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Abstract In contrast to the univariate case, interpolation with polynomials
of a given maximal total degree is not always possible even if the number of
interpolation points and the space dimension coincide. Due to that, numer-
ous constructions for interpolation sets have been devised, the most popular
ones being based on intersections of lines. In this paper, we study algebraic
properties of some such interpolation configurations, namely the approaches
by Radon-Berzolari and Chung-Yao. By means of proper H-bases for the van-
ishing ideal of the configuration, we derive properties of the matrix of first
syzygies of this ideal which allow us to draw conclusions on the geometry of
the point configuration.
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1 Introduction

Interpolation of data, especially by polynomials, is a classical issue, not only in
one variable but also in several variables, cf. [14,19]. While in one variable the
interpolation polynomial can be easily expressed in a closed form, this is not
the case in two and more variables where the geometry becomes significantly
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more intricate, especially due to the fact that there are no multivariate Haar
spaces, see [16, Chapter 2, Section 4].

To overcome some of these problems, techniques were developed to con-
struct point sets that allow for unique interpolation from a given subspace
of polynomials, typically the vector space of all polynomials of total degree
not greater than a given number. The Radon–Berzolari construction [1,17]
generates a set of interpolation points by decomposing a bivariate problem of
degree, say n, into two simpler subproblems, one being univariate and one of
degree n− 1: the construction extends a set of interpolation points for degree
n − 1 by choosing n + 1 additional points on a line. As long as this line does
not contain any of the low degree interpolation points, this gives a valid set of
interpolation points of degree n.

Later, Chung and Yao [10] presented a geometric characterization of cer-
tain interpolation sets that extend properties of the univariate case to several
variables. In particular, they defined a class of interpolation sets which are
nowadays known as GC configurations [5] or GC sets [4,9]. Gasca and Maeztu
[13] conjectured that any bivariate GC set is the result of a Berzolari–Radon
construction, that is, any such set possesses a maximal line which contains
n+ 1 of the interpolation points. This conjecture, based on the simple obser-
vation in the cases n = 1, 2, has so far only been proven for degree up to 5,
see [15].

Recently, Hal Schenck pointed out the striking connections between inter-
polation sets and the generating matrix for the first syzygy module of the
associated zero dimensional radical ideal. This approach which is based on so-
phisticated concepts from Algebraic Geometry, see [11], can be found in [12].
One main point there is that it is possible to characterize the existence of a
maximal line in an interpolation set by looking at the syzygy matrix of the
respective ideal. The purpose of this paper is to give an elementary and direct
approach to these ideas in which the Berzolari–Radon construction plays a
significant role.

2 Interpolation of total degree and ideals

Let Π = R[x], x = (x1, x2), be the set of bivariate polynomials and Πn be
the set of bivariate polynomials of total degree less than or equal to n whose
dimension is dimΠn = (n + 1)(n + 2)/2. Given a set Y ⊆ R2, the evaluation
map is defined as

p ∈ Π 7→ p(Y ) := (p(y))y∈Y ∈ RY .

The kernel of the evaluation map is the ideal

I(Y ) := {p ∈ Π : p(Y ) = 0}

of all bivariate polynomials vanishing at the set Y .
Given a finite set of nodes Y ⊂ R2 and f ∈ RY , we can formulate the

Lagrange interpolation problem on Y in Πn: find p ∈ Πn such that p(Y ) = f .
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Definition 1 A set Y ⊂ R2 is Πn-independent if the Lagrange interpolation
problem on Y has a solution in Πn, maybe not unique. A set Y ⊂ R2 is
Πn-poised if the interpolation problem on Y in Πn is unisolvent, that is, the
interpolation problem on Y has always a unique solution in Πn.

The evaluation map is a surjective linear map for any finite Y since for
each f ∈ RY the polynomial

p(x) =
∑
y∈Y

f(y)
∏

t∈Y \{y}

(x1 − t1)2 + (x2 − t2)2

(y1 − t1)2 + (y2 − t2)2

satisfies p(Y ) = f . Hence, RY ∼= Π/I(Y ).
The set Y is Πn-poised if and only if the restriction of the evaluation

map to Πn is bijective. So, if Y is Πn-poised then dimΠn = dimRY = #Y .
Uniqueness of the solution of the Lagrange interpolation problem implies that
Πn ∩ I(Y ) = 0 and existence of a solution implies that Π = Πn + I(Y ).
Therefore Y is Πn-poised if and only if Πn ⊕ I(Y ) = Π.

