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a b s t r a c t

This article proposes a generalization of the Fourier interpolation formula, where a wider
range of the basic trigonometric functions is considered. The extension of the procedure
is done in two ways: adding an exponent to the maps involved, and considering a family
of fractal functions that contains the standard case. The studied interpolation converges
for every continuous function, for a large range of the nodal mappings chosen. The error
of interpolation is bounded in two ways: one theorem studies the convergence for Hölder
continuous functions and other develops the case of merely continuousmaps. The stability
of the approximation procedure is proved as well.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Trigonometric interpolation is a useful method for data processing. It is specially suitable for data which are periodic of
known period or variable on the circle, although in case of non-periodicity some manipulations may be made in order to
deal with a periodic function.

In the case of equidistant nodes, the interpolation can be transformed into the problem of finding a phase polynomial:

p(x) = β0 + β1eix + · · · + βn−1ei(n−1)x

such that

p(xk) = yk,

for k = 0, 1, . . . , n − 1. The interpolation of equidistant support points (xk, yk), where xk = 2πk/n, leads to expressions of
the form:

βj =
1
n

n−1∑
k=0

yke−
2π ijk
n , j = 0, . . . , n − 1.

The computational evaluation of these expressions is expensive and induced the discovery of Cooley & Tukey Fast Fourier
Transform algorithm, that opened up a wide range of new areas of application like image, audio and signal processing,
resolution of partial differential equations, noise reduction, etc.
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The properties of the ordinary trigonometric interpolation in terms of convergence are nice if one considers the error in
Lp-sense. A theorem of Marcinkiewicz and Zygmund [1] proves that if f is a continuous periodic function on [0, 2π ] and
Sn(f ) is the trigonometric interpolation of order n, then

∥Sn(f ) − f ∥p ≤ Kd∗

n(f ) ≤ K ′ωf

(
1
n

)
,

where ∥·∥p is the norm in the spaceLp and K , K ′ are positive constants. The quantity d∗
n(f ) is theminimumuniform distance

between f and the set of trigonometric polynomials of degree n, and ωf is the modulus of continuity of f . This inequality
proves the convergence inLp-sense for a continuous function (sinceωf (1/n) goes to zero as n tends to infinity). However the
continuity is not a necessary condition for this type of convergence. The Riemann integrability of f is sufficient to provide
p-convergence [1]. The article of Prestin and Xu [2] deals with mild sufficient conditions for this kind of convergence as well.

All these nice results fail in the case of pointwise and uniform error and convergence. Marcinkiewicz [3] proved the
existence of continuous functions for which the sequence of trigonometric interpolating polynomials (with equidistant
nodes) diverges everywhere. Gosselin [4] resumed the subject, considering partitions where the points are defined as:

γ +
2i

2n + 1
π,

where γ is any real number and i = 0,±1,±2, . . . . In his Ref. [4], the author proves the strong dependence of the
convergence behavior for certain functions on the number γ . For some choices of γ the behavior may be worst possible,
diverging for any x non-null, whereas for the same function a different choice would provide uniform convergence.

There are classical results on this topic due to Dunham Jackson. In [5], he proves the following inequality for a continuous
periodic function and its trigonometric interpolant at equidistant points:

∥f − Sn∥∞ ≤ 7∥f ∥∞ log(n).

Of course this inequality does not ensure convergence when the nodes increase indefinitely, but later in same article [5], the
author proves the following result:

Theorem 1. If f satisfies a Dini–Lipschitz condition, then Sn converges to f uniformly as n tends to infinity. For instance, if f
satisfies the Lipschitz condition:

|f (x′) − f (x′′)| ≤ λ|x′
− x′′

|,

for all x′, x′′, then for n ≥ 2,

∥f − Sn∥∞ ≤
21λ log(n)

n
.

