog.

• The command-line tool available to users to interact
with the Alire catalog is named alr, as its repository.7

Again, this allows development on the tool with minimal
disturbance to the catalog. It fulfills the role of the
cargo8 tool for Rust.

4The same happens in other languages. For example, in the Haskell
community the Stackage project arose as a curated alternative to the cabal-
install breakage-prone tool.

5https://github.com/alire-project/alire
6https://github.com/rust-lang/crates.io-index
7https://github.com/alire-project/alr
8https://github.com/rust-lang/cargo

• The indexed code releases from third parties can be in
any online repository, with the implicit assumption that
the longest lived a repository is, the better. Current free
offerings favored by developers are the usual suspects:
GitHub, BitBucket, GitLab, etc. Of course, forks of par-
ticular releases could be made to ensure high availability.

3.2 Main use cases

Depending on the role of the user, a number of applications
can be found for package managers. In its current form alr
already enables the following use cases:

• Packagers: authors or entities wishing to disseminate
their code can publish well-defined releases of their
projects with the proper dependencies necessary to build
them. Volunteers can also package popular Ada projects
to increase their exposure. The Alire catalog knows
about all licenses curated by GitHub9, making explicit
the rights granted by publishers.

• Developers: be it with the aim of publishing a project
in Alire or not, developers can use alr to declare de-
pendencies to be used in their own Ada projects. These
dependencies are resolved into a valid solution, their
code fetched, and a project file is generated that allows
edition/compilation with the GNAT toolchain.

• Final users: despite the ‘library’ in Alire, more gener-
ally any packaged project can be also a binary tool or
application. A single alr get command allows the re-
trieval, compilation and verification of target executables
of such a binary project.

3.3 Introduction to alr

The prototype being discussed in this work is available for
testing with a number of representative projects already in-
dexed (see Fig. 6 in last page). Once installed and run without
arguments, the user is greeted by the help screen shown in
Listing 3.1, which will not be unfamiliar to similar tools users:

Ada Library Repository manager (alr)
Usage : alr [global options] command [options] [arguments]

Valid commands:

build Upgrade and compile current project
clean GPRclean project and dependency cache
compile GPRbuild current project
depend Manage dependencies of working project
get Fetch a project or show its metadata
init Create a project or generate its metadata
list See indexed projects in database

pin Pin dependencies to current versions
run Launch a project executable
search Search text in project names and properties
test Test deployment of releases
update Update alire catalog or project dependencies
version Shows alr diagnostics
with Locate index file of project

Use "alr help <command>" for information about a command

Listing 3.1: Help screen of alr

9https://choosealicense.com/

Ada User Jour na l Vo lume 39, Number 3, September 2018

https://github.com/alire-project/alire
https://github.com/rust-lang/crates.io-index
https://github.com/alire-project/alr
https://github.com/rust-lang/cargo
https://choosealicense.com/

192 The Al i re Ada Librar y Repos i tor y Manager

Figure 2: Entities in the Alire catalog.

Before diving into these commands, an explanation on the
terminology being used (in the remainder of the paper and in
the Alire source code) is in order (see also Fig. 2):

• A project refers to what also is typically called a library
in the software world; e.g., GtkAda10, AWS11, etc.

• A milestone is a project name plus a semantic version;
i.e., a particular version of a project.

• A release is the actual materialization of a milestone,
available online and indexed by Alire. A release must
provide one or more GPR files that build it.

The most straightforward function of alr is to retrieve a
particular project and build it. Projects can contain libraries,
which are useful to other projects, but also executables, in
which case the compilation process will result in one or more
executables ready to be run. This is achieved with the alr get
<project> command. The result will be a folder containing
the requested project and its dependencies, so compilation
will immediately succeed.

Alternatively, alr can create new projects to start easily work-
ing within the Alire ecosystem. This is achieved with the alr
init [--bin|--lib] <project> invocation. Initially the
project will not have dependencies; required libraries can be
added directly with alr depend --add <project> or with
especially formatted comments in the user own GPR file.

Any project obtained by each of these two means can be called
an alr-enabled or aware project, since it contains a metadata
file that allows alr to perform its functions. Once within
the folder tree of an alr-aware project, we can use the rest
of commands (see Fig. 3). The compile command launches
the gprbuild tool with a generated aggregate project file
that makes dependencies available without needing to fiddle
with paths. The update command refreshes the catalog and
upgrades the dependencies of the working project.

