Accepted Manuscript

A new decapod crustacean assemblage from the lower Aptian of La Cova del Vidre (Baix Ebre, province of Tarragona, Catalonia)

Àlex Ossó, Barry van Bakel, Fernando Ari Ferratges-Kwekel, Josep Anton Moreno-Bedmar

PII: S0195-6671(17)30554-2

DOI: 10.1016/j.cretres.2018.07.011

Reference: YCRES 3924

To appear in: Cretaceous Research

Received Date: 27 December 2017

Revised Date: 11 June 2018

Accepted Date: 19 July 2018

Please cite this article as: Ossó, À., van Bakel, B., Ferratges-Kwekel, F.A., Moreno-Bedmar, J.A., A new decapod crustacean assemblage from the lower Aptian of La Cova del Vidre (Baix Ebre, province of Tarragona, Catalonia), *Cretaceous Research* (2018), doi: 10.1016/j.cretres.2018.07.011.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	A new decapod crustacean assemblage from the lower Aptian of La Cova del Vidre
2	(Baix Ebre, province of Tarragona, Catalonia)
3	
4	Àlex Ossó ^a , Barry van Bakel ^b , Fernando Ari Ferratges-Kwekel ^c , Josep Anton Moreno-
5	Bedmar ^{d,*}
6	
7	^a Llorenç de Vilallonga, 17B, 1er-1 ^a . 43007 Tarragona, Catalonia
8	^b Oertijdmuseum, Bosscheweg 80, 5283 WB Boxtel, the Netherlands
9	° Área de Paleontología, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Zaragoza, Spain
10	^d Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de
11	México, 04510 Mexico
12	
13	
14	* Corresponding author.
15	E-mail address: josepamb@geologia.unam.mx (J.A. Moreno-Bedmar).
16	
17	ABSTRACT
18	During fieldwork in a small outcrop of the lower Aptian Margas de Forcall Formation at
19	La Cova del Vidre, hitherto known as the type locality of the anomuran Pagurus
20	avellanedai, new decapod crustacean material has been recovered. In this newly
21	recovered lot, two undescribed species of brachyuran have been recognised; there are
22	here described as Rathbunopon tarraconensis and Pithonoton lluismariaorum. In
23	addition, numerous remains of the anomuran P. avellanedai, enable an improvement of
24	the original description of this taxon, and an analysis of associated ammonites from La
25	Cova del Vidre has resulted in precise age calibration for the first time.
26	

27 Keywords:

- 28 Cretaceous
- 29 Paguridae
- 30 Brachyura
- 31 Prosopidae
- 32 Dromiidae
- 33 New species
- 34

35 **1. Introduction**

A new decapod crustacean assemblage has been recovered from strata exposed at La Cova del Vidre, in the municipality of Roquetes (Els Ports Massif, Baix Ebre, Catalonia, NE Iberian Peninsula). The recovery of associated fauna such as ammonites has now permitted to confirm that the level with decapod crustaceans is assignable to the *Deshayesites deshayesi* Zone (lower Aptian) within the Margas de Forcall

41 Formation (Canérot et al., 1982).

42 The decapod crustacean assemblage is dominated by pagurids, but prosopids and 43 dromiids are also present, comprising two new species that are described herein. The small outcrop at La Cova del Vidre was already known as the type locality of *Pagurus* 44 avellanedai Vía, 1951 (Bataller, 1943; Vía, 1951). The recovery of new material of P. 45 avellanedai allows us to complement Vía's (1951) original description, by describing 46 the right cheliped and completing the description of the left cheliped. The new prosopid 47 Rathbunopon tarraconensis n. sp. from La Cova del Vidre constitutes the third species 48 49 of the genus Rathbunopon on record from the Iberian Peninsula (Klompmaker et al., 2011; González-León et al., 2016), while the new dromiid (goniodromitine), Pithonoton 50 *lluismariaorum* **n. sp.**, is only the second member of this genus to be described from 51 52 Cretaceous strata.

53	The new assemblage from La Cova del Vidre can be compared to other Aptian
54	decapod crustacean faunas at localities in northeast Iberian basins, such as Cal
55	Cassanyes (Barcelona) in the Salou-Garraf Basin (see Vía, 1951; Moreno-Bedmar et al.,
56	2008; Artal et al., 2010) and Forcall (Castelló) and neighbouring outcrops in the
57	Maestrat Basin, which are currently under study. However, those faunas differ from that
58	from La Cova del Vidre in that they are linked to bioherms (sponges) and a reefal
59	(coralgal) environment, respectively, indicating sheltered settings. In contrast, lithology
60	and fauna at La Cova del Vidre suggest an open-marine, muddy environment.
61	The present lot also allows to improve the knowledge of the Iberian Aptian
62	paguroids and brachyurans. In general, data on about the Aptian decapod crustaceans
63	across the globe are scanty (e.g., Wright and Collins, 1972; Martins-Neto, 1987;
64	Schweitzer et al., 2012).

65

66 2. Geological setting and stratigraphy

67 La Cova del Vidre (abbreviated CV) is situated in the linking zone placed between the Maestrat and Salou-Garraf basins (Fig. 1A). The linking zone was part of a 68 large intracratonic Mesozoic rift along the eastern margin of the Iberian plate, which 69 developed on account of tectonic extension related to the opening and spreading of the 70 71 Neotethys towards the west, and the opening of the central Atlantic Ocean and the Bay 72 of Biscay (Salas and Casas, 1993; Salas et al., 2001). During the Paleogene–Early Miocene, as a result of collision between the Iberian and European plates during Alpine 73 74 orogeny, the Maestrat Basin, the linking zone and the Salou-Garraf Basin were inverted, 75 thus giving rise to the eastern part of the Iberian Chain and Catalan coastal chain (Salas 76 et al., 2001). The present note focuses the Margas de Forcall Formation that is exposed 77 in the isolated CV outcrop, which is surrounded by Jurassic strata (Fig. 1B). In this

section, the Margas de Forcall Formation, which overlies the uppermost portion of the
Xert Formation (Fig. 2), is covered, in particular its upper part. In a cliff, limestones of
the Villarroya Formation (Fig. 2; Appendix 1) can be seen to overlie the Margas de
Forcall Formation. The stratigraphy of the linking zone is the same as that in the
Maestrat Basin, but in the study area the classic division of the Margas de Forcall into
three members is not developed.

In contrast, in the Salou-Garraf Basin possesses other equivalent units are developed, such as the Vallcarca marls Unit, which corresponds to the Margas de Forcall Formation, the Villarroya Formation and the lower and middle part of the Benassal Formation (Moreno-Bedmar et al., 2009, 2016, 2017). The Salou-Garraf Basin is situated in a more basinal context than both the Maestrat Basin and the linking zone, and in consequence, its stratigraphic record is characterised by a more open-marine sedimentation.

The decapod crustacean material recorded herein originates from a small outcrop 91 92 of less than 5 metres in thickness, situated within the middle part of the Margas de Forcall Formation (Fig. 2; Appendix 1). This level has also yielded quite rich ammonite 93 assemblages that allow precise age calibration for the associated decapod crustaceans. 94 Also present are echinoids (quite common), bivalves (e.g., *Plicatula placunea* Lamarck, 95 1819; Neithea sp.) and rare gastropods. This invertebrate assemblage reflects an open-96 marine environment, the presence of ammonites and the plicatulid bivalve being 97 particularly characteristic of such a setting. Bed CV3 in particular yields a quite 98 abundant record of this invertebrate assemblage. 99

100

101 **3.** Ammonite biostratigraphy and systematic notes

During a collecting trip in October 2016, 23 ammonites were recovered from the 102 103 Margas del from the Margas de Forcall Formation at La Cova del Vidre (Appendix 2). These specimens are housed at PUAB (Colecciones de Paleontología de la Universitat 104 105 Autònoma de Barcelona, Barcelona, Catalonia). In addition to the worn phragmocone of 106 a large-sized, indeterminate species of *Pseudosavnella* from the overgrown base of the formation, three intervals (CV-1, CV-3 and CV-4) have yielded ammonites, being 107 associated with decapod crustacean remains in CV-1 and CV-3 (Fig. 2). Some of the 108 109 ammonites are ex situ, but these were collected from very close to the top of CV-3, here labelled as CV-3E (Appendix 2). The three intervals, together with CV-3E, have yielded 110 fragments and/or juveniles of Deshayesites deshayesi (d'Orbigny, 1841) (Fig. 3A-I, K-111 L) and Cheloniceras cf. cornuelianum (d'Orbigny, 1841) (Fig. 3J), an association that 112 marks the mid lower Aptian Deshayesites deshayesi Zone of the standard Mediterranean 113 114 ammonite zonation (Reboulet et al., 2014).