If f is Hölder continuous, the uniform convergence is sure as well since f satisfies a Dini–Lipschitz condition (ωf (δ) ≤ Kδq).
There are indeed a large amount of results concerning this topic. For instance, in Ref. [6], it is proved that the error of the

trigonometric interpolation on an even partition goes to zero if the second derivative is piecewise continuous. Moreover,
the rate of this convergence takes into account the smoothness of the function f , that is to say, the rate improves for the
functions that have more derivatives. Specifically, ifMr+1 = ∥f (r+1)

∥∞ exists, then

En = O
(

Mr+1

nr−1/2

)
,

where En is the maximum error of the interpolation on the interval. Another important result states that if f ∈ L2 then

|En(x)| ≤
ψn

nr−1/2 ,

where ψn = o(1), as n tends to infinity. Thus, trigonometric interpolation is not characterized by the undesirable property
of ‘‘saturation of smoothness’’: the rate of convergence does not react to additional smoothness of the function.

The Lebesgue constants of the associated partition play an essential role in all the interpolation problems. They are defined
as:

Λn = max
x

n∑
j=1

|ϕj(x)|, (1)

where ϕj are the nodal basic functions used to define the interpolation (for instance, the Lagrange polynomials in case of
polynomial interpolation). The Lebesgue constants of the trigonometric interpolation behave better than the corresponding
in the polynomial case. In Ref. [6], the authors prove the next theorem (in case of equidistant nodes):

Theorem 2. The Lebesgue constant of the trigonometric interpolation satisfies the upper estimates:

Λn ≤ 2(n + 1).
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Moreover,

|ak| ≤ 2max|ym|,

|bk| ≤ 2max|ym|,

where ak, bk are the coefficient of the trigonometric interpolating polynomial and ym are the value of the function at the node
points.

In the case of polynomial interpolation, the equidistant Lebesgue constants increase exponentially [6], although in case of
choosing the Chebyshev nodes, the growth is logarithmic (in terms of the number of points). The problem is that one cannot
always choose the position of the nodes.

Interpolation theory plays an important role in many fields of science and engineering. In many practical situations, we
do not know if a variable providing a set of samples is differentiable or not, we only know its values at some nodes. However,
most of the currentmethodsmake use of smooth functions. To palliate this issue, Barnsley (see [7,8]) introduced the concept
of fractal interpolation function (FIF) using the theory of Iterated Function System (IFS). FIF are defined as fixed points ofmaps
between spaces of functions. FIF have some advantages over the classical interpolation functions such as (i) FIF provide a
method to render smooth or non-smooth approximants depending on the choice of scaling parameters [9] (ii) FIF can have
local or global dependence on data points based on the choice of scaling factors (iii) FIF retain the self-referentiality (iv) the
interpolant or a certain derivative of it may have a non-integer box-counting dimension depending on the magnitude of
scaling factors.

Here we address the problem with the help of a classical interpolant (as explained in Section 2). If an Iterated Function
System is chosen suitably in terms of a given continuous function f , then a family of fractal functions {f α} can be generated
by taking interpolation data from f on a compact interval [10]. It is possible to preserve smoothness and fundamental shape
properties of the original function f when we impose appropriate restrictions on the parameter α. The notion of fractal
function provides new exciting fields of research and applications.

This paper is devoted to study the interpolation of periodic functions using a procedure that generalize the ordinary
trigonometric interpolation [5,11]. We also define non-smooth fractal versions of the standard case. The uniform error
between the original function in C[−π, π] and its fractal interpolants are bounded for a wide range of an exponential
parameter. The limits proposed prove the convergence of interpolants with very weak conditions as the sampling frequency
is indefinitely increased. Unlike the classical trigonometric case, the only hypothesis of continuity is sufficient to provide the
uniform convergence when the number of terms tends to infinity.

The rest of the paper is organized as follows. Section 2 describes some preliminary results needed for the subsequent
parts. Section 3 is devoted to the construction of a new type of trigonometric interpolants and then its fractal extension.
Section 4 dealswith error bounds of the formulas of the fractal trigonometric interpolation. Convergence and stability results
of interpolatory process are studied in Section 5. In Section 6 we have given application of our method to temperature
recordings of India.

2. Preliminaries

In this section, we review the construction of FIF and α-fractal function that are needed in the sequel. For more details,
the reader can refer to [7,10,12].