If Y is a Πn-poised set, then for each y ∈ Y there exists a unique funda-
mental polynomial, also called Lagrange polynomial, `y,Y in Πn such that

`y,Y (y′) = δyy′ , y′ ∈ Y,

where δyy′ is Kronecker’s symbol. For a Πn-poised set Y the Lagrange inter-
polation operator LY associates to each function from R2 to R its polynomial
interpolant in Πn. Considered as an operator from Π to Π, the Lagrange
interpolation operator is a projector that can be expressed in terms of the
fundamental polynomials by means of the Lagrange formula

LY [f ] =
∑
y∈Y

f(y)`y,Y .

The error operator

EY [f ] := f − LY [f ]

is another linear projector whose image is the ideal I(Y ), and the two projec-
tors are complementary. Because of that the Lagrange interpolation operator
is called an ideal projector, that is, a projector whose kernel is an ideal [3].

From the definition it follows that Y is a Πn-independent set if and only
if for each y ∈ Y there exists a fundamental polynomial (maybe not unique)
in Πn vanishing at Y \ {y} and with value 1 at y. Observe that a subset of a
Πn-independent set is also Πn-independent. For each Πn-independent set we
have that #Y ≤ dimΠn and, if equality holds, then Y is Πn-poised.

Definition 2 A subset H of an ideal I is called an H-basis for I if any f ∈ I
can be written as

f =
∑
h∈H

ghh, gh ∈ Πdeg f−deg h, h ∈ H.
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Lemma 1 Let I be an ideal of Π such that Πn ∩ I = 0 and dim(Πn+1 ∩ I) =
n+ 2. Then h0, . . . , hn+1 is a basis of Πn+1 ∩ I if and only if it is an H-basis
of I. Moreover, Π = Πn ⊕ I.

Proof Let h0, . . . , hn+1 be a basis of Πn+1 ∩ I. Since Πn ∩ I = {0}, we have
that Πn+1 = Πn⊕(Πn+1∩I) and for each α with |α| = n+1 there exists gα in
the vector space Πn+1∩I such that the gα(x)−xα ∈ Πn. Since xα, |α| = n+1,
are linearly independent, the polynomials gα(x), |α| = n+ 1, are also linearly
independent and, since dim(Πn+1 ∩ I) = n+ 2, they are a basis of Πn+1 ∩ I.
Now take any polynomial p ∈ Πm, m ≥ n+ 1. The homogeneous leading form
of p can be expressed as

∑
|α|=n+1 cα(x)xα with cα(x) ∈ Πm−n−1. Then

p−
∑

|α|=n+1

cαgα ∈ Πm−1.

An inductive argument shows that this reduction process allows us find poly-
nomials bα ∈ Πm−n−1, |α| = n+ 1, such that

r := p−
∑

|α|=n+1

bαgα ∈ Πn.

Hence it follows that Π = Πn ⊕ I. If p ∈ I then r ∈ Πn ∩ I = 0, hence p
can be expressed as a linear combination of the polynomials gα, that is, with
polynomial coefficients bα ∈ Πm−n−1, |α| = n+ 1. So, (gα : |α| = n+ 1) is an
H-basis. Since each gα ∈ Πn+1∩I can be expressed as a linear combination of
the basis (h0, . . . , hn) with constant coefficients and vice versa, it follows that
(h0, . . . , hn) is also an H-basis.

Conversely, if h0, . . . , hn+1 is an H-basis and p ∈ Πn+1 ∩ I, then p can
be represented with respect to the hj , j = 0, . . . , n + 1, and the polynomial
coefficients must have degree 0. Hence span {h0, . . . , hn+1} = Πn+1 ∩ I and,
since dim(Πn+1 ∩ I) = n + 2, it follows that h0, . . . , hn+1 is a basis of the
vector space Πn+1 ∩ I. ut

The statement of the preceding lemma can be rephrased as follows: for any
ideal I of Π the conditions Πn ∩ I = {0} and dim(Πn+1 ∩ I) = n + 2 are
equivalent to Π = Πn ⊕ I.

