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An experimental study of network 
effects on coordination in 
asymmetric games
Joris Broere1,2, Vincent Buskens  1,2, Henk stoof1,3 & Angel sánchez  4,5,6,7

Network structure has often proven to be important in understanding the decision behavior of 
individuals or agents in different interdependent situations. Computational studies predict that 
network structure has a crucial influence on behavior in iterated 2 by 2 asymmetric ‘battle of the sexes’ 
games. We test such behavioral predictions in an experiment with 240 human subjects. We found that 
as expected the less ‘random’ the network structure, the better the experimental results are predictable 
by the computational models. In particular, there is an effect of network clustering on the heterogeneity 
of convergence behavior in the network. We also found that degree centrality and having an even 
degree are important predictors of the decision behavior of the subjects in the experiment. We thus find 
empirical validation of predictions made by computational models in a computerized experiment with 
human subjects.

Coordination problems are numerous in everyday life1–3. While avoiding collusion in traffic meeting one another 
or making an exchange, coordination is a vital part of the success of the interaction. Coordination processes are 
therefore arguably fundamental to understanding the functioning of social, economic and biological systems. 
Game theoretical models are often used to model coordination problems with a strategic interdependence among 
actors. The success of this method has led to a wide literature ranging from ‘two by two’ games to complex spatial 
multi-agent (network) models, and from theoretical studies to experimental tests4–8. The coordination problem 
can be especially difficult when agents do not share the same preferences for different options. These situations 
are often formalized by asymmetric coordination games, such as the ‘battle of the sexes’. Computational mod-
els9,10 and other theoretical studies11,12 show that network structure is an important predictor of behavior in iter-
ated asymmetric games. Although these models convincingly show that there are network effects on equilibrium 
behavior, no empirical studies have been conducted to corroborate these fi dings. Previous research on network 
effects on other types of games, such as the Prisoners Dilemma, show that the predictions made by computational 
models are not always evident when tested empirically13. It is therefore crucial to test the predictions and assump-
tions made by these models. In this paper we empirically test predictions made by computational and theoretical 
studies in an experimental study with human subjects9–12.

The problem with asymmetric coordination games is that it is difficult to make behavioral predictions about 
the outcome of the game. Table 1 illustrates a ‘battle of the sexes’ game in which the two pure-strategy Nash 
equilibria are: both players play α or both players choose β. However, the players differ in their preference for the 
equilibria. Therefore, the game consists of an element of coordination and an element of competition between 
the players. There is also a mixed Nash equilibrium, but this equilibrium is ineffici t, because the expected pay-
off is lower for both players compared to any of the pure-strategy Nash equilibria. Miscoordination is the most 
frequent outcome when human subjects play these one-shot games in an experimental setting4,6. Both players 
often choose the behavior according to their own preferred equilibrium, resulting in the lowest payoff for both 
players. The players often converge to one of the two equilibria when the game is played repeatedly14–16. In rarer 
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cases players manage to switch simultaneously between the two equilibria, thereby obtaining the best outcome 
for both players14.

The situation can be made more complex by adding another player. This means there are three players who 
have to make a decision between α and β, but again they differ in their payoff for choosing α or β. Although the 
complexity of the situation is increased in terms of the number of players, it is easier to predict the outcome. The 
payoff  are balanced pairwise between the players, but the global situation is not, because there will always be 
a majority for one of the options. Intuitively one can already anticipate that when three people have to decide 
between two options, and two prefer option β and only one prefers α, the most likely outcome will be β. The three 
player situation is illustrated in Table 2, in which the payoff  are the sum of the pairwise interactions of Table 1. 
Again there are two pure-strategy Nash equilibria: all players play α or all players play β. However, in this case the 
equilibria are not equivalent and therefore not equally likely. The equilibrium ‘all players play β’ yields a higher 
payoff for the two column players. Also, when the column players both play β, their payoff will at least be two, 
independent of what player 1 does. When the column players both play α, their payoff will be two maximally. 
No such coordination possibility exists for player 1 and 2 or 1 and 3. Assuming full information for all players, 
choosing β is the best option for both column players. Because the row player is aware of this, the best reply would 
be to play β as well, making ‘all players play β’ the behavioral prediction in an empirical setting.