It should be noted that our understanding of the index species D. deshayesi has 115 recently been discussed in two taxonomic papers (Moreno-Bedmar et al., 2014 and 116 117 Bersac and Bert, 2015). According to the latter authors, the type material of D. deshayesi from the Plicatulas Marls Formation of the Paris Basin (France) is older than 118 our current understanding of the species in the literature, and the base of the zone should 119 be lowered. In their opinion, features of *D. deshavesi* as retained by Moreno-Bedmar et 120 al. (2014) match its direct descendant, i.e., D. multicostatus Swinnerton, 1935. The 121 latter forms are assumed to mark the interval between levels with true D. deshayesi (i.e., 122 D. deshayesi Subzone sensu Bersac and Bert, 2015) and the D. grandis Subzone, which 123 typifies the upper part of the standard D. deshayesi Zone. In view of the problems 124 surrounding the origin of the type material of *D. multicostatus* (see discussion in Bersac 125 and Bert, 2015) and the polyzonal character of the Plicatulas Marls Formation (Bulot et 126

127	al., in press) that questions the statistical analysis of D. deshayesi proposed by Bersac
128	and Bert (2015), we here follow the concept of the species that was proposed by
129	Moreno-Bedmar et al. (2014). Deshayesitids from La Cova del Vidre closely resemble
130	specimens illustrated by Moreno-Bedmar et al. (2014) from the Morella sub-basin
131	(eastern Spain), having a flat smooth ventral band and subtabulate venter. The
132	stratigraphic interval with decapod crustacean remains probably belongs to the lower
133	part of the standard D. deshayesi Zone. This dating corresponds to that previously
134	reported for the middle part of the Margas de Forcall Formation at other localities in the
135	Maestrat Basin (Moreno-Bedmar et al., 2010; Garcia et al., 2014).
136	
137	
138	
139	4. Systematic palaeontology
140	
141	Order Decapoda Latreille, 1802
142	Infraorder Anomura MacLeay, 1838
143	Superfamily Paguroidea Latreille, 1802
144	Family Paguridae Latreille, 1802
145	Genus Pagurus Fabricius, 1775
146	
147	Type species. Pagurus bernhardus Linnaeus, 1758, by original designation.
148	
149	Fossil species included. Pagurus alabamensis Rathbun, 1935; Pagurus alatoides
150	Philippe and Secrétan, 1971; Pagurus albus Müller, 1979 (= P. tuberculosus Harvey,
151	1998); Pagurus avellanedai Vía, 1951; Pagurus banderensis Rathbun, 1935; Pagurus

152	aff. bernhardus (Linnaeus, 1758); Pagurus concavus Müller, 1979; Pagurus convexus
153	Whetstone and Collins, 1982; Pagurus granosimanus (Stimpson, 1859); Pagurus langei
154	Collins and Jakobsen, 2004; Pagurus latidactylus Müller and Collins, 1991; Pagurus
155	malloryi Schweitzer and Feldmann, 2001; Pagurus manzonii (Ristori, 1888); Pagurus
156	marceti Vía, 1959; Pagurus marini Vía, 1959; Pagurus mezi Lőrenthey, 1909; Pagurus
157	rakosensis Müller, 1979; Pagurus squamosus Ristori, 1886; Pagurus texensis
158	Franțescu, 2014; Pagurus travisensis Stenzel, 1945; Pagurus turcus Müller, 1984 and
159	Pagurus valdagnensis Beschin, De Angeli, Checchi and Zarantonello, 2012.
160	
161	Pagurus avellanedai Vía, 1951
162	Figs. 4–6.
163	1943 fragmento de pata; Bataller, p. 547.
164	*1951 Pagurus Avellanedae Vía, p. 171, text-fig. 11; pl. 1, fig. 11–11a.
165	1982 Pagurus avellanedae Via, 1951; Whetstone and Collins, p. 1219.
166	1988 Pagurus avellanedai Via, 1951; Via, pp. 344, 350, fig. 344.
167	1988 Pagurus avellanedai Via, 1951; Solé and Via, p. 26.
168	2010 Pagurus avellanedae Vía, 1951; Schweitzer et al., p. 56
169	2015 Pagurus avellanedae Via, 1951; Fraaije et al., p. 356.
170	
171	Material. Four specimens with cuticle preserved, as follows: two propodi of the right,
172	and two propodi of the left cheliped, and another propodus and fragment of carpus of a
173	left cheliped, in the collections of the Museu de Geologia del Seminari de Barcelona
174	(MGSB). Measurements (L, length; W, width; T, thickness) are as follows: MGSB
175	82920 (palm), L 32 mm, W 34,5 mm, T 17,5 mm; MGSB 82921, L 16 mm, W 19 mm,
176	T 10,5 mm; MGSB 82922 (palm), L 20,5 mm, W 22 mm, T 14 mm; MGSB 82923

- 177 (palm), L 19 mm, W 22 mm, T 10,3 mm. For comparison, the holotype of the present
- species, MGSB 1732, measures L 22 mm and W 26 mm.
- 179 *Type locality*. La Cova del Vidre, in the municipality of Roquetes (Baix Ebre County,
- 180 province of Tarragona, Catalonia) in the Els Ports Massif.
- 181 Stratigraphic horizon. Margas de Forcall Formation; lower Aptian, Deshayesites
 182 deshayesi Zone.
- 183 Etymology: This species is named after Dr Domingo Avellaneda; the name was spelled
- incorrectly in the original description. It is herein emended, as per the rules in the
- 185 International Code of Zoological Nomenclature pertaining to incorrect original spellings
- 186 (article 32.3).
- 187 *Emended description*. Chelipeds heterochelous. Palm of right propodus subquadrate,
- 188 slightly wider than high; maximum length at distal part; gently curved inwards;
- transverse section ovoid; outer and inner sides convex, strongly convex in first upper
- 190 third of inner side; outer and inner surface closely set with conical tubercles of different
- 191 sizes, forming rows in the lower part, coarser distally. Upper margin convex, acute,
- armed with two irregular rows of spiny tubercles directed upwards and forwards. Lower
- 193 margin gently convex, slightly edged. Pollex inverted triangular in section, very strong,
- 194 equaling about half of palm width; occlusal margin longitudinally sunken, with acute
- 195 outer margin raised medially, forming a lateral cutting edge. Dactylus subtriangular in
- 196 section, very strong, curved downwards, laterally depressed forming a ridge in upper
- 197 margin; outer side of cutting edge with proximal tooth. Both dactyli closely set with
- 198 coarse rounded tubercles. Setal pits not observed.
- Palm of left propodus subquadrate, slightly wider than high; maximum length inproximal end; transverse section ovoid; gently curved inwards but less so than in right