Corollary 1 Let I be an ideal of Π such that Πn ∩ I = {0} and dim(Πn+1 ∩
I) = n + 2 and let P be a finite spanning subset of Πn+1 ∩ I. Then P is an
H-basis of I.

3 Some remarks on the Berzolari-Radon construction

For each set P of bivariate polynomials, the associated algebraic variety is
defined as V (P ) := {x ∈ R2 : p(x) = 0, p ∈ P}. If P consists of a single
polynomial p, we shall denote by P the algebraic curve with equation p(x) = 0
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for the sake of brevity, instead of using the notation V (P ). A line is the set of
zeros of a bivariate polynomial of first degree.

Berzolari [1] and Radon [17] proposed the construction of a Πn+1-poised
set Yn+1 starting from a Πn-poised set Yn by adding n+2 nodes lying on a line
W that does not contain any node in Yn. In Fact (3) of [4], we can find a proof
of this result and a relation between the fundamental polynomials of both sets.
We provide a restatement of these results, providing explicit relations between
the corresponding fundamental polynomials that will be used afterwards.

In the sequel we will use the convenient abbreviation T := Yn+1 ∩W =
Yn+1 \ Yn.

Theorem 1 Let Yn+1 be an Πn+1-poised set and W be a line such that #(W∩
Yn+1) = n+ 2. Then the set Yn := Yn+1 \W is Πn-poised.

Conversely, if Yn is a Πn-poised set with Yn∩W = ∅ and Yn+1 is obtained
by adding to Yn n + 2 distinct nodes on the line W , then Yn+1 is Πn-poised.
Moreover,

`y,Yn+1
(x) =

w(x)

w(y)
`y,Yn

(x), y ∈ Yn,

and, for t ∈ T ,

`t,Yn+1
(x) =

∏
s∈T\{t}

m(x)−m(s)

m(t)−m(s)
− w(x)

∑
y∈Yn

`y,Yn(x)

w(y)

∏
s∈T\{t}

m(y)−m(s)

m(t)−m(s)
,

(1)
where m is an arbitrary polynomial of first degree such that 1, w,m form a
basis of Π1 and T := Yn+1 ∩W .

Proof For each t ∈ T , we define the polynomial

dt(x) :=
∏

s∈T\{t}

(m(x)−m(s)).

Since dt(t) 6= 0, we can find a fundamental polynomial of the form

qt(x) :=
dt(x)

dt(t)
=

∏
s∈T\{t}

m(x)−m(s)

m(t)−m(s)
.

for each t ∈ T . So, T is a Πn+1-independent set. The restriction of the evalua-
tion map p 7→ p(T ) to Πn+1 is surjective because T is Πn+1-independent and
its kernel {p ∈ Πn+1 : p(T ) = 0} has dimension dimΠn+1− (n+ 2) = dimΠn.
Since wΠn := {wp : p ∈ Πn} is contained in its kernel and since both spaces
have the same dimension they must coincide.

Assume that Yn+1 is Πn+1-poised and let y ∈ Yn := Yn+1 \W . We have
that `y,Yn+1

(T ) = 0 which implies `y,Yn+1
∈ wΠn. Therefore, w is a factor

of `y,Yn+1 and w(y)`y,Yn+1/w is a fundamental polynomial in Πn of y for the
Lagrange interpolation problem in Yn. Hence Yn is a Πn-independent set and
since #Yn = #Yn+1 − (n + 2) = dimΠn, it follows that Yn is Πn-poised,
proving the first statement.