The situation changes again when players only interact with a subset of players in the game, instead of all 
other players. In Fig. 1 two situations with four players are illustrated. The nodes represent the players and the 
edges represent which nodes interact with each other. There are two nodes which prefer α and two nodes which 
prefer β. In the network on the left of Fig. 1 every node interacts only with nodes who have the opposite prefer-
ence. Again the equilibria are: all players playing α or all players playing β. The situation is completely balanced, 
therefore it is again hard to predict the outcome of the game. The situation illustrated on the left of Fig. 1 is the 
same as the situation on the right of Fig. 1 with the exception that the edge from the top left node to the top right 
node is replaced with an edge from the top left node to the bottom right node. Although this is a minor change in 
the interaction structure, it is now easier to predict the outcome of this game. Both players with a preference for 
β always have to interact with players with a different preference. However, both players with a preference for α 
also interact with each other, making their pairwise interaction no longer an asymmetric battle of the sexes game, 
but a symmetric coordination game. Therefore, choosing α yields the highest payoff for the pairwise interaction 
between these two nodes. The node on the top right has no other choice than to coordinate on the same behavior 
as the node on the bottom right. The node on the bottom left can therefore infer that the other players will choose 
α, making it the best response to also choose α. So, ‘all players play α’ is the prediction in this situation.

In the 4-player situation one can still reason about what the predictions will be. In situations with more than 
4 players it rapidly becomes harder to reason about the behavioral outcome of a game and the situation becomes 
yet more complicated when there are complex interaction structures added. In these types of situations, compu-
tational models are used to develop predictions.

There are several computational studies exploring the behavior of multiple agents with asymmetric ‘battle of 
the sexes’ type of dynamics. Several studies explore homogeneous spatial structures such as cellular automata17–19. 
An interesting fi ding is the ability of self organization in agreement clusters in cellular automata. Clusters of 
adjacent nodes can coordinate on one behavior while other parts of the cellular automata can coordinate on the 
other behavior. Hernández, Muñoz-Herrera and Sánchez introduce a theoretical model for exploring Nash equi-
libria of battle of the sexes games on Erdös-Rényi networks under the conditions of both complete and incom-
plete information12. They fi d a rich set of equilibria where both homogeneous and heterogeneous equilibrium 
behavior is possible when players have complete information. Th s set is reduced when players have incomplete 
information. In a subsequent study, the influence of group size and the strength of preferences on equilibrium 
behavior is studied11. The stronger the preferences, the harder it is to obtain homogeneous equilibrium behav-
ior. Other related work studies computationally the behavior of dynamic networks in which actors can make or 
break their links20. Th s study identifies a set of networks that are stable, in the sense that actors no longer wish 
to break links or make new ones, often resulting in segregated networks. In addition, some studies consider the 
influence of heterogeneity in other games such as (weak) Prisoner’s Dilemma games21–23. An interesting result 
is that payoff heterogeneity is predicted to have a favorable effect on cooperation. Furthermore, there are some 

Player 2 α β

Player 1
α 2, 1 0, 0

β 0, 0 1, 2

Table 1. Example payoff table asymmetric ‘battle of the sexes’ game, where the fi st entry is for player 1 and the 
second entry for the player 2.