2.1. Fractal interpolation functions

Let∆ be a partition of a real compact interval I = [a, b], i.e,∆ = {x0, x1, . . . , xN} satisfying a = x0 < x1 < · · · < xN = b.
Let a set of data points {(xi, yi), i ∈ N0

N} be given, where N0
k = {0, 1, . . . , k}, and Ii = [xi−1, xi]. Let Li : I → Ii, i ∈ NN be

contractive homeomorphisms such that

Li(x0) = xi−1, Li(xN ) = xi, (2)

where Nk is the set of the first k natural numbers. Let K = I × R and N continuous mappings, Fi : K → R be satisfying

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi, |Fi(x, y) − Fi(x, y′)| ≤ |αi||y − y′
|, (3)

where (x, y), (x, y′) ∈ K , αi ∈ (−1, 1), i ∈ NN . Now define functions wi : K → K as wi(x, y) = (Li(x), Fi(x, y)) ∀ i ∈ NN .
The following is a fundamental theorem in the subject of fractal functions.

Theorem 3 (Barnsley [7]). Let C(I), the space of all real-valued continuous functions on a compact interval I, be endowed with
the Chebyshev or supremum norm ∥g∥∞ := max{|g(x)| : x ∈ I} and consider the closed metric subspace

Cy0,yN (I) := {g ∈ C(I) : g(x0) = y0, g(xN ) = yN}.

The following hold.
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1. The Iterated Function System {K ;wi, i = 1, 2, . . . ,N} has a unique attractor G which is the graph of a continuous function
f ∗

: I → R satisfying f ∗(xi) = yi for i = 0, 1, . . . ,N.
2. The function f ∗ is the fixed point of the Read–Bajraktarević (RB) operator T : Cy0,yN (I) → Cy0,yN (I) defined via

(Tg)(x) = Fi
(
L−1
i (x), g ◦ L−1

i (x)
)
, x ∈ Ii, i ∈ NN .

The function f ∗ appearing in the foregoing theorem is called fractal interpolation function (FIF) corresponding to the IFS
{wi(x, y)}Ni=1 and it is unique satisfying the functional equation

f ∗(x) = Fi(L−1
i (x), f ∗

◦ L−1
i (x)) ∀x ∈ [xi−1, xi], i ∈ NN−1. (4)

The most used fractal interpolation functions so far are defined by the IFS

Li(x) = aix + bi, Fi(x, y) = αiy + qi(x), (5)

where ai and bi are determined by Eqs. (2), and admit the following expressions:

ai =
xi − xi−1

xN − x0
,

bi =
xNxi−1 − x0xi

xN − x0
;

αi ∈ (−1, 1) is called vertical scaling factor of the transformation wi and qi : I → R are continuous functions satisfying

qi(x0) = yi−1 − αiy0, qi(xN ) = yi − αiyN

due to the condition (3). The parameter α = (α1, α2, . . . , αN ) ∈ (−1, 1)N is called the scale vector of the FIF f ∗.

2.2. α-fractal functions

The next definition was given in Ref. [10]. Let f ∈ C(I) be a continuous function. Choose a partition {a = x0, x1, . . . , xN =

b} of I , and consider the case qi(x) = f ◦ Li(x) − αib(x), i ∈ NN , where b is continuous and such that b(x0) = f (x0) and
b(xN ) = f (xN ).

Definition 1. Let f α be the continuous function defined by the IFS (4)–(5). f α is the α-fractal function associated with f with
respect to b, the partition∆ and the scale vector α.

According to (4) and (5), f α satisfies the fixed point equation

f α(x) = f (x) + αi(f α − b) ◦ L−1
i (x), x ∈ Ii, i ∈ NN . (6)

The uniform distance between f α and f is bounded as (see for instance [10])

∥f α − f ∥∞ ≤
|α|∞

1 − |α|∞

∥f − b∥∞, (7)

where |α|∞ = max{|αi|; i ∈ NN}.

Remark 1. According to inequality (7), if α = 0 or f = b, then f α = f .

Remark 2. The functions f α and f agree at the nodes of the partition:

f α(xi) = f (xi),

for i = 0, 1, . . . ,N.

3. New type of trigonometric interpolant and its fractal

In this section, we consider a generalization of the trigonometric interpolation formula [5,13]. For abscissae xi such that
xi+1 − xi =

2π
2n+1 and i = 1, 2, . . . , 2n,we define the new kernels of nodal interpolation with a positive exponent β as

Qn,i,β (x) =

⏐⏐⏐⏐⏐ sin
(
(n +

1
2 )(xi − x)

)
sin
( 1
2 (xi − x)

) ⏐⏐⏐⏐⏐
β

for x ̸= xi,

and

Qn,i,β (xi) = (2n + 1)β .
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Table 1
Approximation errors of different function evaluations for the ordinary method and the procedure proposed, for several choices of n and β .

