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Abstract

In this paper a novel approach for three-dimensional (3D) modelling is proposed for a High
Temperature Exchange Membrane Fuel Cell (HTPEMFC). This new modelling is based on On-
sager’s principle of minimum energy dissipation that is applicable for near equilibrium and cou-
pled irreversible systems. In particular, for low conductivity membranes, this leads to a one
directional proton movement through the membrane. The resulting equations are numerically
solved for a real single cell geometry, using a 3D finite volume discretization. Results are ana-
lyzed and validated against experimental data.
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1. Introduction

Fuel cells are nowadays extensively studied due to their potential as an alternative energy
converter for a wide range of applications. They have unique technological attributes: efficiency,
absence of moving parts and very low emissions. In particular, the proton-exchange membrane
fuel cells (PEMFC) are today in the focus of interest as one of the most promising technologies
in development for the automotive industry and stationary power plants.

Numerical calculations are a very valuable engineering tool which could be applied to obtain
hints for the development of optimal control and operating strategies of these devices. Conse-
quently, there is a need to simulate the internal processes (reactions, mass transport, heat trans-
port) occurring in a fuel cell, which in its turn requires a formulation of adequate physical models.
Besides, many of the physical phenomena taking place in a fuel cell, such as the electrochemical
reactions, mass and heat transport, canot be observed directly in experiments, at least not in sig-
nificant zones of the cell. A better understanding of these highly coupled processes could then
be obtained by the use of good physical models and numerical methods.

In the past couple of decades a large number of modelling strategies have been adopted,
starting with the one-dimensional models of Springer et al. [1] and Bernardi and Verbrugge [2, 3].
Several two-dimensional models have been presented by researchers [4], [5] and [6]. Most of
these models compute the flow field along a single channel to study the reaction species and
current density distributions. Results of polarization curves are well correlated with experimental
data.

Three-dimensional (3D) models account for the effect of the complex geometry and allow
a parametric study for a realistic flow field, concentration and current distributions. Works in-
cluding these models have been published since the last nineties (Shimpalee et al. [7]). Bern-
ing et al. [8] developed a 3D PEMFC model including irreversibilities and entropic heat terms
at catalyst layers, and Joule heating at the membrane. Zhou and Liu [9] developed a three-
dimensional PEMFC model, ignoring the reversible reaction heat (entropic heat of reactions).
Recent publications consider special aspects of the fuel cell operation, as cold-start [10], gas-
feeding modes [11, 12], or temperature [13]. There is also an increasing interest in numerical
aspects [14] or even new solver approaches [15]. PBI membranes have been also studied [16].

The present paper presents a 3D, steady state, constant density and isothermal electrochem-
ical and species transport modeling for a PBI-based high temperature PEMFC (HTPEMFC). A
new modelling approach is considered, which is based on the principle of least dissipation of
energy (Onsager, see [17]) for coupled and near equilibrium “linear” systems. This linear de-
scription applies if the thermodynamic fluxes are linearly related to the thermodynamic forces,
associated with minimum entropy production, thus the dissipation energy rate will be also min-
imal. In the case of low protonic conductivity membranes, the minimal disspation of energy
leads to a practically one directional movement of protons through the membrane and the cata-
lyst layers. This approach, phyisically sounded, allows for a great simplification in the numerical
solution, which is shown in detail in section 4. The model couples various physical phenomena,
electrochemical reactions and transport through porous media. In the first part, the mathemat-
ical equations describing the model are presented and also their coupling through an iterative
numerical procedure. All the numerics are developed as modules/solvers of OpenFOAM, a free,
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opensource finite volume with polyhedral mesh support code. The model is subsequently applied
to a 3D configuration of an in-house developed single cell and the results are compared with the
readily available experimental data, showing a high degree of agreement.