There are also compound commands that group functions for
common combinations: run will compile and then launch the
resulting executable, whereas build will ensure that depen-
dencies are up to date to then compile the project.

The commands interrelations have been designed to guarantee
success, in the sense that compilation should always succeed
if the requested dependencies are valid. alr will also detect
the manual addition of new dependencies by the user and
fetch them before a new compilation.

10https://github.com/AdaCore/gtkada
11https://github.com/AdaCore/aws

Figure 3: Relationships among commands. Single-frame com-
mands can be used anywhere in the filesystem, whereas double-
framed ones are to be used within an alr-enabled project.

To conclude this section, we show how dependencies are
represented in a working project. As advanced, this is done
in a package specification that can be compiled to verify
its correctness, and which is initially generated by alr. A
dependency on RxAda [21] has been already added.

with Alire .Index.Rxada;

package Alr_Deps is

Current_Root : constant Root := Set_Root (
"My_Shiny_Project",
Dependencies =>

Rxada.Project.Within_Major ("1.1"));

end Alr_Deps;

Listing 3.2: Metadata file in an alr-enabled project.

If the user wishes to compile this file directly (instead of
through the alr tool), it is enough to add the Alire project
itself as a dependency of the working project.

Restrictions on dependencies are described using the usual
Ada comparison operators, and named functions for the se-
mantic versioning specific operators caret (‘^’) and tilde
(‘~’). This way there is no possible confusion on what is be-
ing asked for (In some implementations, the caret and tilde act
differently on pre-1.0 versions). In the example, we request
any future version of RxAda that is at least 1.1 but within the
same major number, hence backwards-compatible.

4 Implementation details
This section presents some lower level details on alr imple-
mentation, particularly those aspects that present a specific
idiosyncrasy of the tool when compared with its homologues
for other languages.

GNAT is currently the only open source Ada compiler avail-
able, and its GPR project files are the preferred way to conve-
niently manage the building process. For these reasons, alr
takes advantage of these project files, and in particular uses
aggregate projects to make available the dependencies to be
included in the compilation of a project.

Volume 39, Number 3, September 2018 Ada User Jour na l

https://github.com/AdaCore/gtkada
https://github.com/AdaCore/aws

A. R. Mosteo 193

4.1 Alire-mandated files
For alr to be able to perform its project-specific commands
(see Fig. 3), it needs three critical files to be present:12

• myproject.gpr (henceforth the project file): this is a
regular GPR project file that builds the project. In prac-
tice, GNAT projects typically already have one or several
project files, so this is not a special requirement. alr
provides ways of querying the name of these project files
for the benefit of client projects.

• alr_deps.ads (henceforth the metadata file): this file
is used by alr as a telltale that it is being run inside an
alr-enabled project. It must contain the project name
and its dependencies, as already shown in 3.2. It is ini-
tially generated by alr init, or could be hand-crafted
if needed. It can also be regenerated on demand and
manipulated through alr depend.

• alr_build.gpr (henceforth the environment file): this
file is generated by alr to set up the environment paths
required to find any projects the current project depends
on. It can also be used to work in the GNAT GPS IDE.

Of these three files, the only one that is entirely the respon-
sibility of the project author (or maintainer) is the mypro-
ject.gpr one. Its contents are arbitrary, as long as they
succeed in building the library or executable. At a minimum,
they must point the compiler to the source files of the project.
On the other extreme, alr_build.gpr is regenerated by alr
whenever necessary to properly configure the building en-
vironment (namely, whenever dependencies change or the
file is not found). alr_deps.ads lies in the middle, since it
is initially generated by alr but it must by tailored by the
developer to their needs to indicate their dependencies.