Player 2 α β

Player 3 α β α β

Player 1
α 4, 2, 2 0, 0, 0 2, 1, 0 0, 2, 2

β 0, 1, 1 1, 2, 0 1, 0, 2 2, 4, 4

Table 2. Example payoff table of a 3 player asymmetric ‘battle of the sexes’ game. The fi st entry is for player 1, 
the second entry for player 2, and the third entry for player 3.

https://doi.org/10.1038/s41598-019-43260-0


3Scientific RepoRts |          (2019) 9:6842  | https://doi.org/10.1038/s41598-019-43260-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

experimental studies with human subjects testing the effects of network structure on the number of rounds the 
participants need to reach coordination in both symmetric and asymmetric coordination games. Findings indi-
cate that network structure influences the pace at which participants coordinate and network density can help the 
coordination process in asymmetry coordination games24. Other experimental studies show that with complete 
information on choices made by all actors in the entire network, participants are quicker in reaching coordina-
tion compared to more limited information sets25. However, these experimental studies do not study the effect of 
network structure on what the equilibrium behavior will be.

All this research, based mostly on computational models, yields specific predictions about global behavior on 
complex situations. However, obtaining those predictions often requires a lot of simplifying assumptions. The 
question then arises as to how well do these models predict actual behavior given the assumptions they make and 
the complexity of the situation? Th s is the main motivation for the experimental work we report in this paper.

theory
In this study we empirically test behavioral predictions from previous computational9,10 and theoretical stud-
ies11,12; specifi ally, we consider the influence of network structure on equilibrium behavior in iterated asym-
metric ‘battle of the sexes’ games. We focus on the computational model described in Broere et al.9. In this study 
nodes play iterated 2 × 2 games with their neighbors. Each node gets a preference assigned before the fi st round 
of the game (say α or β), that determines whether the node is a row or a column player as shown in Table 2. Every 
round the nodes choose between α or β and the decision of the node is played against all its neighboring nodes. In 
the fi st round, the nodes play their preferred behavior with probability one. After every round, the nodes update 
their probability of playing α or β by means of reinforcement learning26,27. The probability of choosing either α or 
β is updated towards what would have been the best choice the previous round. Earlier research investigated the 
response behavior of human subjects in iterated ‘battle of the sexes’ games in two types of ring networks28,29. Th s 
study found that 96 percent of the decisions of the subjects followed a myopic best response pattern. We therefore 
choose a similar update rule. The update rule is more explicitly described in S1 of the Supplementary Materials.

The computational study compares the equilibrium behavior in three different types of networks9. The base-
line model is the Erdös-Rényi (ER) random network. Th s type of network is usually defi ed as G(N, per), where 
N is the number of nodes in the network and per the probability of drawing an edge between two arbitrary nodes. 
Thus, for every two nodes in the network the probability that an edge is present is the same. Depending on the 
choice of the parameters, this usually leads to a network with low clustering and relatively low variation in the 
degree distribution. The computational study predicts that equilibrium behavior is often homogeneous in these 
networks, in the sense that all nodes end up choosing the same behavior, all α or all β. However, it is hard to 
predict which equilibrium the nodes will end up playing, mostly because this is dependent on a complex combi-
nation of network characteristics. Both equilibria (all α or all β) are generally equally likely. Th s situation closely 
resembles the situations described in Table 1 and the left network of Fig. 1.

The second type of network studied in the computational study are clustered networks. The clustered networks 
are obtained by means of the Watts-Strogatz algorithm30. The algorithm starts with a lattice consisting of N nodes. 
Each node is connected with n neighboring nodes. The edges are rewired randomly with a constant probability 
for all edges. Using relatively low values of the rewiring probability, the characteristic of these networks are short 
average path lengths and high clustering, known as the ‘small world’ network characteristics. The computational 
study predicts that equilibrium behavior is homogeneous within the clusters, but heterogeneous between clus-
ters, resulting in heterogeneous behavior in the overall network. Similar effects are shown in an experiment with 
different (learning) dynamics31. Th s result is pretty intuitive when taking a closer look at the defin tion of clus-
tering. Clustering is often defi ed by the ratio of edges within a cluster and the edges outside the cluster32,33. Th  
higher this average ratio, the higher the clustering of the network. In clustered networks coordinating on the same 
behavior within the cluster is simply more rewarding because there are on average more edges within the commu-
nity than outside. Th s causes different communities to coordinate on different choices. A good predictor of the 

Figure 1. Four-player games, represented as a network; α and β denote the preferences of the players.
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behavior within the cluster is the preference of high degree nodes. The higher the degree of a node, the higher the 
probability that the node converges to its preferred behavior.