Function values Ordinary β = 2.5 β = 3 β = 3.5

n = 6
√

| sin( π2 )| 0.0335504 0.0142490 0.0209276 0.0054145

n = 6
√

| sin(1)| 0.0365604 0.0174729 0.0065050 0.0033678

n = 8
√

| sin( π3 )| +
√

| cos( π3 )| 0.0462932 0.0015128 0.0095281 0.0166085

n = 10 π
5 sin( 7π5 ) 0.2528410 0.1919620 0.1362740 0.0970759

n = 10 min(sin( π10 ), cos(
π
10 )) 0.2840350 0.0712920 0.2407090 0.0693152

If f is continuous and periodic with period 2π , we propose the generalized trigonometric formula:

In,β (f )(x) = Kn,β (x)
2n+1∑
i=1

f (xi)Qn,i,β (x), (8)

where β > 0, and

K−1
n,β (x) =

2n+1∑
i=1

Qn,i,β (x). (9)

The choice of general exponent in the formula (8) provides a wider range of functions for approximation of periodic data
sets.

Proposition 1. The formula proposed in the expression (8) is interpolatory.

Proof. Let us prove that

Qn,i,β (xj) = (2n + 1)βδij,

where δij is the Kronecker delta. For j = i, it is clear from the definition of Qn,i,β . If j ̸= i, let r ∈ N be such that j = i+ r , then

xj − xi =
2πr

2n + 1
,

and thus

sin
((

n +
1
2

)
(xi − xj)

)
= sin(πr) = 0,

and hence Qn,i,β (xj) = 0.
As a consequence

Kn,β (xj)−1
= Qn,j,β (xj) = (2n + 1)β ,

and, for all j = 1, 2, . . . , 2n + 1,

In,β (f )(xj) = Kn,β (xj)
2n+1∑
i=1

f (xi)Qn,i,β (xj) = (2n + 1)−β f (xj)(2n + 1)β = f (xj). □

Fig. 1 shows the ordinary (left) and generalized interpolation (right) of the set of data

{

(
−9π
11

, 1
)
,

(
−7π
11

, 5
)
,

(
−5π
11

, 8
)
,

(
−3π
11

, 0
)
,

(
−π

11
,−2

)
( π
11
, 2
)
,

(
3π
11
, 5
)
,

(
5π
11
, 3
)
,

(
7π
11
, 1
)
,

(
9π
11
, 8
)
, (π, 4)},

for n = 5 and β = 2 in the second case.
Table 1 depicts the errors in the evaluation of interpolated functions at several points of the interval [−π, π] for ordinary

and generalized method. We have computed the difference between the exact and the approximate values of the functions:
f1(x) =

√
|sin(x)| at the points x = π/2, 1 (first and second rows), f2(x) =

√
|sin(x)| +

√
|cos(x)| at the point x = π/3 (third

row), f3(x) = x sin(7x) at the point x = π/5 (fourth row) and f4(x) = min(sin(x), cos(x)) at the point x = π/10 (fifth row),
for different choices of n and exponent β.

We consider now a fractal extension of the function In,β (f ). Let us perturb the basis function Qn,i,β (x) with proper base
function bn,i,β (x) and partition of the interval described before and define the generalized fractal trigonometric interpolation
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as

Iαn,β (f )(x) = Kn,β (x)
2n+1∑
i=1

f (xi)Q α
n,i,β (x), (10)

where Q α
n,i,β is the α-fractal function associated to Qn,i,β (Definition 1 of Section 2).

The formula proposed in the expression (10) is interpolatory as well since Q α
n,i,β (xj) = Qn,i,β (xj) = (2n + 1)βδij, for all

j = 1, 2, . . . , 2n + 1 (see Remark 2 of Section 2).