Finally note that, for the inclusion of a project into the Alire
catalog, only the project file is needed, since the contents
of the metadata file will appear in the Alire index itself (see
Listing 4.1), and the environment file is regenerated from that
information. Each Alire index file contains the releases for
the project named as the enclosing package. Besides textual
versions, dependencies within the index can be specified using
other indexed releases:

with Alire .Index.Libhello ;

package Alire.Index.Hello is

function Project is new Catalogued_Project
("""Hello, world!"" demonstration project");

Repo : constant URL :=
"https :// github.com/alire−project/hello . git " ;

V_1_0_1 : constant Release :=
Project .Register

(V ("1.0.1"),
Git (Repo, "8cac0afdd"),
Dependencies => Libhello.V_1_0.Within_Major);

−− V_1_0 is an existing release of Libhello

end Alire.Index.Hello;

Listing 4.1: Release in the index with one dependency.
12“myproject” is a placeholder for an actual project name.

Figure 4: Launch sequence of alr for command execution.

A rich set of operations exists that allows the expression of not
only simple dependencies, but also of conditional dependen-
cies on the compiler version, platform properties, availability
of native packages, and so forth. Also, to simplify indexing
and clarifying the declarations, a base release can be taken
as a template and modified with “extending” and “replacing”
operations. For details the reader is directed to examples in
the Alire database itself.13

4.2 Self-compilation of alr and working projects
Package managers are expected to have an up-to-date cata-
log, and also that the tool itself is up-to-date. In this case,
a catalog update could be achieved in several ways: pars-
ing text files that contain some specific format, or load-
ing a binary database, for example. However, maintaining
the tool up-to-date will involve compiling it from updated
sources and replace the current executable. Also, incorpo-
rating the dependencies of a working project (parsing the
alr_deps.ads file) would need either a custom parser or
compilation and processing with ASIS [22] or a similar tech-
nology like libadalang [23].

As an alternative, alr solves all these necessities in a single
and perhaps uncommon way: whenever the need is detected,
alr recompiles itself, incorporating into the build fresh meta-
data and updated index files. This way all needed and up-to-
date information is incorporated into alr without the need to
parse any external files, since the compiler already does the
work for us.

To manage this process of self-compilation, up to three dif-
ferent alr executables may exist and be called in succession,
with specific responsibilities. All three come from the same
sources, with a small set of variations for the specific pur-
poses, and are deployed in different locations (see Fig. 4):

13Syntax examples: https://github.com/alire-project/alire/blob/
master/index/alire-index-alire.ads

Ada User Jour na l Vo lume 39, Number 3, September 2018

https://github.com/alire-project/alire/blob/master/index/alire-index-alire.ads
https://github.com/alire-project/alire/blob/master/index/alire-index-alire.ads

194 The Al i re Ada Librar y Repos i tor y Manager

1. A stub alr is built during installation (or could be pro-
vided by the platform). This binary is never recompiled,
acting as a fallback, and will typically be in the sys-
tem PATH. Its purpose is to build the rolling alr from
updated sources (for example to include new index re-
leases) and launch it.

2. The rolling alr has an updated index and can already ex-
ecute commands that are not project-specific (see Fig. 3).
If, however, the command requires a project, and further-
more a project metadata file is in scope, then it builds
and launchs a project alr, incorporating into the build
the metadata file of the project (and so compiling-in the
project dependencies).

3. The project alr contains the project metadata and is able
to carry out project-specific actions. Prior to doing so, it
checks its self-consistency by comparing the hash of the
metadata file in scope with a hash stored internally that
was computed by the rolling alr. If they do not match,
this means that the project alr is outdated, in which case
it is rebuilt with current metadata and launched to take
over the command.

4.3 Final example
The creation of new projects from templates or downloading
of releases do not really merit any special discussion, since
they do not pose particular technological challenges. How-
ever, inspecting the filesystem after the issuing of an alr get
--compile hello command will allow to bring into focus
everything that has been reported up to this point. This com-
mand simultaneously fetches a project and its dependencies,
generates the needed files and builds the whole configuration.
The project itself is a plain “Hello, world!” example artifi-
cially split into having to depend on a library (libhello) that
performs the actual output to the terminal.

Fig. 5 shows the relevant parts of a filesystem in which such a
command were issued in the user’s home folder. From top to
bottom, the following relevant folders and files can be located:

• The stub alr can be anywhere in the user’s path, here
shown in /usr/bin/alr.

• $XDG_CONFIG_HOME/alire/ is the canonical location in
which updated sources are checked out. Inside, the
alire/index/ folder contains the catalog files, and the
most recently built rolling alr executable is found in
alr/bin/alr.