2. Model Description

Any mathematical model of a physical phenomena has to strike a balance between the level
of complexity and the computational effot needed. The proposed PEM fuel cell model is a com-
prehensive 3D, isothermal, constant density and steady-state model with further assumptions:

• Infinitely thin catalyst layers

• Fick diffusion

• High temperature fuel cell (non liquid water)

• Hydrogen water vapor at anode inlet and oxygen and water vapor at cathodic inlet

• Butler-Vomer equations for electrochemical kinetics

• Migration of H+ protons through the membrane obeying Onsager’s principle

The equations governing these processes include the full mass and momentum conservation
equations (Navier-Stokes), species transport, and additonal phenomenological equations specific
to fuel cells. These equations, with appropriate boundary conditions, were implemented into their
3D form in a custom solver in OpenFOAM and an iterative numerical solution was developed in
order to obtain and compare characteristic curves for an in-house prepared high temperature fuel
cell with the simulation results.

The general idea is to consider the chemical reactions that take place at the catalytic layers,
as outflow of the entire domain. The fuel cell will be divided in three regions, namely the anode
with the gas diffusion layer (GDL) and the catalyst surface, the membrane and the cathode with
its corresponding gas difussion layer and catalyst surface. The information between them will be
given by the fluxes coupled at the boundaries as it will be explained in the following sections.

2.1. Fluid flow equations
In the channels of the bipolar plates, the 3D steady version of the incompressible Navier-

Stokes equations is used, µ being the dynamic viscosity:
Continuity:

∂uj
∂xj

= 0, (1)

Momentum:

uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ µ

∂2ui
∂xj∂xj

. (2)

For the GDL, it is convenient to distinguish between two types of volume averages of the
physical magnitudes of interest inside the porous media [18]:
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Superficial average:

〈•〉 =
1

V

∫
V

• dV, (3)

Intrinsic average:

〈•〉β =
1

Vβ

∫
Vβ

• dVβ, (4)

where β indicates the zone available for the fluid inside the porous media (the “void“ part
in opposition to the solid part), and V indicates a small enough volume used to calculate the
average. In agreement with the notation used, Vβ indicates the void part inside the volume V , its
fraction being the porosity ε by definition. Hence superficial and intrinsic averages are related
through 〈•〉 = ε 〈•〉β .

It can be shown [18, 19] that under appropriate conditions, the superficial averaged velocity is
the matching quantity to the flow velocity and that the intrinsic averaged pressure is the matching
quantity to the flow pressure inside the porous media. This is used for simplifying the notation,
so u and p will be directly written for equations inside the porous media. For a steady state
approximation, the conservations equations are

Continuity inside GDL:
∂uj
∂xj

= 0, (5)

Momentum inside GDL:

1

ε2
uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+
ν

ε

∂2ui
∂xj∂xj

− ν

K
ui, (6)

where ε is the porosity and K is the permeability, assuming an isotropic and homogeneous
porous medium. The second term on the right hand side of Equation 6 is known as the Brinkman
approximation, and the third one reflects the contribution of Darcy’s law. One can observe that
Equations 1 and 2 are recovered in the case of porosity in the channels equal to unity and infinite
permeability. Using simplifying assumptions [18, 19], Equations 5 and 6 can be used throughout
the whole domain without the need of any ”internal” boundary conditions.

2.2. Anode and Cathode
For the anodic ”a” and cathodic ”c” domain (channels+GDl+catalyst), the above explained

equations, namely 5 and 6 will be solved for velocity and pressure fields, as well as a generic
transport equation for the mass fraction of reactants C ∈ {CH2 , CO2}, namely:

usj
∂C

∂xj
=

∂

∂xj
γsef

∂C

∂xj
, (7)

with γsef , s ∈ {a, c} is the effective diffusion coefficient, depending on the porous media. Ac-
cording to [20],

γsef = ε

(
ε− εp
1− εp

)α
γ (8)
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where γ is the diffusion coefficient in the free media, εp is the threshold porosity for filtering
and α is a fitting parameter The water vapor mass fraction will be then calculated as the remaining
part up to unity.

We use the approximation of an infinitely thin catalyst layer. This means that at the catalyst
layer(s), the sum of diffusive and convective flow of reactants (hydrogen for anode and oxygen
for cathode) balances out the mass flow (actually, its electrical equivalent) entering the membrane
(hydrogen) or creating water (oxygen) due to the electrochemical reactions. This is expressed as a
boundary condition at the catalyst layer(s). This and the remaining imposed boundary conditions
are summarised in Table 1.