201 propodus; outer and inner sides convex, strongly convex at the mid of inner side; outer 202 and inner surface densely covered by acute tubercles of different sizes, coarser and spiny distally; articulating rims smooth. Upper margin convex, with two irregular rows 203 204 of spiny tubercles, the inner directed upwards, and the outer directed forwards. Lower margin straight, with row of fordwardly directed spiny tubercles. Dactylus incomplete, 205 subtriangular in section; upper margin of dactylus spiny. Setal pits not observed. 206 Carpus of left cheliped, taller distally, ovoid in distal transverse section, 207 subtriangular in proximal transverse section, ornamented with tubercles in the upper and 208 lower outer side, articulating rim smooth. Upper margin with tubercles directed 209 210 upwards. *Remarks.* The find of more complete new material at the type locality of this taxon 211 allows to complete the original description that was based on fragmentary material (Fig. 212 213 5J–K; see Vía, 1951) to be complemented. The general morphology of the chelae of the 214 present species matches characters of *Pagurus* (sensu lato) well, in that the right propodus is much larger than the left, with a convex lower margin and a short, strong 215 fixed finger with hollow occlusal margin. 216 Isolated remains of *P. avellanedai* are also found in correlative strata at several 217 other localities in the Maestrat Basin (Solé and Via, 1988, p. 26; pers. obs.), being 218 striking the abundance of this species in the relatively small outcrop of La Cova del 219 220 Vidre. 221 Infraorder Brachyura Latreille, 1802 222 223 Section Podotremata Guinot, 1977

224 Subsection Dynomeniformia Guinot, Tavares and Castro, 2013

225 Superfamily Homolodromioidea Alcock, 1900

- Family Prosopidae von Meyer, 1860
- 227 Genus *Rathbunopon* Stenzel, 1945
- 228

229 *Type species. Rathbunopon polyakron* Stenzel, 1945, by original designation.

- 230
- 231 Species included. Rathbunopon obesum (Van Straelen, 1944); R. oblitum (Carter, 1898);
- 232 R. polyakron Stenzel, 1945; R. schrattenkalkensis Klompmaker, Artal and Gulisano,
- 233 2011; R. tarraconensis n. sp.; R. tuberculatum (Van Straelen, 1936); R. viai González-
- León, Ossó, Moreno-Bedmar and Vega, 2016 and *R. woodsi* Withers, 1951.
- 235
- 236 Rathbunopon tarraconensis n. sp.
- 237 Figs. 7–8

238 *Derivation of name*. From (the province of) Tarraco, the Roman name of Tarragona.

239 *Type locality*. La Cova del Vidre (municipality of Roquetes), Baix Ebre County,

- 240 province of Tarragona (Catalonia), Els Ports Massif.
- 241 *Stratigraphic horizon.* Margas de Forcall Formation, lower Aptian (*Deshayesites*
- 242 *deshayesi* Zone).
- 243

Material. Two specimens with near-complete dorsal carapaces, preserving details of the
dorsal ornament, as well defined as regions; cuticle partially preserved. Housed in the
collections of the Museu de Geologia de Barcelona (MGB). The holotype is MGB
84275; measurements are as follows: L 18 mm, W 15 mm, fronto-orbital width 11,2
mm; MGB 84276 is paratype; measurements: L 16,8 mm, W 14,9 mm, fronto-orbital
width 9,8 mm.

250

251 Diagnosis. Carapace of small size, subovoid, nearly pyriform, sculptured; longer than 252 wide; strongly convex transversely, moderately convex longitudinally. Regions well defined by strong tubercles or inflations, separated by deep grooves. Surface coarsely 253 254 granulated posteriorly. Fronto-orbital width/maximum carapace width ratio about 0,72 of maximum width. Maximum width at posterior third of carapace. Rostrum 255 subtriangular. Orbits large and deep, complete; supraorbital margin with two strong 256 257 projections; infraorbital tooth strong, dorsally visible. Anterolateral margin short. 258 Posterolateral margin strongly convex. Posterior margin rimmed. Epigastric region with two tubercles. Protogastric region with two tubercles adjacent to anterior part of 259 260 mesogastric region. Mesogastric region subtriangular elongate, with three inflations. Metagastric region with a large transverse lobe. Urogastric region with transverse lobe. 261 Cardiac region inverted triangular, swollen. Branchial regions separated by well-marked 262 263 grooves. Epibranchial region transverse, with two tubercles. Mesobranchial region 264 defined by a transverse lobe. Metabranchial region large, strongly inflated, coarsely 265 granulated. Hepatic region small, defined by a transverse inflation. Intestinal region 266 transversely narrow, medially slightly inflated, smooth. Well-marked cervical, branchial and branchiocardiac grooves. 267

Description. Small-sized, near-complete carapace, with cuticle partially present, longer 268 than wide, subovoid almost pyriform in outline; maximum width in posterior third of 269 carapace at level of metabranchial region. Dorsal surface strongly sculptured, regions 270 271 well defined by strong tubercles or inflations and delimited by deep grooves; surface 272 apparently smooth except for posterior third where it is coarsely granulated. Anterolateral margins short, convergent, medially divided by cervical groove; marked 273 by strong and salient epibranchial tooth directed laterally, and outer orbital tooth 274 275 directed forwards. Posterolateral margins strongly convex, over twice that of

276 anterolateral margins; anterior notch formed by the branchiocardiac groove. Posterior 277 margin convex, defined by a smooth ribbon between metabranchial and intestinal regions and the posterior rim. Front with lateral folds that form the inner orbital teeth. 278 279 Rostrum triangular, strongly downturned, axially depressed, narrowing sharply towards front. Orbits large and deep, complete; supraorbital margin with two strong rounded and 280 upwardly directed projections; outer orbital tooth strong, directed forwards, closing 281 282 laterally the orbit; infraorbital margin with a strong subtriangular tooth, dorsally visible. 283 Epigastric region with two strong tubercles at both sides of the axial depression. Mesogastric region subtriangular elongate anteriorly, longer than wide, with three 284 inflations, two transversely contiguous at base and one in the anterior part of the region. 285 Protogastric lobes, with a strong posterior tubercle near the median mesogastric 286 tubercle, and a less marked anterior tubercle near the end of mesogastric region. 287 288 Metagastric region defined by a narrow transverse lobe, laterally separated from epibranchial lobe by a faint depression, and from the meso- and urogastric lobes by 289 290 grooves anteriorly and posteriorly. Urogastric region defined by a faint narrow 291 transverse lobe, bounded by grooves. Cardiac region inverted triangular elongate, inflated and well bounded laterally by deep branchiocardiac groove. Epibranchial region 292 defined by a transverse lobe with two tubercles, separated from the epibranchial tooth 293 294 by a depression and separated from the mesobranchial lobe by the post-cervical groove. Mesobranchial region, formed by a well-defined, swollen and transverse lobe faintly 295 depressed distally, obliquely directed towards the epibranchial tooth, separated from 296 297 that by a notch, and separated from the metabranchial region by deep and well-marked 298 branchial groove. Metabranchial region subtrapezoidal, large, strongly inflated, laterally 299 prominent, with scattered coarse granules. Hepatic region small, defined by a transverse 300 inflation, contiguous to the rearmost protogastric tubercle and ending below the outer

orbital tooth. Intestinal region transversely narrow, defined by a smooth area between
the cardiac lobe and the rim of posterior margin, slightly inflated medially. Cervical,
post cervical, branchial and branchiocardiac grooves well marked, deep, smooth.