The third type of network studied in the computational study are centralized networks. Th s type of network is 
constructed using the preferential attachment algorithm proposed by Barabasi and Albert34. Th s algorithm starts 
with one or more nodes and new nodes are added iteratively. In each iteration, the probability for a new node to 
connect to an existing node depends on the number of links the existing nodes already have; the more links a node 
already has, the higher the probability that the new node gets connected to it. Th s creates a ‘rich get richer’ effect. 
In the computational study, the centralized networks had low-clustering, a few central nodes with high degree cen-
trality and a majority of peripheral nodes with low degree centrality. The equilibrium behavior in these networks is, 
just like random networks, often homogeneous in the sense that all nodes end up choosing the same option: all α 
or all β. However, which equilibrium the nodes converge to is easily predicted by the preference of the nodes with 
high degree centrality. In these networks the nodes with the highest degree centrality could dictate the equilibrium 
behavior of the overall network. Th s situation closely resembles the situation of the right network in Fig. 1.

Another effect which is present in all types of networks is related to an even degree centrality. Nodes with an 
even degree centrality can relatively easily coordinate on their preferred behavior compared to nodes with a sim-
ilar but uneven degree centrality. Th s situation can be understood by reviewing the 3-player situation described 
in Table 2. When nodes have an even degree, the total number of relevant choices is uneven, including the node 
itself. So locally there is always a majority for one of the choices as described earlier in Table 2. Table 3 exemplifie  
the situation up to degree centrality eight. The percentage of neighboring nodes that have to choose the same 
behavior for a local majority is always 50 percent for nodes with an even degree centrality, while it requires more 
than 50 percent for nodes with an uneven degree centrality. Th s effect was also found in symmetric coordination 
games in a computational study by Buskens and Snijders35.

Summarizing, computational studies predict homogeneous equilibrium behavior in random networks, while the 
predicted probability is often close to 50 percent for either all α or all β. So, the information which can be derived from 
the network is limited. The predicted equilibrium behavior in centralized networks is also homogeneous, but the equi-
librium behavior can be predicted by a few nodes with high degree centrality. In clustered networks degree centrality is 
also a good predictor of behavior, but behavior is restricted to the community the node belongs to. Finally, nodes with 
an even degree centrality more easily coordinate on their preferred behavior than nodes with an uneven degree central-
ity. Based on these computational predictions, we will empirically test the following hypotheses:

Hypothesis 1:
 The correlation of (equilibrium) behavior between the computational model and the empirical results will be 
higher for centralized networks and clustered networks compared to random networks.

Hypothesis 2:
 The equilibrium behavior is more heterogeneous in clustered networks compared to random and centralized 
networks.

Hypothesis 3:
Participants with high degree centrality will more often play their preferred behavior.

Hypothesis 4:
 Nodes with an even degree centrality more often play their preferred behavior than nodes with uneven degree 
centrality in all networks.

Methods
Experimental setup. In order to test the four hypotheses we carried out a computerized laboratory exper-
iment on networks of size 20. We used the Python based software platform oTree36. The experiments where 
conducted both at Universidad Carlos III de Madrid, Spain and Utrecht University, the Netherlands. In total 
140 subjects participated in Madrid between April 9th and April 20th 2018. These participants were invited 

Player 2 Blue Yellow

Player 1
Blue 10, 8 0, 0

Yellow 0, 0 8, 10

Table 4. Payoff table for the experiment.

Degree centrality 1 2 3 4 5 6 7 8

Number of neighboring 
nodes needed 1 1 2 2 3 3 4 4

Percentage of neighboring 
nodes needed 100% 50% 67% 50% 60% 50% 57% 50%

Table 3. Number of neighboring nodes required for a local majority given the degree of a node. Nodes with an 
even degree always need 50%, while an uneven degree requires more than 50% of its neighbors.
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from the IBSEN volunteer pool37. In addition, 100 subjects participated between May 22nd and May 30th in the 
Experimental Laboratory for Sociology and Economics (ELSE), Utrecht. These participants were invited using the 
ORSEE recruitment system38. In total we conducted 12 sessions with 20 participants. Therefore N = 240 in total.