• hello_1.0.1_65725c20/ is the folder in which the re-
quested project, hello, has been deployed. The semantic
version and abbreviated commit hash are appended to
univocally identify the project. The project own organi-
zation is an internal affair of the project author; in this
example the minimal project and main files are shown.
Alire files can be found inside the alire subfolder:

• <project>/alire/ contains firstly the metadata and en-
vironment files. The metadata file can be manually
edited or manipulated through alr depend. The build
file is regenerated on changes to the metadata file, and is
useful to launch builds, or to edit from GPS.

/
usr/bin/alr (stub)
$HOME/

$XDG_CONFIG_HOME/
alire/

alire/index/ (contents omitted)
alr/

bin/alr (rolling)
src/ (contents omitted)

hello_1.0.1_65725c20/
alire

alr_build.gpr
alr_deps.ads
cache/

projects/
libhello_1.0.0_ce78e770/ (contents omitted)

session/
alr (project)
alr_deps.ads
alr-session.ads

hello.adb
hello.gpr

Figure 5: Filesystem details (comments parenthesized).

• <project>/alire/cache/, finally, contains files that the
user does not need to directly know about, and that can
be deleted at any time since alr can download or gen-
erate them again as needed. The projects/ folder con-
tains downloaded dependencies (in this case a particu-
lar release of the libhello dependency). The session/
folder contains generated files for the project build of
alr. This folder is passed as-is to GPRbuild so it finds
the following files:

– alr_deps.ads is a copy of the metadata file.

– alr-session.ads is a file generated at every re-
build that stores the hash of the current metadata,
among other information.

– alr is the built project alr.

The generated environment file for this example is shown in
Listing 4.2:

aggregate project Alr_Build is

for Project_Files use (" ../ hello .gpr");
−− Root project being compiled

for Project_Path use
("cache/projects/ libhello_1 .0.0_ce78e770");

−− Project file paths of dependencies

for External ("ALIRE") use "True";
−− Flag that this is an Alire build

end Alr_Build;

Listing 4.2: The environment file is a GPR aggregate project
file.

4.4 Discussion
At the time of this writing alr offers commands and features
that make feasible the distribution and reuse of Ada libraries
exclusively using Ada tooling and free, public repositories.
(Appropriate index files could also enable its use within pri-
vate environments.) Rich dependencies can be expressed con-
ditionally, and native packages can be used where available.
Finally, triggers allow the execution of external programs

Volume 39, Number 3, September 2018 Ada User Jour na l

A. R. Mosteo 195

at the post-fetch and post-build stages. These features are
enough to cover a wide range of needs expected from typical
source-oriented package managers.

Substantive effort has been devoted to the testing of both
the tool and the packaged projects: through continuous in-
tegration, every alr master commit is tested to vet proper
operation of the alr commands, and to verify that releases
build properly in supported platforms (which include Debian
testing, Ubuntu LTS, and GPL 2017 at this time). Outstanding
open issues are:

Windows port: although technically not difficult, the lack of a
platform package manager would limit the initial availability
of projects with complex dependencies (e.g., GtkAda) that
are natively supported in Linux variants.

Cross-platform builds: given the relevance of Ada in the em-
bedded world, this is a feature that has already been pointed
out to be important, and that is slated for inclusion in a future
release if ongoing interest in alr is evidenced.

Given the presented design, compilation times of alr itself
could be a point of contention since such compilations happen
every time the metadata file changes (i.e., whenever dependen-
cies are added or removed). To assess that point, experimental
runs were conducted for different catalog sizes. However,
since only a few files are recompiled every time (session and
metadata files, and one body that uses them in alr), the im-
pact is mostly limited to the time it takes to redo the binding
and linking. Times measured with a middle-range14 computer
are shown in Table 1. Although not negligible, there is wiggle
room until the issue becomes a pressing bottleneck.

Indexed files
Releases per file 100 1000 10000

1 1.82 3.73 34.09
10 1.94 4.52 44.83

Table 1: Average times (in seconds) for 100 alr recompilations
after metadata changes, for different number of files in the cat-
alog and releases per file. Compiler version was GNAT GPL
2017 using -j0 switch.