304 Ventral carapace and appendages not preserved.

305

Remarks. These two specimens, clearly referable to *Rathbunopon*, bring the number of 306 species of this genus in the Iberian basins Peninsula during the Early Cretaceous to 307 308 three. They match the generic diagnosis precisely, possessing a characteristic pyriform outline and a marked dorsal sculpture, formed of strong tubercles and bars and of deep 309 grooves separating them. As such, they are closely resemble congeners. Wright and 310 Collins (1972, pp. 14, 23) noted the close similarity between the type species R. 311 polyakron and R. woodsi, stating that, "In addition Rathbunopon polyakron Stenzel 312 313 from Texas is very close to, if not identical with, R. woodsi Withers from England.", and suggested that, with more material available, both taxa should be treated as 314 315 members of a single, variable species (Wright and Collins 1972, pp. 14, 23). However, 316 there are in fact subtle differences between these two species (see González-León et al., 2016, pp. 119–120). In addition, new species or others that had previously been 317 assigned to other genera, have lately also be placed in *Rathbunopon* (see Wright and 318 319 Collins, 1972; Klompmaker et al., 2011; González-León et al., 2016). The new species is compared with congeners below. 320 Although they have the inflated metabranchial lobes with maximum width at the 321

Although they have the inflated metabranchial lobes with maximum width at the
 level of the mid-metabranchial lobe and a closely similar, strong dorsal sculpture in
 common, *Rathbunopon tarraconensis* n. sp. differs from *R. polyakron*, the type species
 of the genus, from the Cenomanian of Texas, in having coarsely granulated
 metabranchial region (*vs* only a few scattered granules on inner part of metabranchial

326	lobes in R. polyakron), more produced and less individualized proto-, meso-, and
327	epibranchial tubercles; a longer cardiac, more laterally produced epibranchial teeth and
328	a sharply narrowing front. In addition, the supraorbital margin in the new species has
329	two rounded projections, rather than a single one in <i>R. polyakron</i> (see Stenzel, 1945, pp.
330	450–452, text-fig. 16; pl. 41, figs. 18–21; Klompmaker et al., 2011, fig. 5A).
331	In many respects Rathbunopon tarraconensis n. sp. is morphologically close to
332	<i>R. obesum</i> from the upper Albian of Spain and the Cenomanian of the United Kingdom,
333	but differs in having its maximum width in the posterior third (vs at mid-length of
334	carapace in R. obesum) and in lacking the faint axial concavity in the posterior margin
335	seen in R. obesum. In the new species, the metagastric lobe is separated by a groove
336	from adjacent epibranchial lobes (vs continuous in R. obesum), the rostrum narrows
337	sharply and the supraorbital margin possesses two rounded projections (vs one in R .
338	obesum; see Van Straelen, 1940, pp. 6–10, pl. 1, fig. 3–3a; Wright and Collins, 1972,
339	pp. 23–24, pl.1, fig. 8; and Klompmaker et al., 2011, figs. 3A–J, 4, 5C).
340	Apparently, Rathbunopon tarraconensis n. sp. has metabranchial lobes with
341	scattered granules in common with R. oblitum from the upper Albian of Cambridge
342	(United Kingdom), as based on Carter's (1898) illustration, while in the description it is
343	said that the whole dorsal surface has traces of tubercles, thus differentiating it from the
344	new species. Based on the original illustration, R. oblitum seems to have two
345	supraorbital projections (as in R. tarraconensis n. sp.), but it does reveal lesser
346	produced epibranchial teeth a lack of tubercles on the epibranchial lobes. It is
347	impossible to compare these taxa in more detail, because the single specimen of R .
348	oblitum was lost (see Wright and Collins, 1972, p. 22).
349	Rathbunopon tarraconensis n. sp. differs from R. schrattenkalkensis from the

350 lower Aptian of the German-Austrian border, in having: two protogastric tubercles (vs

351	one in R. schrattenkalkensis), epi- and mesobranchial lobes separated from the
352	metagastric lobes (vs interconnected), and two supraorbital projections (vs one in R .
353	schrattenkalkensis; see Klompmaker et al., 2011, pp. 199–200, fig. 6A–C).
354	Comparison of <i>Rathbunopon tarraconensis</i> n. sp . with <i>R. tuberculatum</i> from the
355	Hauterivian of Auxerre (France), is difficult in view of the fragmentary nature of the
356	latter, but the new species differs from it in having a more sculptured dorsal carapace,
357	more prominent outer-orbital and epibranchial teeth, a lack of tubercles in the hepatic
358	region; two supraorbital projections and a smooth anterior part of the carapace (vs
359	apparently granulated in <i>R. tuberculatum</i> ; see Van Straelen, 1936, pp. 31–33, pl. 4, fig.
360	4).
361	Rathbunopon tarraconensis n. sp. differs from R. viai from the lower Aptian of
362	Cantabria (Spain) in having a less marked pyriform shape than the latter, a granulated
363	surface only on metabranchial lobes (vs entire dorsal carapace granulated in R. viai), a
364	greater fronto-orbital/carapace width ratio, a wider rostrum; two supraorbital projections

365 (*vs* slightly sinuous supraorbital margin in *R. viai*) and a better-marked urogastric region
366 (see González-León et al., 2016).

Rathbunopon tarraconensis n. sp. has the same inflated metagastric regions in 367 common with R. woodsi from the Cenomanian of Devon (United Kingdom) and the 368 369 lower Cenomanian of Orne (France), but differs from the latter in having granulated metabranchial lobes (vs completely smooth cuticle in R. woodsi), two supraorbital 370 371 projections (vs one in R. woodsi) a greater fronto-orbital/carapace width ratio, a narrower intestinal region and shorter posterior margin (see Withers, 1951, p. 179, pl. 372 16, figs. 5-6; Wright and Collins, 1972, pp. 22-23, pl. 1, fig. 7a-e; Klompmaker et al., 373 374 2011, fig. 5b; and González-León et al., 2016).

375	All these differences, justify the erection of a new species for the La Cova del
376	Vidre specimens, despite the evident similarities amongst all species of <i>Rathbunopon</i> .
377	In addition, the temporal and palaeobiogeographical distribution of these taxa, ranging
378	from the Hauterivian to the Cenomanian of North America and Europe, reinforces this
379	view (see also González-León et al., 2016).
380	
381	Superfamily Dromioidea De Haan, 1833
382	Family Dromiidae De Haan, 1833
383	Subfamily Goniodromitinae Beurlen, 1932
384	Genus Pithonoton von Meyer, 1842
385	
386	Type species. Pithonoton marginatum von Meyer, 1842, by original designation.
387	
388	Species included. Pithonoton cardwelli Armstrong, Nyborg, Bishop, Ossó-Morales and
389	Vega, 2009; P. campichei (de Tribolet, 1874); P. elongatum von Meyer, 1860; P.
390	laevimarginatum Lőrenthey and Beurlen, 1929; P. lluismariaorum n. sp.; P.
391	marginatum von Meyer, 1842; P. obtusum (von Meyer, 1857); P. rusticum Patrulius,
392	1966 and <i>P. simplex</i> (von Meyer, 1837).
393	
394	Remarks. Pithonoton was used as 'litter bin' genus, and many species have been
395	assigned to it over time. Most have subsequently been reassigned to other genera such
396	as Goniodromites, Eodromites and Tanidromites (Schweitzer and Feldmann, 2007).
397	Here we include only those species that have not been assigned to these other genera
398	with confidence, and only species with subvertical, subparallel lateral margins, wide
399	branchial regions, longitudinally and transversely strongly vaulted dorsal carapaces,

400	with widely U-shaped cervical grooves, in which both the cervical and the branchial
401	grooves notch the carapace margin.
402	
403	Pithonoton lluismariaorum n. sp.
404	Figs. 9–10
405	Derivation of name. From María Sánchez and Lluís Prieto, who found and donated the
406	holotype.
407	
408	Type locality. La Cova del Vidre (municipality of Roquetes), Baix Ebre County,
409	province of Tarragona (Catalonia) in the Els Ports Massif.
410	
411	Stratigraphic horizon. Margas de Forcall Formation, lower Aptian (Deshayesites
412	deshayesi Zone).
413	
414	Material. Two specimens with complete dorsal carapace preserving cuticle, and a third
415	incomplete specimen in the collections of the Museu de Geologia de Barcelona (MGB).
416	The holotype is MGB 84277, measuring L 14,2 mm, W 11 mm, fronto-orbital width 8,8
417	mm. Paratype MGB 84278 measures L 11 mm, W 10 mm, fronto-orbital width 8,5 mm,
418	and paratype MGB 84279 measures L 11,4 mm, W 8 mm.
419	
420	Diagnosis. Carapace subovate; wide fronto-orbital margin occupying entire anterior
421	carapace width; length slightly exceeding width, markedly convex in longitudinal and
422	transverse cross sections; front conspicuously wide, produced, triangular with bilobed
423	tip; anterolateral carapace margins anteriorly with strong teeth, posteriorly with equal-
424	sized, blunt spines; carapace surface smooth, areolation weak; cardiac region rather

broad, cervical and branchial grooves parallel, both notching the lateral carapace
margins; orbits large, deep, ovate, suborbital margin produced in pointed tooth.