During the experiment, participants played an iterated asymmetric ‘battle of the sexes’ game against multi-
ple other participants at the same time. Every participant interacted with a subset of other players. Interactions 
are mapped on a network in which the players are nodes and they play the game with the participants to whom 
they are connected. The payoff table is shown in Table 4. The payoffs are chosen such that the difference between 
coordinating on the preferred option and the not preferred option is a real difference, but small enough for partic-
ipants to have incentive to deviate from their own preference. Participants can choose between ‘blue’ and ‘yellow’ 
and play the same choice against all participants they interact with.

In this study we used three different networks, each to represent the characteristics of random networks, 
clustered networks and centralized networks. The networks used in the experiments are represented in Fig. 2 and 
the adjacency matrices can be found in the Supplementary Materials S2, S3 and S4 of this paper. The network on 
the left in Fig. 2 has low clustering and low differentiation in degree centrality of the nodes. The network in the 
center of Fig. 2 has high clustering and low differentiation in degree centrality of the nodes. The network on the 
right in Fig. 2 has low clustering and a few nodes with high degree centrality. All networks have a network size of 
20 nodes and a network density of 0.2. The network size is big enough that it contains non-trivial complexity and 
small enough to make it experimentally feasible. The computational study shows that the hypothesized outcomes 
can be expected for networks of size 20 and in a similar way for larger network sizes9.

Upon arrival participants were seated randomly in the laboratory. All subjects participated in games on all 
three networks. Before the fi st round of each network, participants were assigned their ‘type’ at random. The 
type determined whether they were the row or the column player in Table 4. The randomization was performed 
with the constraint of 10 row players and 10 column players to maximize the coordination problem. In every 
network, the participants played 20 rounds in which their type, location in the network, and the participants they 
interacted with are the same. The order in which participants were placed on each one of the networks was varied 
between sessions.

In each round participants had to decide between ‘blue’ and ‘yellow’. After all participants had made their 
decisions, they where all informed about their payoff in that round and how many of the participants he/she is 
connected with played ‘blue’ or ‘yellow’. The participant did not receive information about players in the net-
work he or she was not connected with. Next, the participants were asked to make a new decision for the next 
round, continuing for 20 rounds. We informed the participants beforehand that they would play 20 rounds. We 
communicated the exact number of rounds because we did not expect any end game effects. Before the actual 
rounds were played the participants were asked to read the instructions of the game. After that, they were asked 
to answer questions about the instructions in order to test whether they understood the game. Before the partici-
pants played on the actual networks, three practice rounds on a random network were played.

The experiments lasted an average of 45 minutes. The payoff of each round was accumulated and then divided 
by the number of opponents (interaction partners in the network). For every 50 points earned, the participants 
received 1 euro. In addition, they received 5 euros show up fee. The maximum that could be obtained was 17 euros. 
The average payoff was around 14 euros, the lowest was 10.50 euros, the highest 16.50 euros. After the experi-
ment, participants were asked to leave the room, after which they were invited one by one to collect their earnings 
in privacy. The experiments in Spain were in Spanish and the experiments in the Netherlands were in English. The 
instructions in both languages can be found in the Supplementary Materials S5 and S6 of this paper. The oTree code 
together with the obtained data and the R-scripts for the analyses can be found on the fi st authors github page: 
https://github.com/JJBroere/An-experimental-study-of-network-effects-on-coordination-in-asymmetric-games.