Lemma 1. If xi+1 − xi =
2π

2n+1 for i = 1, 2, . . . , 2n, m ∈ N and m is not divisible by 2n + 1, then

2n+1∑
i=1

cos(mxi) =

2n+1∑
i=1

sin(mxi) = 0.

Proof. This is due to the identity:
2n+1∑
i=1

ejmxi = 0,

being j2 = −1, with the hypotheses prescribed. □

Proposition 2. If xi+1 − xi =
2π

2n+1 for i = 1, 2, . . . , 2n, then

2n+1∑
i=1

sin(n +
1
2 )(xi − x)

sin 1
2 (xi − x)

= 2n + 1.

Proof. The Dirichlet kernel defined as

sin(n +
1
2 )u

2 sin 1
2u

, n ∈ N, (11)

admits the expression [14, p. 295]:

sin(n +
1
2 )u

2 sin 1
2u

=
1
2

+ cos u + cos 2u + · · · + cos nu. (12)

Using (12),
2n+1∑
i=1

sin(n +
1
2 )(xi − x)

sin 1
2 (xi − x)

= 2

(
2n+1∑
i=1

(
1
2

+ cos(xi − x) + cos 2(xi − x) + · · · + cos n(xi − x)
))

.

The part of the above summand can be written as
2n+1∑
i=1

cos
(
m(xi − x)

)
=

2n+1∑
i=1

cos(mxi) cos(mx) + sin(mxi) sin(mx) = 0,

form = 1, 2, . . . , n by applying Lemma 1. Consequently,
2n+1∑
i=1

sin(n +
1
2 )(xi − x)

sin 1
2 (xi − x)

= 2n + 1.

Another way of arguing is thinking that the expression

1
2n + 1

2n+1∑
i=1

sin(n +
1
2 )(xi − x)

sin 1
2 (xi − x)

is the interpolating trigonometric polynomial of the function f (x) = 1 for all x ∈ [−π, π ]. Since both are polynomials of
order lower or equal than n, they must agree. □

Remark 3. Ifβ ∈ N, the absolute value can be removed from the kernelsQn,i,β . The formula proposed in (8) is a generalization
of the classical trigonometric interpolation as consequence of Proposition 2.
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Fig. 1. Ordinary (left) and generalized interpolation function (right) for a set of data, n = 5 and β = 2.

4. Error bounds of generalized fractal trigonometric interpolants

In this section, we face the problem of finding bounds for the error of the interpolations (8) and (10). The following result
can be read in Ref. [15].

Lemma 2. For all m = 1, 2, . . . ; β > 0, and v ∈ R:⏐⏐⏐⏐ sin(mv)m sin(v)

⏐⏐⏐⏐β ≤ 1. (13)

Lemma 3. For all n, i, β, x,

0 ≤ Qn,i,β (x) ≤ (2n + 1)β . (14)

Proof. Taking x − xi = 2vi in the definition of Qn,i,β , one has

Qn,i,β (x) =

⏐⏐⏐⏐ sin ((2n + 1)vi)
sin (vi)

⏐⏐⏐⏐β ≤ (2n + 1)β ,

according to Lemma 2. □

Lemma 4. For v ∈ [0, π/2],

sin(v) ≥
2v
π
. (15)

Proof. The function sin(v) is concave in the interval [0, π/2] and thus

sin(v) ≥ r(v),

where r(v) is the line joining (0, 0) and (π/2, 1). But r(v) = 2v/π, obtaining the result. □

Theorem 4. Let f ∈ C[−π, π] be Hölder continuous such that for x, x′
∈ [−π, π],

|f (x) − f (x′)| ≤ K |x − x′
|
q
, 0 < q ≤ 1.

Then for β > q + 1,

∥Iαn,β (f ) − f ∥∞ ≤ K
(

π

2n + 1

)q(π
2

)β (
1 + 2q

+
1

β − (q + 1)
+

1
β − 1

)
+ (2n + 1)

(π
2

)β
∥f ∥∞

|α|∞

1 − |α|∞

,

where α is a suitable scaling vector used to construct the fractal perturbation of Qn,i,β over [−π, π].