Anode Cathode
Walls:

u = 0 u = 0
∂CO2

∂xn
= 0

∂CO2

∂xn
= 0

Porous media walls: (free slip)
u · n = 0 u · n = 0

Inlet:
ρua ρuc
CH2 CO2

Free outlet:
∂ua
∂xn

= 0 ∂uc
∂xn

= 0
∂CH2

∂xn
= 0

∂CO2

∂xn
= 0

Catalyst layer (outflow):
ρua ρuc

ρuaCH2 − ργaef
∂CH2

∂xn
= ρua ρucCO2 − ργcef

∂CO2

∂xn
= 8ρuc

Table 1: Boundary conditions for the anode and cathode domains.

with pressure adjusting to velocity, that is to say zero gradient at all prescribed/calculated
velocity boundaries and uniform zero elsewhere. The velocities expressed in the above boundary
conditions are referred to their normal components.

3. Membrane

In principle, in the membrane, whatever its kind, a transport equation for the protons has to be
solved. However, it is possible to avoid a full calculation by considering a significant (and poor)
characteristic of today’s polimeric membranes: their extremely low protonic conductivity. This
implies that the dissipation due to the proton movement crossing through the membrane is very
high. Hence, Onsager’s principle of minimum disssipation can be applied. As mentioned above,
Onsager’s principle establishes that a system near the equilibrium forces its entropy generation to
a minimum. As the membrane is so dissipative, this principle implies that the proton movement
will be forced to be perpendicular to the catalyst layer, crossing the membrane by the shortest
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path. The rest of the transported magnitudes in the cell will adapt to that. The consequence is
that the proton movement is essentially one-dimensional, which greatly simplifies the protonic
current calculation. In fact, for carrying out that calculation, the knowledge of the protonic
conductivity suffices, as it will be next explained.

First, proper boundary, or rather, matching conditions have to be established at the catalyst
layers-membrane interfaces. In this work, the catalyst layers, as mentioned above, will be taken
as inifinetly thin surfaces. So, for the anode, we need to match the protonic current crossing the
membrane with the hydrogen flux leaving their electrons at the catalyst layer. Hence, the mass
flow of H2 (equality (a) of Equation 9) has to be balanced with the protonic flux associated with
the electrochemical reaction (equality (b) of Equation 9; Butler-Volmer equation). This equation
reads:

ja
(a)
=
ρua2F

WH2

(b)
= jar

(
CH2

CH2r

)1/2(
αa + αc
RT

Fηa

)
, (9)

where ja is the (superficial) current density, F is the Faraday’s constant, R is universal gas
constant, T the operating temperature, jar is the reference current density, αa, αc are the transfer
coefficients and CH2r a reference mass fraction.

In the cathode side, where the oxygen mass flow, plus the external electronic current, has to
match the protonic current to form water, the analogous equation reads:

jc
(a)
=
ρuc4F

WO2

(b)
= jcr

(
CO2

CO2r

)
exp

( αc
RT

Fηc

)
, (10)

Notice that ja ≡ ja(x2, x3) ≡ j(x1 = xa, x2, x3, where xa is the anode catalyst layer location,
is a 2 variable function, as, it is jc ≡ jc(x2, x3) ≡ j(x1 = xc, x2, x3, where xc is the cathode
catalyst layer location. This is also true for other functions defined at the catalyst layer(s) location
and expressed with the subindex a or c, as the electronic and protonic potential.