427

Description. Carapace subovate, length exceeding width, greatest carapace width 428 approximately 40 per cent total carapace length from front; markedly convex in 429 longitudinal and transverse cross sections; orbitofrontal margin slightly narrower than 430 maximum carapace width, lateral spines included. Front prominent, produced, broadly 431 432 triangular, tip bilobed; orbital margins long, entire, slightly raised; orbits conspicuously large, deep, broadly ovate, with blunt outer orbital corner. Suborbital margin sinuous, 433 indented just below outer orbital corner, and produced in pointed tooth dorsally visible. 434 Anterolateral margins sharp in cross section, subdivided by cervical groove notching the 435 margin anteriorly, making short anterior partition with strong spine directed outwards 436 437 and forwards, and longer, convex posterior portion, bearing three small, equally divided spines. Posterolateral margin long, strongly curved towards posterior margin. Posterior 438 439 margin concave in dorsal view, strongly concave in posterior view, relatively narrow, 440 lined by a subtle rim and a shallow groove.

Epigastric regions small, weakly vaulted, closely interspaced, bounding the 441 weakly defined, broadly triangular mesogastric region. Posterior mesogastric process 442 broadly based. Protogastric regions large, barely separated from narrow hepatic region. 443 Urogastric lobe low, wide, anterior margin concave, posterior margin straight, ornated 444 with small granules transversely aligned. Cardiac region shield shaped, swollen, 445 laterally well delimited by short branchiocardiac grooves, ornate with a transverse row 446 of small granules. Meso- and metabranchial regions weakly differentiated, oblique, 447 448 paired by cervical and branchial grooves. Cervical groove shallow, entire, as a wide V, notching carapace margin; axially interrupted between closely interspaced gastric pits. 449

Branchial groove sinuous, subparallel to cervical groove, more clearly defined, strongly
notching lateral carapace margin. Grooves continued converging on ventral carapace,
which is conspinuously large, with prominent subhepatic region.

453

454	Remarks. Von Meyer (1837, 1842, 1857, 1860) described four species of Pithonoton
455	from the Upper Jurassic of Germany, namely P. elongatum, P. marginatum, P. obtusum
456	and P. simplex. Comparison with P. lluismariaorum n. sp. is difficult since all of von
457	Meyer's originals were lost during the Second World War, and only of the type species
458	P. marginatum has a neotype been designated. Based on the original figures and
459	descriptions, all Late Jurassic species from Germany differ from P. lluismariaorum n.
460	sp . at least by the sinuous shape of the cervical groove, which marks a lowered portion
461	at the base of the mesogastric region. Also, the posterior portion of the mesogastric
462	region is defined in the Late Jurassic species from Germany, but not in P.
463	lluismariaorum n. sp. The cuticle of P. marginatum is entirely granular while only
464	some scattered granules are seen in the new species.

Prosopon laevimarginatum from the Upper Jurassic of Hungary, is more
elongate, with more diverging lateral margins. The gastric region is well defined, in
contrast to that in *P. lluismariaorum* n. sp. in which only the anterior mesogastric
process, and the posterior base of the gastric regions are noticeable. The outer orbital
corners of *P. laevimarginatum* are simple and prominent, while they are double, blunt
and more subtle in *P. lluismariaorum* n. sp. (see Lőrenthey and Beurlen, 1929, pp. 85–
87, pl. 3, fig. 8).

472 *Pithonoton rusticum* from the Upper Jurassic of Romania is closely comparable
473 to the type species, *P. marginatum*. Wehner (1988) synonymised the two species but

474 Schweitzer and Feldmann (2007) considered them distinct, following re-examination of 475 a paratype of Patrulius's species. Both forms have fairly straight, continuous lateral margins, which are diverging towards anterior; they have sinuous cervical grooves with 476 477 the median third distinctly lowered, and the mesogastric region completely defined. On the basis of these characteristics they are readily distinguished from *P. lluismariaorum* 478 **n. sp.** (see Patrulius, 1960, pp. 511–512, pl. 31, figs. 17–18). 479 Pithonoton cardwelli, from the Paleocene of Texas, represents the youngest 480 member of the genus, being known from the holotype only, a carapace with some parts 481 of the lateral margins crumbled, and the anterior portion of the thoracic sternum 482 preserved. Lateral margins in *P. cardwelli* are smooth, not granular as in *P.* 483 *lluismariaorum* **n. sp.**, and the cervical and branchial grooves are more V-shaped in the 484 fomer. On the lateral carapace flanks, the cervical and branchial grooves rapidly 485 486 converge in P. lluismariaorum n. sp. while they remain distant in P. cardwelli. Also, the posterior carapace in *P. cardwelli* is relatively wider, and the cardiac region is 487 lower. Nevertheless, these species are morphologically similar in having an overall 488 rather smooth carapace with weakly inflated regions, subparallel lateral margins, and 489 carapaces that are convex in both cross sections (see Armstrong et al., 2009, pp. 748-490 750, figs. 3, 9–12). 491 Pithonoton campichei, from the Hauterivian (Lower Cretaceous) of Switzerland, 492

is the only other Cretaceous member of the genus. The taxon is represented by two
partial carapaces, currently housed in the colletions of the Musée cantonal de Géologie
(Lausanne). Of all *Pithonoton* spp. it is morphologically most closely similar to *P*. *lluismariaorum* n. sp. in having an overall smooth carapace, subparallel lateral margins,
lateral margins that are convex between the cervical and branchial grooves, and overall
rather horizontal cervical and branchial grooves. The new species differs in having more

499	inflated dorsal regions, in particular the branchial and cardiac regions; in having a
500	continuously U-shaped cervical groove (sinuous, median third distinctly lowered, in P.
501	campichei), and a more domed carapace in lateral view (see de Tribolet, 1874, pp. 360-
502	361, pl. 12, fig. 9).
503	Thus, P. lluismariaorum n. sp. is most closely similar to the other Cretaceous

and Paleocene species of *Pithonoton* in having a continuous cervical groove, rather
smooth carapace, and a weakly defined mesogastric region. The genus flourished in the

506 Late Jurassic but was only a minor component of Cretaceous decapod crustacean

507 faunules. It appears to have became extinct after the Paleocene.

508

509 **5. Conclusions**

510 For the first time the stratigraphic section at the La Cova del Vidre outcrop is 511 described and illustrated, and ammonites are used for a biozone interpretation of the 512 sequence exposed. Newly collected specimens of *Pagurus avellanedai* from the type 513 locality have enabled an improvement and emendation of the original description. The 514 marked abundance of *P. avellanedai* at La Cova del Vidre, contrasts with the paucity of 515 this species in other relatively close localities in the Maestrat Basin.

In addition, two new brachyuran species are erected herein, *Rathbunopon tarraconensis* n. sp. (Prosopidae) and *Pithonoton lluismariaorum* n. sp. (Dromiidae). It
is of note that three (out of six) species of *Rathbunopon*, inclusive of the new one, have
been recorded and described from the Lower Cretaceous of the Iberian Peninsula.