6

Conversely, if Yn is Πn-poised, then w`y,Yn/w(y) is a fundamental polyno-
mial in Πn of y for the Lagrange problem in Yn+1 for each y ∈ Yn. Now take
t ∈ T . Since w does not vanish on the set Yn and Yn is Πn-poised, we can
define a polynomial interpolating qt/w on Yn

LYn
[qt/w] =

∑
y∈Yn

qt(y)

w(y)
`y,Yn

and deduce that qt(x)− w(x)LYn
[qt/w](x) is a fundamental polynomial for t

in Yn+1. Hence Yn+1 is Πn+1-independent and Πn+1-poised since #Yn+1 =
#Yn + (n+ 1) = dimΠn+1. Finally, (1) follows from

`t,Yn+1(x) = qt(x)−w(x)LYn [qt/w](x) =
dt(x)

dt(t)
−w(x)

dt(t)

∑
y∈Y

dt(y)
`y,Y (x)

w(y)
, t ∈ T.

ut

Theorem 2 Let Yn be Πn-poised, and let T be any set of n+2 distinct points
such that Yn+1 = Yn ∪ T is a Πn+1-poised set. Then the n+ 2 functions

ht := `t,Yn+1
∈ Πn+1 ∩ I(Yn), t ∈ T,

are an H-basis of the ideal I(Yn).

Proof Clearly `t,Yn+1
∈ Πn+1 vanish on Yn and so ht = `t,Yn+1

∈ Πn+1∩I(Yn),
t ∈ T . Since these Lagrange fundamental polynomials are linearly independent,
they form a basis of Πn+1 ∩ I(Yn). From the fact that Yn is Πn-poised, it
follows that Π = Πn⊕I(Yn) and together with the linear independence of the
Lagrange fundamental polynomials this yields dimΠn+1∩I(Yn) = dimΠn+1−
dimΠn = n + 2. Now we conclude from Lemma 1 that (ht : t ∈ T ) is an H-
basis for I. ut

Theorem 1 and Theorem 2 can be combined to obtain an H-basis of the
ideal I(Y ) of any Πn-poised set Y formed by fundamental polynomials ob-
tained from the Berzolari-Radon construction.

Theorem 3 Let Yn be a Πn-poised set, and T be any set of n+ 2 points lying
on a line W such that W ∩ Yn = ∅ and Yn+1 := Yn ∪ T . Then the n + 2
polynomials

ht := `t,Yn+1
∈ Πn+1 ∩ I(Yn), t ∈ T,

are R[w]-independent and form an H-basis of the ideal I(Yn).

Proof By Theorem 1, Yn+1 is Πn+1-poised. The polynomials `t,Yn+1 ∈ Πn+1,
t ∈ T , vanish on Yn. Let us show now that ht = `t,Yn+1 ∈ Πn+1∩ I(Yn), t ∈ T ,
are R[w]-independent, that is, if∑

t∈T
ct(w)ht = 0,
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for some univariate polynomials ct, t ∈ T , then all these polynomials are zero:
ct = 0, t ∈ T . If we denote by mt the degree of ct, we can write

∑
t∈T

mt∑
j=0

ct,jw
jht = 0.

After dividing the above equation by an appropriate power of w, we may
assume that (ct,0 : t ∈ T ) 6= 0. Then

∑
t∈T

ct,0ht = −
∑
t∈T

mt∑
j=1

ct,jw
jht = wq

for some q ∈ Πn. Since w does not vanish at any node of Yn, we have that
q(Yn) = 0, that is, q ∈ Πn ∩ I(Yn). But Πn ∩ I(Yn) = {0} because Yn is
Πn-poised. So q = 0 and from the linear independence of the Lagrange fun-
damental polynomials we deduce that ct,0 = 0 for each t ∈ T . So, the R[w]-
independence follows. The H-basis property follows from Theorem 2. ut

Definition 3 A syzygy of P := (p0, . . . , pn+1) ∈ Πn+2 isΣ := (σ0, . . . , σn+1) ∈
Πn+2 such that

n+1∑
i=0

σipi = 0.

The set of all syzygies for P will be denoted by S(P ) and the set of all syzygies
of certain maximal degree m as Sm(P ) = S(P ) ∩Πn+2

m , m ∈ N0.

Intuitively, syzygies describe ambiguities in representing a polynomial with
respect to an ideal. Indeed,

f =
n+1∑
i=0

fipi =
n+1∑
i=0

f ′ipi

holds if and only if (f0 − f ′0, . . . , fn+1 − f ′n+1) ∈ S(P ). The set of S(P ) of
syzygies of P ∈ Πn+2 forms a Π-submodule of Πn+2. If P is the basis of
an ideal, S(P ) provides important information on the ways of expressing a
polynomial in the ideal in terms of the basis P .