Proof. The following inequality is used in our procedure:

∥Iαn,β (f ) − f ∥∞ ≤ ∥Iαn,β (f ) − In,β (f )∥∞ + ∥In,β (f ) − f ∥∞. (16)

Let us define the point-wise error for the generalized Jackson interpolant:

En,β (f )(x) := In,β (f )(x) − f (x) = Kn,β (x)
2n+1∑
i=1

(
f (xi) − f (x)

)
Qn,i,β (x).
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With the change of variable xi = x + 2ui,

|En,β (f )(x)| ≤ Kn,β (x)
2n+1∑
i=1

|f (x + 2ui) − f (x)|
⏐⏐⏐⏐ sin((2n + 1)ui)

sin(ui)

⏐⏐⏐⏐β , (17)

where we assume that ui ∈ [−π/2, π/2] [5]. Let us multiply numerator and denominator by (2n + 1)β .
Let v0 be the smallest of the numbers |ui|, v1 the second, and so on. In this way [5, p. 454] using the Hölder condition of

f , (17) becomes

|En,β (f )(x)| ≤ Kn,β (x)(2n + 1)β
2n∑
i=0

K2qv
q
i

⏐⏐⏐⏐ sin((2n + 1)ui)
(2n + 1) sin(ui)

⏐⏐⏐⏐β , (18)

where
π i

2(2n + 1)
≤ vi ≤

π (i + 1)
2(2n + 1)

≤
π

2
, (19)

for i = 0, 1, . . . , 2n. Applying Lemma 2 for i = 0, 1,⏐⏐⏐⏐ sin((2n + 1)vi)
(2n + 1) sin(vi)

⏐⏐⏐⏐β ≤ 1. (20)

For the rest of the values (i ≥ 2), we use the left part of the expression (19) to have

(2n + 1) sin(vi) ≥ (2n + 1)
2vi
π

≥ i,

(the first inequality is due to Lemma 4). As a consequence, for i ≥ 2,⏐⏐⏐⏐ sin((2n + 1)vi)
(2n + 1) sin(vi)

⏐⏐⏐⏐β ≤

(
1

(2n + 1) sin(vi)

)β
≤

(
1
i

)β
. (21)

Using the estimation of (20) for i = 0,1 and (21) for i ≥ 2, we obtain

|En,β (f )(x)| ≤ K2q(2n + 1)βKn,β (x)

(
v
q
0 + v

q
1 +

2n∑
i=2

v
q
i (
1
i
)β
)

≤ K2q(2n + 1)βKn,β (x)
(

π q

2q(2n + 1)q
+

(2π )q

2q(2n + 1)q
+

(i + 1)q

2q(2n + 1)qiβ

)

≤ K (2n + 1)βKn,β (x)
π q

(2n + 1)q

(
1 + 2q

+

2n∑
i=2

iq + 1
iβ

)
,

where we have used (19) in the second step and the inequality (i + 1)q ≤ (iq + 1) for 0 ≤ q ≤ 1 in the last step. For the
estimation of the last two summands in the above expression, we use the lower Riemann sums of the functions 1

xβ−q and 1
xβ ,

in the interval [1,+∞) with unit step, and thus:
2n∑
i=2

1
iβ−q ≤

∫
∞

1

dx
xβ−q =

1
β − (q + 1)

,

and
2n∑
i=2

1
iβ

≤

∫
∞

1

dx
xβ

=
1

β − 1
.

Using these bounds, we have

|En,β (f )(x)| ≤ K (2n + 1)βKn,β (x)
(

π

2n + 1

)q (
1 + 2q

+
1

β − (q + 1)
+

1
β − 1

)
, (22)

if β > q + 1. In order to get an upper bound for (2n + 1)βKn,β (x), consider

Kn,β (x)−1

(2n + 1)β
=

2n∑
i=0

⏐⏐⏐⏐ sin((2n + 1)vi)
(2n + 1) sin(vi)

⏐⏐⏐⏐β > ⏐⏐⏐⏐ sin((2n + 1)v0)
(2n + 1) sin(v0)

⏐⏐⏐⏐β ,
and

sin(2n + 1)v0 ≥
2(2n + 1)v0

π
.
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Therefore

Kn,β (x)−1

(2n + 1)β
>

⏐⏐⏐⏐ 2(2n + 1)v0
π (2n + 1)v0

⏐⏐⏐⏐β =

(
2
π

)β
. (23)