520

521

522 Acknowledgements

523	We are indebted to María Sánchez and Lluís Prieto (Barcelona, Catalonia) and
524	Manuel Cervantes (Rubí, Catalonia), who found and kindly donated the type material of
525	the new decapod crustacean species described herein. Scott Morrison (University of
526	Oregon, Corvallis, Oregon) provided important items of literature; Enric Forner (Ateneu
527	de Natura, Castelló de la Plana, Spain) assisted during field work and identified the
528	associated fauna. We are grateful to René H.B. Fraaije (Oertijdmuseum, Boxtel, The
529	Netherlands) and Matúš Hyžný (Natural History Museum, Vienna, Austria and
530	Comenius University, Bratislava, Slovakia) and Associate Editor John W.M. Jagt
531	(Natuurhistorisch Museum Maastricht) for its constructive reviews. The present study
532	was partially supported by the projects CGL2015-69805-P (MINECO, FEDER, EU)
533	and PAPIIT IN107617 (DGAPA, Universidad Nacional Autónoma de México).
534	
535	References
536	Alcock, A., 1900. Materials for a carcinological fauna of India, No. 5. The Brachyura
537	Primigenia or Dromiacea. Journal of the Asiatic Society of Bengal 68 (2) 3,
538	123–169.
539	Armstrong, A., Nyborg, T., Bishop, G.A., Ossó-Morales, À., Vega, F.J., 2009. Decapod
540	crustaceans from the Paleocene of Central Texas, USA. Revista Mexicana de
541	Ciencias Geológicas 26, 745–763.
542	Artal, P., Osso, A., van Bakel, B., Fraaije, R., Jagt, J., 2010. A new crab assemblage
543	from the middle Aptian of Barcelona Province (Catalonia, northeast Spain), p. 7.
544	In: Schweigert, G. (Ed.), 4th Symposium on Mesozoic and Cenozoic Decapod
545	Crustaceans, Eichstätt, Germany, Abstracts, 7. Jura-Museum Eichstätt, Eichstätt.

546	Bataller, J.R., 1943. Los estudios paleontológicos sobre el Cretácico español. Memorias
547	de la Real Academia de Ciencias y Artes 26 (560), 519–561.
548	Bersac, S., Bert, D., 2015. Two ammonite species under the same name: Revision of
549	Deshayesites deshayesi (d'Orbigny, 1841) based on topotype material (Lower
550	Aptian, Lower Cretaceous, Northeast of France). Annales de Paléontologie 101,
551	265–294.
552	Beschin, C., De Angeli, A., Checchi, A., Zarantonello, G., 2012. Crostacei del
553	giacimento eocenico di Grola presso Spagnago di Cornedo Vicentino (Vicenza,
554	Italia settentrionale) (Decapoda, Stomatopoda, Isopoda). Museo di Archeologia
555	e Scienze naturali "G. Zannato", 100 pp.
556	Beurlen, K., 1932. Brachyurenreste aus dem Lias von Bornholm mit Beiträgen zur
557	Phylogenie und Systematik der brachyuren Dekapoden. Paläontologische
558	Zeitschrift 14, 52–66.
559	Bulot, L.G., Frau, C., Pictet, A., in press. Revision of Toxoceratoides royeri (d'Orbigny,
560	1842) and its bearing on the systematics of the Aptian Acrioceratidae
561	Vermeulen, 2004 (Ammonoidea, Ancyloceratina, Ancyloceratoidea). Cretaceous
562	Research.
563	Canérot, J., Cuny, P., Pardo, G., Salas, R., Villena., J., 1982. Ibérica Central-
564	Maestrazgo, pp. 273-344. In: Universidad Complutense de Madrid (Ed.). El
565	Cretácico de España. Universidad Complutense de Madrid, Madrid.
566	Carter, J., 1898. A contribution to the palaeontology of the decapod Crustacea of
567	England. The Quarterly Journal of the Geological Society of London 54, 15–44.

568	Collins, J.S.H., Jakobsen, S.L., 2004. New crabs (Crustacea, Decapoda) from the
569	Eocene (Ypresian/Lutetian) Lillebælt Clay Formation of Jutland, Denmark.
570	Bulletin of the Mizunami Fossil Museum 30 (for 2003), 63–96.
571	De Haan, W., 1833-1850. Crustacea. In: von Siebold, P. F. (Ed.), Fauna Japonica sive
572	Descriptio Animalium, quae in Itinere per Japoniam, Jussu et Auspiciis
573	Superiorum, qui summum in India Batava Imperium Tenent, Suscepto, Annis
574	1823-1830 Collegit, Notis, Observationibus et Adumbrationibus Illustravit. J.
575	Müller et Co., Lugduni Batavorum (Leiden), i–xvii, i–xxxi, ix–xvi + 243 pp.
576	Fabricius, J.C., 1775. Systema Entomologiae, sistens Insectorum Classes, Ordines,
577	genera, Species, adjectis synonymis, Locis, Descriptionibus, Observationibus.
578	Flensburgi et Lipsiae: Officina Libraria Kortii, 832 pp.
579	Fraaije, R.H.B, van Bakel, B.W.M., Jagt, J.W.M., 2015. A new Albian hermit crab
580	(Anomura, Paguroidea) from France – another example of capsulated setae in an
581	extinct form. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen
582	277(3), 353–359.
583	Franțescu, O., 2014. Fossil decapods from the Cretaceous (late Albian) of Tarrant
584	County, Texas. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen
585	273(3), 221–239.
586	Garcia, R., Moreno-Bedmar, J.A., Bover-Arnal, T., Company, M., Salas, R., Latil, JL.,
587	Martín-Martín, J.D., Gomez-Rivas, E., Bulot, L.G., Delanoy, G., Martínez, R.,
588	Grauges, A., 2014. Lower Cretaceous (Hauterivian-Albian) ammonite
589	biostratigraphy in the Maestrat Basin (E Spain). Journal of Iberian Geology 40,
590	99–112.

the second se		
591	González-León, O., Ossó, À., Moreno-Bedmar, J.A., Vega, F.J., 2016. A new	
592	Prosopidae (Brachyura, Homolodromioidea) and the second record	
593	of Mithracites vectensis (Homoloidea) from the Aptian of Spain. Neues	
594	Jahrbuch für Geologie und Paläontologie Abhandlungen 282(2), 115–124.	
595	Guinot, D., 1977. Proposition pour une nouvelle classification des Crustacés Décapodes	
596	Brachyoures. Comptes Rendus hebdomadaires des Séances de l'Académie des	
597	Sciences (Paris) D 285, 1049–1052.	
598	Guinot, D., Tavares, M., Castro, P., 2013. Significance of the sexual openings and	
599	supplementary structures on the phylogeny of brachyuran crabs (Crustacea,	
600	Decapoda, Brachyura), with new nomina for higher-ranked podotreme taxa.	
601	Zootaxa 3665(1), 1–414.	
602	Harvey, A.W., 1998. New names for Miocene hermit crabs (Decapoda, Anomura,	
603	Paguridae). Crustaceana 71(1), 119–121.	
604	Institut Cartogràfic de Catalunya, 2006. 22 Montsià. Mapa geològic comarcal de	
605	Catalunya 1:50 000. Barcelona.	
606	Klompmaker, A.A., Artal, P., Gulisano, G., 2011. The Cretaceous crab Rathbunopon:	
607	revision, a new species and new localities. Neues Jahrbuch für Geologie und	
608	Paläontologie, Abhandlungen 260(2), 191–202.	
609	Lamarck, J.B.P.A., 1819. Histoire naturelle des animaux sans vertèbres 6, 232 pp. Paris,	
610	A. Belin.	
611	Latreille, P.A., 1802–1803. Histoire naturelle, géneral et particulière des crustáces et des	
612	insects 3, 468 pp. Paris, F. Dufart.	
613	Linnaeus, C., 1758. Systema Naturae per Regna Tria Naturae, Secundum Classes,	
614	Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis.	
615	(Editio decimo) 1, iii + 824 pp. Holmiae, Laurentii Salvii.	