We have seen that for a Πn-poised set Yn we can obtain an H-basis ht(x) :=
`t,Yn+1

(x), t ∈ T , of the ideal I(Yn) using some of the Lagrange fundamental
polynomials with respect to a set Yn+1 = Yn ∪ T where T is a set of n + 2
points on a line W such that W ∩ Yn = ∅. We also recall that the function

dt(x) =
∏

s∈T\{t}

(m(x)−m(s)), t ∈ Yn+1,

satisfies

dt(t) 6= 0 (2)
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and can be used to express the Lagrange fundamental polynomials described
in (1)

ht(x) = `t,Yn+1
(x) =

dt(x)

dt(t)
− w(x)

dt(t)

∑
y∈Yn

dt(y)
`y,Yn

(x)

w(y)
,

where m is a linear polynomial such that span {1, w,m} = Π1.
First note that by the R[w]-independence, any nontrivial syzygy cannot

consist of polynomials in R[w] only and some coefficient should include the
independent polynomial m. In order to find explicit syzygies, we begin with
ti, tj ∈ T := {t0, t1, . . . , tn+1} and compute

dti(ti)(m(x)−m(ti))hti(x)− dtj (tj)(m(x)−m(tj))htj (x)

= w(x)
∑
y∈Yn

(dti(y)(m(x)−m(ti))− dtj (y)(m(x)−m(tj)))
`y,Yn

(x)

w(y)
. (3)

The left hand side of the above equation (3) belongs to I(Yn) and w does not
vanish at any point of Yn, hence

∑
y∈Yn

(dti(y)(m(x)−m(ti))− dtj (y)(m(x)−m(tj)))
`y,Yn

(x)

w(y)
.

is a polynomial in Πn+1 ∩ I(Yn). Since {ht : t ∈ T} is a basis of the vector
space Πn+1 ∩ I(Yn), it follows that

∑
y∈Yn

(dti(y)(m(x)−m(ti))− dtj (y)(m(x)−m(tj)))
`y,Yn(x)

w(y)
=
∑
s∈T

cti,tjs hs(x),

for coefficients c
ti,tj
s ∈ R. Since hs := `s,Yn+1(x) are fundamental polynomials

in T , we even have the explicit formula

cti,tjs =
∑
y∈Yn

(dti(y)(m(s)−m(ti))− dtj (y)(m(s)−m(tj)))
`y,Yn(s)

w(y)
.

In particular,

c
ti,tj
ti = −(m(ti)−m(tj))

∑
y∈Yn

dtj (y)
`y,Yn

(ti)

w(y)
,

c
ti,tj
tj = (m(tj)−m(ti))

∑
y∈Yn

dti(y)
`y,Yn(tj)

w(y)
.

Then formula (3) can be written in the form

dti(ti)(m(x)−m(ti))hti(x)−dtj (tj)(m(x)−m(tj))htj (x) = w(x)
∑
s∈T

cti,tjs hs(x).



9

giving rise to syzygies Σti,tj ∈ S(H) of H := (ht : t ∈ T ), associated to the
pairs ti, tj ∈ T whose components

σ
ti,tj
ti (x) = w(x)c

ti,tj
ti − dti(ti)(m(x)−m(ti)),

σ
ti,tj
tj (x) = w(x)c

ti,tj
tj + dtj (tj)(m(x)−m(tj)),

σ
ti,tj
s (x) = w(x)c

ti,tj
s , s ∈ T \ {ti, tj},

(4)

are polynomials in Π1.
Note that the syzygies Σti,tj , ti, tj ∈ T , satisfy

Σti,tj +Σtj ,tl = Σti,tl , ti, tj , tl ∈ T.