Now, Onsager’s principle implies that protons cross the membrane following a normal path.
That is, the protonic current at a certain location at the membrane entry ja should be equal to the
protonic current jc at its corresponding point at the cathode (the one with the same x2 and x3).
Hence, the following equality holds:

ja = jc. (11)

This also implies that the two corresponding anode-cathode points are related by Ohm’s law.
That is, if there is a protonic potential Φp

a at a certain location at the membrane entry, then its
corresponding point at the cathode will have an electronic potential Φp

c such that:

Φp
c = Φp

a −
Lja
σ
, (12)

where L is the membrane thickness and σ the membrane conductivity. It is reminded that
the electric potential difference is the driving force for the protons, whose interaction with the
membrane generate heat losses, expressed through the inverse of the conductivity.
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Notice that this principle can be applied to standard Nafion membranes too. There, as the
local conductivity depends from the local level of hydration, liquid water transport should be
considered (which will be essentially one-dimensional by Onsager’s principle).

Finally note that there is one more implicit condition. It is supposed that the electronic con-
ductivities at the anode and cathode side are so big that the electronic potential can be considered
constant along each catalytist layer.

4. Iterative method

The previous coupled equations should be numerically solved through some iterative method.
For a given operating intensity I , in order to obtain the corresponding potential loss between the
anode and cathode, we employ the following iterative numerical procedure:

1. To initialize the iterative process, a given intensity I is given at the anode, which is sup-
posed to be uniformly distributed for a starting. This implies that at the anode catalyst
layer, the anodic current is ja = I

Aa
where Aa is the active area of the catalyst layer.

Then

ja
9(a)−−−→ ρua

5,6,7−−−→ CH2

9(b)−−−→ ηa = −Φp
a (13)

2. The last equality holds due to the nil value of electronic potential convention at the hidro-
gen anode. Which is taken constant along the anode by the high electronic conductivity.
As explained above, the current at corresponding points on both sides of the membrane
stays the same, so ja = jc, with the protonic potential Φp

c obtained from the ohmic loss
reflected in Equation 12. With this information, the iterative process at the cathode can be
started:

jc
10(a)−−−→ ρuc

5,6,7−−−→ CO2

10(b)−−−−→ ηc,Φ
p
c −→ Φe

c −→ (14)

〈Φe
c〉

10(b)−−−−→ j?c
I=const−−−−→ jc

It is reminded that the electronic potential is constant in both electrodes (electronic con-
ductivity is very high), which means that its averaging is required at the catalyst layer.
However, this averaging of the electronic potential Φe

c does not ensure conservation of the
total intesity I , therefore a rescaling of the recalculated j?c is needed in the last step of the
iterative process at the cathode, so that

I =

∫
h

k j∗cdy. (15)

With the new value of jc, which is equal to ja, we can go back to the anode and continue
with the next iteration step. A value of k close to unity inidicates convergence.
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Out of the above explained iterative process, in the case of convergence, one would readily
obtain the value of the over-potentials (losses) needed for calculating the point in the polarization
curve by substracting them from the equlibrium potential.

The potential losses are calculated with the following relations

Anode : ηa = Φe
a − Φc

a (16)
Cathode : ηc = E0 + Φp

c − Φe
c

thus:

∆Φ = Φe
c − Φe

a = Eo − ηa − ηc − (Φp
a − Φp

c) (17)

which is the point of the polarization curve for a given demanded intensity.
These quantities are schematically presented in Figure 1

Figure 1: Potential loss diagram

5. Numerical Simulation and Results

The single cell that was tested in the in-house experimental facilities is illustrated in Figure 2.
The numerical study was performed on a 1M cells hexahedral mesh as presented in Figure 3

where the different components of the domain are also depicted ( channels -zones 1 and 6-, GDL
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Figure 2: Studied single cell bipolar plate photo.

-zones 2 and 5- and catalyst layers -zone 3 and 4-), with the membrane omitted from calculations
by virtue of our modelling approach)

Figure 3: 1M cell mesh employed in the numerical simulation .

A BASF ”Celtec R©-P” high temperature membrane electron assembly (MEA) with an active
area of 2× 2 cm was used in a series of experiments at 120o C. The physical parameters used for
the the single cell numerical simulation are given in Table 2.