5 Conclusions
This work presented an Ada tool, its underlying design, and
supporting infrastructure that facilitates easy dissemination
and reuse of third-party Ada projects. This is achieved by
indexing and tagging code releases in public repositories
with a semantic version, which in turn enables the possibility
of dependency resolution and easy upgrades. The whole
setup only requires a recent GNAT Ada compiler and enables
effortless downloading and compilation of indexed projects.

The design is based around a metadata file which is itself
written in Ada and incorporated into the tool by recompila-
tion triggered by the tool itself, when needed. This process
allows users and developers of the tool alike to remain within
the realm of pure Ada code. The Ada syntax employed in

14Intel® Core™ i3-2015 (4 execution threads), 16GB RAM, SSHD disk.

index files has a rich feature set that allows the expression
of complex conditional dependencies on the availability of
native packages or other platform characteristics. This syntax
is however only relevant to packagers, since users can add or
remove dependencies through tool commands.

Alire is available under an open source license to interested
parties at https://github.com/alire-project.

Acknowledgments
This work has been supported by projects ROBOCHALLENGE
(DPI2016-76676-R-AEI/FEDER-UE), ESTER (CUD2017-
18), SIVINDRA (UZCUD2017-TEC-06) and ROPERT
(DGA-T45_17R/FSE). The author thanks the regulars at
comp.lang.ada for insightful discussions on the topic.

References
[1] I. Newton, H. W. Turnbull, and J. F. Scott (1959), The

correspondence of Isaac Newton / edited by H.W. Turn-
bull. Published for the Royal Society at the University
Press Cambridge.

[2] C. Peterson, How I coined the term ‘open source’.
Available at https://opensource.com/article/18/
2/coining-term-open-source-software.

[3] M. Odersky and A. Moors (2009), Fighting bit rot with
types (experience report: Scala collections, in LIPIcs-
Leibniz Int. Proceedings in Informatics, vol. 4, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik.

[4] G. K. Thiruvathukal (2004), Gentoo linux: the next gen-
eration of linux, Computing in science & engineering,
vol. 6, no. 5, pp. 66–74.

[5] L. Brenta and S. Leake, Debian policy for Ada.
Available at https://people.debian.org/~lbrenta/
debian-ada-policy.html.

[6] S. Eisenbach, V. Jurisic, and C. Sadler (2003), Man-
aging the evolution of .NET programs, in International
Conference on Formal Methods for Open Object-Based
Distributed Systems, pp. 185–198, Springer.

[7] A. Stefik and S. Hanenberg (2014), The programming
language wars: Questions and responsibilities for the
programming language community, in Proceedings of
the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming &
Software, pp. 283–299, ACM.

[8] N. D. Matsakis and F. S. Klock II (2014), The Rust
language, ACM SIGAda Ada Letters, vol. 34, no. 3,
pp. 103–104.

[9] D. Hamilton and P. Pape (2017), 20 years after the
mandate, CrossTalk, p. 15.

[10] Ada Information Clearinghouse, Ada free tools
and libraries. Available at http://www.adaic.org/
ada-resources/tools-libraries/.

Ada User Jour na l Vo lume 39, Number 3, September 2018

https://github.com/alire-project
https://opensource.com/article/18/2/coining-term-open-source-software
https://opensource.com/article/18/2/coining-term-open-source-software
https://people.debian.org/~lbrenta/debian-ada-policy.html
https://people.debian.org/~lbrenta/debian-ada-policy.html
http://www.adaic.org/ada-resources/tools-libraries/
http://www.adaic.org/ada-resources/tools-libraries/