In particular, Σti,ti = 0 and Σti,tj = −Σtj ,ti .
We now focus on the syzygies

Σt0,ti , i = 1, . . . , n+ 1.

and define, in accordance with [11,12],

Σ(x) =
(
σt0,titj (x)

)
i=1,...,n+1,j=0,...,n+1

∈ Π(n+1)×(n+2)
1 .

as the polynomial matrix whose rows are the components of these syzygies.
We observe that if x ∈W , then w(x) = 0 and the (n+ 1)× (n+ 1) submatrix
of Σ(x) formed with the n + 1 last columns simplifies to a diagonal matrix,
whose diagonal entries are

σt0,titi (x) = dti(ti)(m(x)−m(ti)).

By definition of m and (2), we have that σt0,titi (x) 6= 0 for x ∈W \ {ti}, which
implies that the rank of Σ(x) over the field of rational functions is n + 1, in
other words, the syzygies are independent. Whenever we speak of the rank of
a syzygy matrix it has to be understood in that sense.

The relations Σ(x)H = 0 determine H up to a polynomial factor. Let
Σj(x) be the submatrix obtained by removing the column corresponding to
the index j, then detΣj(x) ∈ Πn+1 and there exists a ∈ R such that

htj (x) = (−1)j a detΣj(x), j = 0, . . . , n+ 1.

In order to determine a we restrict x to the points on the line W , so that
w(x) = 0, and obtain, for x ∈W , that

dt0(x)

dt0(t0)
= ht0(x) = a

n+1∏
i=1

dti(ti)(m(x)−m(ti)) = a dt0(x)
n+1∏
i=1

dti(ti),

from which we deduce that

a =
(∏
t∈T

dt(t)
)−1
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and

htj (x) = (−1)j
(∏
t∈T

dt(t)
)−1

detΣj(x).

Thus we have shown that the syzygy matrix Σ(x) has nonzero minors detΣj
for all j = 0, . . . , n + 1. Furthermore, the minors are polynomials of exact
degree n+ 1 in x.

Let us summarize the results obtained so far for further reference.

Theorem 4 Let Yn be a n-poised set, then there exists for any H-basis (h0, . . . , hn+1)

of I(Yn) a syzygy matrix Σ(x) ∈ Π(n+1)×(n+2)
1 of rank n+1. The syzygy matrix

determines the H-basis up to a constant factor a 6= 0

hj(x) = (−1)j a detΣj(x), j = 0, . . . , n+ 1,

where Σj(x) denotes the submatrix obtained from Σ(x) by removing the column
corresponding to the index j.

Proof We have constructed Σ(x) for a particular H-basis. Since all H-bases
with n+ 2 elements of I(Yn) are bases of Πn+1 ∩ I(Yn), they are related by a
nonsingular matrix B ∈ R(n+2)×(n+2). Multiplying Σ(x) from the right with

B, we obtain the syzygy matrix Σ(x)B ∈ Π(n+1)×(n+2)
1 of rank n + 1 for an

arbitrary H-basis B−1H. ut

Theorem 5 Let Yn be a n-poised set. If Σ(x), Σ′(x) ∈ Π
(n+1)×(n+2)
1 are

syzygy matrices of rank n+ 1 for two H-bases of I(Yn), then there exist non-
singular scalar matrices A and B, such that

Σ′(x) = AΣ(x)B,

i.e., the linear syzygy matrix of rank n+1 for I(Yn) is unique up to equivalence.

Proof Let us denote by S1(H) = S(H) ∩Πn+2
1 the space of linear syzygies of

a given H-basis of I(Yn). By Theorem 4, there exists a linear syzygy matrix
Σ(x) with respect to the particular H-basis

H = (hj(x) := EYn [xn+1−j
1 xj2] : j = 0, . . . , n+ 1),

where EYn [f ] is the interpolation error to f on Yn from Πn. We will now show
that any syzygy in S1(H) can be written as a linear combination of the rows
of Σ(x). Since

x2EYn
[xn+1−i

1 xi2](x)− x1EYn
[xn−i1 xi+1

2 ](x) =
n+1∑
j=0

cijEYn
[xn+1−j

1 xj2](x),

the corresponding syzygy matrix for H can be written as

Σ(x) =


c00 − x2 c01 + x1 c02 . . . c0,n+1

c10 c11 − x2 c12 + x1 . . . c1,n+1

...
. . .

. . .
. . .