616	Lőrenthey, E., 1909. Beiträge zur Kenntnis der Eozänen Dekapodenfauna Ägyptens.
617	Mathematische und Naturwissenschaftlichen Berichte aus Ungarn 24, 106–152
618	[Hungarian version published in 1907].
619	Lőrenthey, E., Beurlen, K., 1929. Die fossilen Decapoden der Länder der Ungarischen
620	Krone. Geologica Hungarica, Series Palaeontologica 3, 1–420.
621	MacLeay, W.S., 1838. On the brachyurous decapod Crustacea brought from the Cape
622	by Dr. Smith, pp. 53–71. In: Smith, A., Illustrations of the Annulosa of South
623	Africa; consisting chiefly of figures and descriptions of the objects of natural
624	history collected during an expedition into the interior of South Africa, in the
625	years 1834, 1835, and 1836; fitted out by "The Cape of Good Hope Association
626	for Exploring Central Africa." Smith, Elder and Company, London.
627	Martins-Neto, R.G., 1987. Primeiro registro de decápode na Formação Santana, Bacia
628	do Araripe (Cretáceo Inferior), Brasil. Ciência e Cultura 39, 406–410.
629	Meyer, H. von, 1837. Briefliche Mitteilungen. Neues Jahrbuch für Mineralogie,
630	Geologie und Paläontologie 1837, 1–314.
631	Meyer, H. von, 1842. Über die in dem dichten Jurakalk von Aalen in Würtemburg
632	vorkommenden Spezies des Crustaceengenus Prosopon. Beiträge zur
633	Petrefaktenkunde 5, 70–75.
634	Meyer, H. von, 1857. Briefliche Mitteilungen. Neus Jahrbuch für Mineralogie, Geologie
635	und Paläontologie 1857, 1–556.
636	Meyer, H. von, 1860. Die Prosoponiden oder die Familie der Maskenkrebse.
637	Palaeontographica 7, 183–222.

638	Moreno-Bedmar, J.A., Ferrer, O., Artal, P., Bover-Arnal, T., Company, M., Gallemí, J.,
639	Martín-Closas, C., Martínez, R., Ossó, A., Salas, R., Villalba-Breva, S., 2008.
640	Bioestratigrafía integrada del Aptiense del Macizo del Garraf (Cadenas Costero-
641	Catalanas, NE de España). Datos preliminaries, pp. 158–159. Ruiz-Omeñaca,
642	J.I., Piñuela, L., García-Ramos, J.C. (Eds), Libro de Resúmenes. XXIV Jornadas
643	de la Sociedad Española de Paleontología. Museo del Jurásico de Asturias
644	(MUJA), Colunga, 15-18 de octubre de 2008.
645	Moreno-Bedmar, J.A., Ramírez, L., Company, M., Delanoy, G., Bover-Arnal, T., Bulot,
646	LG., Latil, JL., Salas, R., 2009. Biostratigrafía de los amonites de Can
647	Casanyes, Macizo del Garraf (Barcelona, España). Batalleria 14, 91–98.
648	Moreno-Bedmar, J.A., Company, M., Bover-Arnal, T., Salas, R., Delanoy, G.,
649	Maurrasse, F.JM.R., Grauges, A., Martínez, R., 2010. Lower Aptian ammonite
650	biostratigraphy in the Maestrat Basin (Eastern Iberian Chain, Eastern Spain). A
651	Tethyan transgressive record enhanced by synrift subsidence. Geologica Acta
652	8(3), 281–299.
653	Moreno-Bedmar, J.A., Barragán, R., Delanoy, G., Company, M., Salas, R., 2014.
654	Review of the early Aptian (Early Cretaceous) ammonoid species Deshayesites
655	deshayesi (d'Orbigny, 1841). Cretaceous Research 51, 341-360.
656	Moreno-Bedmar, J.A., Albalat, D., Mallofré, A., Ossó, A., Vilà, M., 2016. Estratigrafia
657	mesozoica i nous cefalòpodes de l'Aptià del Vendrell, sud-oest del massís del
658	Garraf (Catalunya). Nemus 6, 61–72.
659	Moreno-Bedmar, J.A., Robert, E., Matamales-Andreu, R., Bover-Arnal, T., 2017.
660	Review of the early Albian ammonites of the Montmell Formation near

	ACCEPTED MANUSCRIPT
661	Marmellar (Salou-Garraf Basin, Tarragona, Catalonia, Spain). Carnets de
662	Géologie/Notebooks on Geology, Brest, Article 17(1), 1-10.
663	Müller, P., 1979. Decapoda (Crustacea) fauna a budapesti miocénbol (5). Földtani
664	Közlöny 108(3), 272–312.
665	Müller, P., 1984. Decapod Crustacea from the Badenian. Geologica Hungarica 42, 1–
666	317.
667	Müller, P., Collins, J. S. H., 1991. Late Eocene coral-associated decapods (Crustacea)
668	from Hungary. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire
669	Geologie 28(2–3), 47–92.
670	Orbigny, A. d', 1841. Paléontologie Française. Description zoologique et géologique de
671	tous les animaux mollusques et rayonnés fossiles de France. Terrains Crétacés.
672	1, Céphalopodes. Part II (1841), 121–430. Masson, Paris.
673	Patrulius, D., 1960. Les Décapodes du Tithonique Inférieur deWoïniki (Carpates
674	Polonaises Occidentales). Annales de la Société géologique de Pologne 36 (4),
675	495–517.
676	Patrulius, D., 1966. Les Décapodes du Tithonique inférieur de Woźniki (Carpates
677	Polonaises Occidentales). Annales de la Société Géologique du Pologne 34,
678	495–517.
679	Philippe, M., Secrétan, S., 1971. Crustacés Décapodes du Burdigalien des Courennes
680	(Vaucluse). Annales de Paléontologie (Invertébrés) 57, 117-134.
681	Rathbun, M.J., 1935. Fossil Crustacea of the Atlantic and Gulf Coastal Plain.
682	Geological Society of America, Special Paper 2, i-viii + 160 pp.

683	Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Idakieva, V.,		
684	Ivanov, M., Kakabadze, M.V., Moreno-Bedmar, J.A., Sandoval, J., Baraboshkin,		
685	E.J., Çaglar, M.K., Főzy, I., González-Arreola, C., Kenjo, S., Lukeneder, A.,		
686	Raisossadat, S.N., Rawson, P.F., Tavera, J.M., 2014. Report on the 5th		
687	International Meeting of the IUGS Lower Cretaceous Ammonite Working		
688	Group, the Kilian Group (Ankara, Turkey, 31st August 2013). Cretaceous		
689	Research 50, 126–137.		
690	Ristori, G., 1886. I crostacei brachiuri e anomuri del pliocene italiano. Bollettino della		
691	Società Geologica Italiana 5, 93–128.		
692	Ristori, G., 1888. Alcuni crostacei del miocene medio italiano. Atti della Società		
693	Toscana di Scienze Naturali (Pisa) 9, 212–219.		
694	Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy, and crustal		
695	evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics		
696	228, 33–55.		
697	Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., Alonso, A., 2001.		
698	Evolution of the Mesozoic central Iberian Rift System and its Cainozoic		
699	inversion (Iberian chain). In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F.,		
700	Crasquin-Soleau, S. (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench		
701	Basins and Passive Margins. Mémoires du Muséum national d'Historie naturelle		
702	Paris 186, 145–186.		
703	Schweitzer, C.E., Feldmann, R.M., 2001. New Cretaceous and Tertiary decapod		
704	crustaceans from western North America. Bulletin of the Mizunami Fossil		
705	Museum 28, 173–210.		