Using (23) in (22), we obtain a uniform bound for the difference between f and its generalized approximant as

∥f − In,β (f )∥∞ ≤ K
(

π

2n + 1

)q(π
2

)β (
1 + 2q

+
1

β − (q + 1)
+

1
β − 1

)
. (24)

From (23), we have Kn,β (x) <
( π2 )β

(2n+1)β , and this bound is used for error in the second term of (16) as

|Iαn,β (f )(x) − In,β (f )(x)| =

⏐⏐⏐⏐⏐Kn,β (x)
2n+1∑
i=1

f (xi)
(
Q α
n,i,β (x) − Qn,i,β (x)

)⏐⏐⏐⏐⏐
≤ Kn,β (x)

2n+1∑
i=1

|f (xi)|
⏐⏐Q α

n,i,β (x) − Qn,i,β (x)
⏐⏐

≤ Kn,β (x)∥f ∥∞

2n+1∑
i=1

⏐⏐Q α
n,i,β (x) − Qn,i,β (x)

⏐⏐
≤

(π
2

)β (2n + 1)
(2n + 1)β

∥f ∥∞ max
1≤i≤2n+1

∥Q α
n,i,β − Qn,i,β∥∞

≤

(π
2

)β 1
(2n + 1)β−1 ∥f ∥∞

|α|∞

1 − |α|∞

max
1≤i≤2n+1

∥Qn,i,β − bn,i,β∥∞,

(25)

where the last step follows from (7). The maps bn,i,β are the functions used to define the fractal functions Q α
n,i,β , and they can

be chosen such that

∥Qn,i,β − bn,i,β∥∞ ≤ ∥Qn,i,β∥∞,

taking, for instance, the lines joining the extremes of the graph of Qn,i,β . Thus

max
1≤i≤2n+1

∥Qn,i,β − bn,i,β∥∞ ≤ max
1≤i≤2n+1

∥Qn,i,β∥∞ = (2n + 1)β .

Finally using the above bound, (24) and (25) in (16), we get the proposed error estimation. □

Theorem 5. If f ∈ C[−π, π] and β > 2,

∥Iαn,β (f ) − f ∥∞ ≤ ω

(
π

2n + 1

)(π
2

)β (
3 +

1
β − 2

+
1

β − 1

)
+ (2n + 1)

(π
2

)β
∥f ∥∞

|α|∞

1 − |α|∞

,

where ω(δ) is the modulus of continuity of f and α, bn,i,β are suitable scaling vector and functions used to construct the fractal
perturbation of Qn,i,β .

Proof. Following the previous proof until (17), and the same choice of vi,

|En,β (f )(x)| ≤ Kn,β (x)
2n∑
i=0

ω(2vi)
⏐⏐⏐⏐ sin((2n + 1)vi)

sin(vi)

⏐⏐⏐⏐β .
Using the inequality (19) and the properties of ω, we have

ω(2vi) ≤ (i + 1)ω
( π

2n + 1

)
.

According to Lemma 2, for i = 0,1,⏐⏐⏐⏐ sin((2n + 1)vi)
(2n + 1) sin(vi)

⏐⏐⏐⏐β ≤ 1,

and for the rest of the values (i ≥ 2), due to (21),⏐⏐⏐⏐ sin((2n + 1)vi)
(2n + 1) sin(vi)

⏐⏐⏐⏐β ≤
1
iβ
.
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Thus,

|En,β (f )(x)| ≤ Kn,β (x)(2n + 1)β
2n∑
i=0

ω(2vi)
⏐⏐⏐⏐ sin((2n + 1)vi)
(2n + 1) sin(vi)

⏐⏐⏐⏐β

≤ Kn,β (x)(2n + 1)βω
(

π

2n + 1

)(
3 +

+∞∑
i=2

( 1
iβ−1 +

1
iβ

))
.

The rest of the proof follows similar lines of the previous theorem. □

5. Convergence and stability of the interpolatory processes

In this section we face the study of the convergence and stability of the interpolations defined in Section 3. For a scale
vector α = 0 the operator I0n,β agrees with In,β in (8), since g0

= g for any function g (Remark 1 of Section 2).
Theorems 4 and 5 provide the main results of convergence.