Measures and analytical strategy. In order to test hypothesis 1, we have to calculate the correlation 
between the computational model and the empirical results. The correlations are computed with the same starting 
conditions; the same network and preferences of the actors in the same positions on the network. Given the same 
starting conditions, how often do the nodes in the computational model make the same choice (blue or yellow) as 

Figure 2. 20-player games, represented as a network. Left the random network, in the middle the clustered 
network, on the right the centralized network.
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the people in the experiment? Thus, the correlation of the behavior between the computational graph gc and the 
behavior of the empirical graph ge for each graph is defi ed as:
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The computational model is run with the same initial conditions (distribution of types) as the empirical 
result. Because the computational model has a stochastic update rule, we run the model 100 times and report 
the median correlation between the model and the empirical result. We chose to report the median, because in 
some cases the distribution can be very skewed. For the full specifi ation of the computational model see S1 of the 
Supplementary Materials of this paper and Broere et al.9.

In order to test hypothesis 2 we resort to an analysis of variance (ANOVA) with post hoc tests on the heteroge-
neity of behavior in the networks in the last 5 rounds. We chose to look at the last 5 rounds instead of just the last 
round because random switching of behavior in the last rounds can influence the results. By taking the average 
of the last five rounds, the effects of switching or possible end game effects will be minimized in the analyses. We 
defi e heterogeneity of behavior as the variance of participants choosing ‘blue’ in the network:

= = −h p p p p( ) var( ) (1 ), (2)blue blue blue blue

where pblue is the proportion of nodes playing ‘blue’ in the last 5 rounds of the game.
We test hypotheses 3 and 4 by means of a multilevel logistic regression for all subject decisions over all 20 

rounds. Th ee levels are specifi d, taking into account the repeated measures of the participants and the cor-
relation within networks. The dependent variable is 1 when the participant plays its preferred behavior and 0 
otherwise. The predictor variables are the degree centrality of the participant in the network and the evenness of 
the degree.

Results
In Table 5, the correlations between the empirical results and the computational model for each network are pre-
sented. We investigate how well the computational model predicts both the empirical behavior in all 20 rounds 
and the convergence behavior of the last five rounds. It is hard to defi e an objective convergence criterion, 
because participants sometimes switch behavior in an equilibrium state, presumably trying to persuade their 
neighbors to switch as well. We therefore apply a more subjective interpretation of convergence using as rule of 
thumb whether or not the switching of a player leads to switching behavior for other players as well. According to 
this interpretation, convergence is reached in the last five rounds in all sessions for the clustered network in Fig. 2, 
and for the network with the central node in Fig. 2. Not all sessions converged in the random network in Fig. 2. 
Six out of twelve networks did not fully converge in the last five rounds. Th s can occur because the switching 
of behavior was still effective, inducing neighbors switching behavior as well, while in the other two networks 
it rarely happened that switching behavior led to neighbors switching behavior as well. See S7, S8 and S9 of the 
Supplementary Materials of this paper for a visual example of the behavior of the computational model compared 
to the experimental results.

The correlation between the empirical results and the computational model is r = 0.13, sd = 0.09 for random 
networks over all 20 rounds and r = 0.18, sd = 0.16 for the last five rounds. The random network closely resembles 
the original two player game in Table 1 or the situation on the left in Fig. 1. In these situations different equilibria 
are equally likely. Th s is also refl cted in the current results where the computational model poorly predicts the 
empirical behavior. The correlation of the clustered network is r = 0.44, sd = 0.28 and r = 0.51, sd = 0.13 for the 
last five rounds. Th s means that the model predicts 76 percent of the empirical observations correctly in the 
last five rounds. Predictions for these types of networks are signifi antly better compared to the random net-
work. Finally, for the centralized network, the median correlation is r = 0.74, sd = 0.17 in all rounds and r = 0.92, 
sd = 0.25 for the last five rounds, meaning that towards the end behavior is predicted correct in almost all cases: 
in fact, out of 12 sessions the behavior was predicted wrongly only twice. In these cases the empirical behavior 

All rounds Last fi e rounds

Correlation (sd) % correct (sd) Correlation (sd) % correct (sd)

Random 0.13 (0.09) 56 (4.61) 0.18 (0.16) 59 (8.29)