706	Schweitzer, C.E., Feldmann, R.M., 2007. A new classification for some Jurassic
707	Brachyura (Crustacea: Decapoda: Brachyura: Homolodromioidea): families
708	Goniodromitidae Beurlen, 1932 and Tanidromitidae new family.
709	Senckenbergiana Lethaea 87, 119–156.
710	Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H., Schweigert, G., 2010.
711	Systematic list of fossil decapod crustacean species. Crustaceana Monograph 10,
712	1–222.
713	Schweitzer, C.E., Feldmann, R. M., Karasawa, H., 2012. Part R, Revised, Volume 1,
714	Chapter 8M: Systematic descriptions: Infraorder Brachyura, Section Dromiacea.
715	Treatise Online 51, 1–43.
716	Solé, J., Via, L., 1988. Crustacis Decàpodes fossils dels Països Catalans (Recopilació i
717	actualització des de 1855 a 1988). Batalleria 2, 23–42.
718	Stenzel, H.B., 1945. Decapod crustaceans from the Cretaceous of Texas. The University
719	of Texas Publication 4401, 401–477.
720	Stimpson, W. 1859. Notes on North American Crustacea. [Preprint from] Annals of the
721	Lyceum of Natural History in New York 7: 49–93.
722	Swinnerton, H.H., 1935. The rocks below the Red Chalk of Lincolnshire and their
723	cephalopod faunas. The Quarterly Journal of the Geological Society of London
724	91, 1–46.
725	Tribolet, M. de, 1874. Description des Crustacés du terrain néocomien du Jura
726	neuchâtelois et vaudois. Bulletin de la Société géologique de France (3) 2, 350-
727	365.

728	Van Straelen, V., 1936. Crustaces Décapodes nouveaux ou peu connus de l'époque	
729	Crétacique. Bulletin du Musée royal d'Histoire naturelle de Belgique 12, 1–49.	
730	Van Straelen, V., 1944. Anomure et Brachyures du Cénomanien de la Navarre. Bulletin	
731	du Musée royal d'Histoire naturelle de Belgique 20, 1–12.	
732	Vía, L., 1951. Contribución al estudio de los decápodos del secundario en España.	
733	Anales de la Escuela de Peritos Agrícolas y Superior de Agricultura y de los	
734	Servicios Técnicos de Agricultura 10, 151–180.	
735	Vía, L., 1959. Decápodos fósiles del Eoceno español.: Boletín del Instituto Geológico y	
736	Minero de España 70, 331–402.	
737	Via, L., 1988. Els decàpodes, pp. 343-352. In: Enciclopèdia Catalana (Ed.), Història	
738	Natural dels Països Catalans, 15 (Registre fòssil). Barcelona, Fundació	
739	Enciclopèdia Catalana.	
740	Wehner, G., 1988. Über die Prosoponiden (Crustacea, Decapoda) des Jura. Dissertation	
741	zur Erlangung des Doktorgrades der Fakultät für Geowissenschaften der	
742	Ludwig-Maximilians-Universität zu München, 154 pp.	
743	Whetstone, K.N., Collins, J.S.H., 1982. Fossil crabs (Crustacea: Decapoda) from the	
744	Upper Cretaceous Eutaw Formation of Alabama. Journal of Paleontology 56(5),	
745	1218–1222.	
746	Withers, T.H., 1951. Some Jurassic and Cretaceous crabs (Prosoponidae). Bulletin of	
747	the British Museum (Natural History) Geology Series 1(6), 171–186.	
748	Wright, C.W., Collins, J.S.H., 1972. British Cretaceous crabs. Monographs of the	
749	Palaeontographical Society London 126(533), 1-113.	

	AUUEI

751 **Figure captions**

- **Fig. 1.** A, Map of the Iberian Peninsula showing the location of the study area within
- the linking zone, Catalonia (northeast Iberian Peninsula). The area is situated between
- the Maestrat and Salou-Garraf basins in the Iberian Chain and Catalan Coastal Ranges,
- respectively. **B**, Geological map (modified from Institut Cartogràfic de Catalunya,
- 2006) of the Mas Barberans area, that showing the sampling site (red star) at La Cova
- 757 del Vidre locality. Geographical co-ordinates in UTM.
- **Fig. 2**. Stratigraphic log of La Cova del Vidre section with details of the interval

sampled and the beds (CV1-CV4) that yielded decapod crustaceans and ammonites

- 760 within the Margas de Forcall Formation.
- 761 Fig. 3. Deshayesites deshayesi (A–I, K–L) and Cheloniceras cf. cornuelianum (J). A1–
- 762 2, lateral and ventral views of specimen 89914, bed CV1. B, lateral view of specimen
- 763 89918, bed CV3. C1–2, lateral and ventral views of specimen 89930, bed CV3E. D,
- 764 lateral view of specimen 89921, bed CV3E. E1–2, lateral and ventral views of specimen
- 765 89925, bed CV3E. F1-2, lateral and ventral views of specimen 89926, bed CV3E. G1-
- 2, lateral and ventral views of specimen 89928, bed CV3E. H, lateral view of specimen
- 767 89929, bed CV3E. I, lateral view of specimen 89934, bed CV3E. J, Cheloniceras cf.
- *cornuelianum*, ventral view of specimen 89915, bed CV3. **K**, lateral view of specimen
- 769 89933, bed CV3E. L1–2, lateral and ventral views of specimen 89932, bed CV3E. Scale
- bars equal 10 mm.
- Fig. 4. Pagurus avellanedai Vía, 1951, right chelae. A–E, MGSB 82920, in outer
- 1772 lateral, inner lateral, frontal, lower margin and upper margin views, respectively. **F**–**J**,

750

- MGSB 82921, in outer lateral, inner lateral, frontal, upper margin and lower margin
- views, respectively. Scale bars equal 10 mm.
- **Fig. 5**. *Pagurus avellanedai* Vía, 1951, left chelae. **A–E**, MGSB 82922, in outer lateral,
- inner lateral, upper margin and lower margin views, respectively. F–I, MGSB 82923, in
- outer lateral, inner lateral, frontal and upper margin views, respectively. J–K, holotype
- 778 MGSB 1732a, in outer lateral view and inner lateral views, respectively. Scale bars
- 779 equal 10 mm.
- 780 Fig. 6. Pagurus avellanedai Vía, 1951, reconstructions of right (A) and left (B) chelae
- 781 (illustrations by F.A. Ferratges-Kwekel). Scale bar equals 10 mm.
- 782
- **Fig. 7**. *Rathbunopon tarraconensis* **n. sp. A–C**, Holotype MGB 84275, in dorsal (A),
- frontal (B) and right lateral views (C) and a closeup of left orbit (B'). **D**–**F**, Paratype
- 785 MGB 84276, in dorsal, frontal and right lateral views, respectively. Abbreviations: r,
- rostrum; in, infraorbital tooth; sup, supraorbital tooth; ou, outer orbital tooth; epb,
- epibranchial tooth. Scale bars equal 10 mm (5 mm for B').
- 788
- Fig. 8. *Rathbunopon tarraconensis* n. sp., reconstruction of dorsal carapace (illustration
 by F.A. Ferratges-Kwekel). Scale bar equals 10 mm.
- 791 Fig. 9. Pithonoton lluismariaorum n. sp. A–C, I, holotype MGB 84277, in dorsal,
- frontal, left lateral and right lateral views, respectively. **D–E**, paratype MGB 84278, in
- right lateral and dorsal views, respectively. **F–H**, paratype MGB 84279, in dorsal,
- frontal and left lateral views, respectively. Scale bar equals 10 mm.
- 795

- 796 Fig. 10. *Pithonoton lluismariaorum* n. sp., reconstruction of dorsal carapace
- 797 (illustration by F.A. Ferratges-Kwekel). Scale bar equals 10 mm.

798