For the purpose of illustrating the behaviour of the fuel cell, an operating point of 2490A/m2

was chosen. Figure 4 presents a zoom of the flux of gases in the cell. At the anode catalyst layer,
the hidrogen flux corresponds to the protonic current, which is perpendicular as it is implied
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Anode/Cathode gas diffusion layers thickness (m) H 2.9 · 10−5

Anode/Cathode catalyst layer width (m) W 10−5

Membrane thickness (m) L 200 · 10−6

Anode exchange current density (A/m3) Jar 109

Cathode exchange current density (A/m3) Jcr 2.5 · 103

Hydrogen reference mass fraction CH2r 0.909657
Oxygen reference mass fraction CO2r 1.09013
Anode transfer coefficient αa 1.32
Anode transfer coefficient αc 0.68
Faraday constant (Cul/mol) F 96487
Universal gas constant (J/(molKel)) R 8.31472
H2 reference molar concentration (Kg/mol) MH2 2 · 10−3

O2 reference molar concentration (Kg/mol) MO2 0.032
Mixture H2 density (Kg/m3) ρH2 0.08988
Mixture O2 density (Kg/m3) ρO2 1.2
Temperature (K) T 393
Porosity ε 0.517
permeability (m2) K 2.584 · 10−13

Table 2: Physical parameters and properties.

by Onsager’s principle. At the cathode catalyst layer, the oxygen flux only reflects a boundary
condition related to electrochemistry.

Figure 5 presents the hydrogen and oxygen mass fractions. It can be observed that due to
the progressive consumption of H2 through the catalytic layer, its mass fraction diminishes as
we move towards the exit of the channel from the bipolar plate. Also, higher concentrations of
reactants are encountered at the catalyst layer areas that match the geometry of the bipolar plate
channels.

Figure 6 shows the hydrogen mass fraction versus the cathode overpotential. The fact that is
not uniform is due to the non-uniformity of the protonic overpotential, the electronic one being
uniform as a consequence of the numerical algorithm with the assumption of infinite electronic
conductivity at the catalyst layers.

In figure 7 the current density distribution is presented at the cathode side, distribution that is
matched at the anode side due to the uni-directional mapping of the currents. As expected, the
current density follows the pattern of the mass concentration of hydrogen. The effect is that local
zones where the mass concentration is higher are reflected in higher current densities.

In figure 8, the spatial distribution of the anodic and cathodic overpotentials is showed. As
expected, the cathodic overpotentail is orders of magnitude higher than the anodic one, with
peaks in regions of low mass concentration of reactants, in our case towards the downstream end
of the catalyst layers with respect to the flow through the bipolar plates channels.

It can be seen in this figure 9 the velocity vectors (fluid flow) coming into the anodic side
and the exit vectors over the catalytic surface. The vectors are not scaled by their magnitude. It
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Figure 4: Detail of gas fluxes in the cell

Figure 5: Hydrogen (horizontal) and Oxygen (rotated) mass fraction.
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Figure 6: Anode mass fraction (horizontal) and Cathode overpotential (rotated).

Figure 7: Anode mass fraction (horizontal) and Cathode current density (rotated).
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Figure 8: Anodic (horizontal) and cathodic (rotated) overpotentials.

can be observed the uni-directionality of the flow and also that is normal to the surface (catalytic
surface).

Figure 9: Velocity vectors.

The simulated polarization curve is depicted in figure 10, showing an excellent agreement
with the experimental one.

The power density curve, shown in Figure 11, represents the power delivered by the single
cell, which gives the range of values of current density at which the fuel cell could operate and
deliver its maximum electric power. It can be observed that the results match very well with
experimental data.

6. Conclusions

In this work, a 3D steady state, constant density and isothermal modeling for a PBI-based
HTPEMFC has been presented and numerically solved, using the principle of least dissipation of
energy (Onsager). This principle imposes a one-dimensional behaviour of the protonic current
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at the membrane and allows a significant simplification of the numerical procedure to solve the
transport equations in the cell. The chose of Ochoa’s porous media models avoids the need of
matching conditions at the channels-GDL interfaces. A simple an efficient iterative algorithm
is depicted. The model was implemented in a developed module attached to OpenFoam general
package. Results are physically consistent and comparisons show a very good agreement with
available in-house experimental data.
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