Clustered 0.44 (0.28) 72 (6.46) 0.51 (0.13) 76 (6.65)

Centralized 0.74 (0.17) 87 (8.74) 0.92 (0.25) 96 (12.48)

N 12 12 12 12

Table 5. Correlation between the computational model and the empirical results. The correlation is defi ed in 
the text. The percentage correct is the percentage correctly predicted behavior of the experimental results by the 
computational model.
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converged to the complete opposite direction from the predicted behavior, leading to a correlation of −0.98 and 
−1. Th s is refl cted in the standard error. However, 10 out of 12 times the empirical results are correctly predicted 
by the computational model. Based on these results we found evidence in favor of hypothesis 1.

In order to test hypothesis 2, we examine heterogeneity of behavior in the last five rounds of the games for 
the different networks. The mean variance in the random networks is, μ = 0.116, sd = 0.099, although six out of 
twelve networks have not converged. The mean variance in the clustered networks is, μ = 0.183, sd = 0.085, cor-
responding to a situation in which clustered networks converged most of the time to a state where around half of 
the participants choose ‘blue’ and the other participants choose ‘yellow’. The mean variance in the networks with 
a central node is, μ = 0.024, sd = 0.030. Th s indicates that these networks converge to homogeneous behavior 
where all participants choose ‘blue’ or all participants choose ‘yellow’ every time. An ANOVA was conducted to 
compare the effect of the networks on the heterogeneity in the last five rounds. The ANOVA test yielded signifi-
cant variation among conditions, F(2, 33) = 12.6, p < 0.001. A post hoc Tukey test further shows that the random 
networks and the clustered networks do not differ signifi antly at p = 0.101, although it should again be noted 
that the random network often did not converge. The clustered networks and the networks with a central node 
differ signifi antly at p < 0.001; the random network and the centralized network differ signifi antly at p = 0.019. 
Although the difference between the clustered network and the random network is not evident, we do believe that 
the random networks that did not converge yet would converge to the homogeneous state if more rounds where 
played. The random networks that did converge, all converged to a (mostly) homogeneous state. Furthermore, we 
found a very clear difference between the random network and the centralized network in terms of heterogeneity 
of behavior. We therefore conclude that we have empirical evidence in favor of hypothesis 2.

In Table 6 the results of the multilevel logistic regression analyses are presented. The dependent variable is a 
dichotomous variable indicating whether a participant chose the preferred behavior. The regression is conducted 
for all networks together, and with the three networks separately. In the model with all networks together there is 
a positive statistical signifi ant effect of degree centrality on playing ones preferred behavior, β = 0.118, sd = 0.013, 
p < 0.001. The higher the degree centrality, the higher the probability that the participants will play their preferred 
behavior. There is also a positive statistically signifi ant effect of an even degree centrality, β = 0.164, sd = 0.060, 
p = 0.006. If a participant has an even degree centrality, the probability that the participant will play his or her 
preferred behavior is higher as well. Looking at the random networks, there is no statistically signifi ant effect of 
any of the predictors. In the clustered network there is a statistically signifi ant effect of an even degree centrality, 
β = 1,033, sd = 0.476, p = 0.029. There is no statistical effect of degree centrality. In the centralized network we 
do fi d a statistical signifi ant effect of degree centrality, β = 0.210, sd = 0.085, p = 0.013. However no statistically 
signifi ant effect of having an even degree centrality. We found evidence in favor of hypothesis 3 and hypothesis 
4 when combining all the data. However, the hypotheses could not be confi med in the networks separately. 
Th s could be caused by a lack of statistical power and variation in the degree distribution within some types of 
networks.