Theorem 6. If f is Hölder continuous on the circle with exponent q such that 0 < q ≤ 1, then for any β > (q + 1), the
interpolating function I0n,β (f ) converges uniformly to f when n tends to infinity. The rate of convergence is O(n−q) and it does not
depend on β .

Theorem 7. If f is continuous on the circle then for any β > 2, the interpolating function I0n,β (f ) converges uniformly to f when
n tends to infinity. The rate of convergence is that of the modulus of continuity of f as (ω(n−1)) and it does not depend on β .

For the fractal interpolants we have the following results.

Theorem 8. If f is Hölder continuous on the circle with exponent q such that 0 < q ≤ 1, for any β > (q + 1), and choosing a
sequence of scale vectors αn such that αn

= O(n−(q+1)), the interpolating function Iα
n

n,β (f ) converges uniformly to f when n tends
to infinity. The rate of convergence is O(n−q) and it does not depend on β .

Theorem 9. If f is Hölder continuous on the circle, for any β > 2, and choosing a sequence of scale vectors αn such that
αn

= O(n−1ω(n−1)), the interpolating function Iα
n

n,β (f ) converges uniformly to f when n tends to infinity. The rate of convergence
is that of ω(n−1) and it does not depend on β .

Regarding the stability, let us remind this concept for an arbitrary continuous interpolation Im(f ) on a partition
{xmi }

m
i=1 [16].

Definition 2. The interpolation Im(f ) is stable if for any ε > 0 there exists δ > 0 such that max1≤i≤m|f (xmi )| ≤ δ implies that
∥Im(f )∥∞ ≤ ε.

The Lebesgue constant of an interpolation was mentioned in the Introduction (1). The following result can be read in the
Ref. [16].

Theorem 10. A necessary and sufficient condition for the stability of the interpolation is that for the Lebesgue constant sequence
{Λm}, there exists a positive real number K such that Λm ≤ K for any m ∈ N.

Applying this result we can conclude that I0n,β is stable since, by the definition of the nodal functions:

Λ0
n,β = sup

x∈[−π,π ]

Kn,β (x)
2n+1∑
i=1

Q 0
n,i,β (x) = sup

x∈[−π,π ]

Kn,β (x)
2n+1∑
i=1

Qn,i,β (x) = 1.

This fact implies that the interpolation does not increase errors and is stable.
For the fractal case, using arguments similar to those of the last part of Theorem 4 (for f = 1):

Λαn,β = sup
x∈[−π,π ]

Kn,β (x)
2n+1∑
i=1

|Q α
n,i,β (x)|

≤ sup
x∈[−π,π ]

Kn,β (x)
2n+1∑
i=1

|Q α
n,i,β (x) − Qn,i,β (x)| +Λ0

n,β

≤ 1 + sup
x∈[−π,π ]

Kn,β (x)(2n + 1)β+1 |α|∞

1 − |α|∞

≤ 1 +

(π
2

)β |α|∞(2n + 1)
1 − |α|∞

.
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Table 2
Optimal values of β and relative errors corresponding the each exponent for
the weekly average temperature for the years 2010 to 2016.

Years Exponent β Relative error

2010 1.46393 0.0513211
2011 1.50422 0.0574602
2012 1.12111 0.0379251
2013 1.48593 0.0450024
2014 1.24308 0.0429304
2015 1.30641 0.0417724
2016 1.24439 0.0486658

In conclusion, if we choose a sequence of scale vectors αn such that αn
= O(n−1), the interpolation Iα

n
n,β (f ) is also stable for

any β > 2.

6. Application

We have used the generalized interpolation formula (8) to study the temperature of Chennai in the time period between
2010 to 2016. Our objective was to find the optimal β for which we can fit the data properly. First of all, we have collected
the weekly average temperature from [17] for every year from 2010 to 2016. From these data we have taken 27 samples
as interpolation nodes, and the rest of the points were considered as targets to find the optimal value of the exponent β in
a least square process. We have performed the computations for different values of β and selected the exponent for which
the relative error of fitting original data was a minimum. Table 2 depicts the optimal β and the relative error for every year
from 2010 to 2016. It can be noted that, in general, the maximum relative error for this process is near 6% and the exponent
β always lies between 1 and 2 in all the years studied.
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