196 The Al i re Ada Librar y Repos i tor y Manager

$ alr search --list
NAME VERSION DESCRIPTION
ada_lua 0.0.0-5.3 An Ada binding for Lua
adacurses 6.0.0 Wrapper on different packagings of NcursesAda
adayaml 0.3.0 Experimental YAML 1.3 implementation in Ada
adayaml.server 0.3.0 Server component
alire 0.4.0 Alire project catalog and support files
alr 0.4.0 Command-line tool from the Alire project
apq 3.2.0 APQ Ada95 Database Library (core)
aunit 2017.0.0 Ada unit test framework
eagle_lander 1.0.0 Apollo 11 lunar lander simulator (Ada/Gtk/Cairo)
globe_3d 20180111.0.0 GL Object Based Engine for 3D in Ada
hangman 1.0.0 Hangman game for the console
hello 1.0.1 "Hello, world!" demonstration project
libadacrypt 0.8.7 A crypto library for Ada with a nice API
libhello 1.0.0 "Hello, world!" demonstration project support library
mathpaqs 20180114.0.0 A collection of mathematical, 100% portable, packages
openglada 0.6.0 Thick Ada binding for OpenGL and GLFW
pragmarc 2017.2007.0 PragmAda Reusable Components (PragmARCs)
rxada 0.1.0 RxAda port of the Rx framework
sdlada 2.3.1 Ada 2012 bindings to SDL 2
semantic_versioning 0.3.1 Semantic Versioning in Ada
simple_components.connections 4.27.0 Simple Components (clients/servers)
simple_components.connections.ntp 4.27.0 Simple Components (Network Time Protocol)
simple_components.connections.secure 4.27.0 Simple Components (clients/servers over TLS)
simple_components.core 4.27.0 Simple Components (core components)
simple_components.odbc 4.27.0 Simple Components (ODBC bindings)
simple_components.sqlite 4.27.0 Simple Components (SQLite)
simple_components.strings_edit 4.27.0 Simple Components (strings)
simple_components.tables 4.27.0 Simple Components (tables)
simple_logging 1.0.0 Simple logging to console
steamsky 2.1.0-dev Roguelike in sky with steampunk theme
whitakers_words 2017.9.10 William Whitaker’s WORDS, a Latin dictionary
xml_ez_out 1.6.0 Creation of XML-formatted output from Ada programs

Figure 6: Current alr catalog as listed by the alr search command.

[11] K. Reitz and T. Schlusser (2016), The Hitchhiker’s
Guide to Python: Best Practices for Development,
O’Reilly Media, Inc.

[12] F. Tuong, F. Le Fessant, and T. Gazagnaire (2012),
OPAM: an OCaml package manager, in SIGPLAN
OCaml Users and Developers Workshop.

[13] E. Dolstra and A. Löh (2008), NixOS: A purely func-
tional linux distribution, ACM Sigplan Notices, vol. 43,
no. 9, pp. 367–378.

[14] B. Muschko (2014), Gradle in action, Manning.

[15] Conan, the C / C++ package manager for developers.
Available at https://conan.io/.

[16] S. Raemaekers, A. Van Deursen, and J. Visser (2014),
Semantic versioning versus breaking changes: A study
of the maven repository, in 14th Int. Conf. on Source
Code Analysis and Manipulation (SCAM), pp. 215–224.

[17] M. Hashemi (2016), Calendar versioning. Available at
http://calver.org/.

[18] E. Schonberg and B. Banner (1994), The GNAT project:
a GNU-Ada 9X compiler, in Proceedings of the confer-
ence on TRI-Ada’94, pp. 48–57, ACM.

[19] S. T. Taft, R. A. Duff, R. L. Brukardt, E. Ploedereder,
P. Leroy, and E. Schonberg (2014), Ada 2012 Refer-
ence Manual. Language and Standard Libraries: Int.
Standard ISO/IEC 8652/2012 (E), vol. 8339, Springer.

[20] J. Al-Kofahi, T. N. Nguyen, and C. Kästner (2016),
Escaping AutoHell: a vision for automated analysis
and migration of autotools build systems, in 4th Int.
Workshop on Release Engineering, pp. 12–15, ACM.

[21] A. R. Mosteo (2017), Rxada: An Ada implementation of
the ReactiveX API, in Ada-Europe International Confer-
ence on Reliable Software Technologies, pp. 153–166,
Springer.

[22] C. Colket (1995), Ada semantic interface specification
ASIS, ACM SIGAda Ada Letters, no. 4, pp. 50–63.

[23] P.-M. de Rodat and R. Amiard (2018), Easy ada tooling
with libadalang, in Ada-Europe International Confer-
ence on Reliable Software Technologies.

Volume 39, Number 3, September 2018 Ada User Jour na l

https://conan.io/
http://calver.org/

	Introduction
	Related Work
	Design objectives and use cases
	Components of the Alire project
	Main use cases
	Introduction to alr

	Implementation details
	Alire-mandated files
	Self-compilation of alr and working projects
	Final example
	Discussion

	Conclusions