Conclusion and Discussion
In this paper we empirically studied the effects of network structure on behavior in iterated ‘battle of the sexes’ 
games with human subjects. The hypotheses were derived from computational models from previous studies. 
The empirical results convincingly show that the computational models have empirical validity. The correlations 
between the computational model and the empirical behavior indicates that network structure governs the behav-
ior to some extent. As expected, as the network structure becomes less ‘random’, the more accurate the computa-
tional model prediction of the behavior of the players. Furthermore, we found evidence that the major network 
effects found in the computational study have a clear counterpart on the behavior of the game when played with 
human subjects. Thus, in the clustered networks the equilibrium behavior was clearly more heterogeneous com-
pared to the centralized networks. In random networks we did not fi d a signifi ant difference with the clustered 
network. However, this could partially be explained because half of the sessions with the random networks did 
not converge after 20 rounds and more homogeneity could still be expected. We also found evidence that degree 
centrality and having an even degree plays a role in determining the behavior of the game.

Although the experiments were conducted in relatively small and simple networks, we do believe that the 
results are generalizable to bigger and more complex network settings. As both the computational and the 

All Networks Random Clustered Centralized

Degree centrality 0.118*** (0.013) 0.185 (0.138) 0.280 (0.401) 0.210** (0.085)

Even degree 0.164*** (0.060) −0.305 (0.473) 1.033** (0.476) −0.400 (0.500)

Constant 0.228* (0.136) 1.171* (0.638) −0.155 (1.638) 0.922* (0.493)

Random effects

Subject 1.913 (1.383) 9.231 (3.038) 9.635 (3.104) 12.13 (3.483)

Network 0.017 (0.132)

Observations 14,400 4,800 4,800 4,800

logLik −7956.3 −1846.1 −1767.9 −1712.8

Note: *p < 0.1; **p < 0.05; ***p < 0.01

Table 6. Multilevel logistic regression results, dependent variable is 1 if the participant chose his or her 
preferred behavior, 0 otherwise. Th ee levels are specifi d, taking into account that repeated observations of 
behavior are nested within subjects, which are again nested within networks.
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empirical results show, most of the behavior is limited to the clusters of the network, and within each cluster our 
reasoning in terms of how majority influences decision presented above seems to apply quite well. When a larger 
network consists of multiple clusters, the same behavior can be expected within the clusters of the larger network. 
In larger networks with low clustering the same dynamics can be expected as in smaller networks, however the 
relative influence of a single node on the equilibrium behavior naturally becomes smaller as the number of nodes 
in the network becomes larger.

The small and limited number of networks studied is however a limitation of the current study. In this study 
we chose three fi ed networks to represent networks used in the computational study; namely an Erdös-Rényi 
random network, a small world network and a preferential attachment network. There are several caveats to make 
about these choices. First of all, the networks belong to a class of network defi ed by their mathematical proper-
ties. We did not study any variation between networks within this class. The lack of variation within one network 
also makes it harder to detect the influence of different nodes. Secondly, the mathematical properties of the net-
works are often limiting properties as the number of nodes goes to infin ty: although the effects are independent 
of size in the computational study, the networks in this study might in fact be too small to represent the limiting 
properties of the class of networks. However, studying larger and/or more different networks is complicated and 
expensive in an experimental context with human subjects, because this would require very large sample sizes and 
also a large amount of participant fee. The limiting factor is in the between network comparisons. In the current 
study it required 240 participants to be able to compare 12 networks per type.

All in all, our experiments show that the behavior of people trying to coordinate in a network can be under-
stood reasonably well in terms of local considerations. In other words, subjects react to what they observe around 
them, the rest of the network does not seem to be relevant. Th s opens an interesting avenue of research as in other 
situations, different from the one considered here, global information may be available that changes how people 
behave. Indeed, it was observed that when the total number of people making one or the other choice is made 
available to the subjects, global coordination is reached much more easily in a population of moving subjects39. In 
the case of networks, knowing that there are very many players choosing the option one prefers may help to insist 
on making the decision that goes in one’s interest, in the hope that eventually one’s neighbors might conform to 
the global majority. Th s, along with trying to extend our experiments to larger networks and to more representa-
tives of each class, would be an interesting contribution to establish the knowledge on coordination on networks 
on fi m grounds.
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