...
cn0 . . . cn,n−1 cn,n − x2 cn,n+1 + x1


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Now assume that Z(x) is another syzygy in S1(H). We subtract a proper
multiple of the first row of Σ(x) from Z(x) in such a way that the second
component does not depend on x1, then use the second row to eliminate x1
from the third component, and so on. The resulting syzygy Z(x) − bTΣ(x),
b ∈ Rn+1 is of the form

(σ0(x1, x2), σ1(x2), . . . , σn+1(x2)).

But then

0 =
n+1∑
j=0

σj(x)hj(x) = σ0(x1, x2)EYn
[xn+1

1 ](x) +
n+1∑
j=1

σj(x2)EYn
[xn+1−j

1 xj2](x)

implies that σ0 = 0 because it is the coefficient of the only appearance of
the power xn+1

1 . We can inductively apply the same reasoning to the powers

xn+1−j
1 xj2 to conclude that σj = 0, j = 1, . . . , n. Therefore Z(x) = aTΣ(x),

that is, Z(x) is a linear combination of the rows of Σ(x), hence dimS1(H) =
n+ 1.

So we know that two linear syzygy matrices of rank n+ 1 for the same H-
basis are related by left multiplication by a nonsingular matrix. On the other
hand, the proof of Theorem 4 tells us that changes of the H-bases correspond
to right multiplication by a nonsingular matrix. ut

4 Maximal lines

Maximal lines, or, more generally, maximal hyperplanes, as introduced in [4],
are at the heart of the Gasca-Maeztu conjecture. A Πn-poised set Yn is said to
contain a maximal line if there exists a line W such that #(Yn ∩W ) = n+ 1.
As pointed out first by H. Schenck, the following result that closely connects
maximal lines to the syzygy matrix Σ(x), can be seen as a special case of
the Hilbert–Burch theorem, cf. [11]. We restate this fact here and give a more
direct, affine and elementary proof of it.

Proposition 1 Suppose that Yn is a Πn-poised set and there exist linearly in-

dependent h0, . . . , hn+1 ∈ Πn+1∩I(Yn) with a syzygy matrix Σ ∈ Π(n+1)×(n+2)
1

of rank n+1 with one column of the form w(x)v, v ∈ Rn+1, for some noncon-
stant w ∈ Π1. Then W = V (w) is a maximal line for Yn, i.e., #(W ∩ Yn) =
n+ 1.

Proof Since the polynomials h0, . . . , hn+1 generate I(Yn) and dim(Πn+1 ∩
I(Yn)) = n + 2, it follows from Lemma 1 that these polynomials form an
H-basis of I(Yn). After renumbering the ideal basis, we can assume that the
last column of Σ(x) is of the form w(x)v for some vector v. By Theorem 4,
hj = a(−1)j detΣj ∈ Πn+1, j = 0, . . . , n + 1, up to a nonzero constant fac-
tor a. It follows that hj(x) := w(x)gj(x), gj ∈ Πn, j = 0, . . . , n, all belong
to I(Yn) and that gj ∈ I(Yn \W ), j = 0, . . . , n, are n + 1 linearly indepen-
dent polynomials of degree n in I(Yn \W ). If q ∈ I(Yn \W ) ∩ Πn−1, then
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q w ∈ Πn vanishes on Yn. Since Yn is Πn-poised, it follows that q = 0. So we
have I(Yn \W ) ∩Πn−1 = 0. By Lemma 1, (gj : j = 0, . . . , n) is an H-basis of
I(Yn\W ). Since Π = Πn−1⊕I(Yn\W ), we deduce that Yn\W is Πn−1-poised
and

#(Yn ∩W ) = dimΠn −#(Yn \W ) = dimΠn − dimΠn−1 = n+ 1

which means that W is indeed a maximal line. ut

Since one can apply row transformations to the syzygy matrix to obtain an-
other syzygy matrix for the same basis, the following statement is equivalent
to Proposition 1.

Corollary 2 Suppose that Yn is a Πn-poised set and there exist linearly inde-

pendent h0, . . . , hn+1 ∈ Πn+1 ∩ I(Yn) with a syzygy matrix Σ ∈ Π(n+1)×(n+2)
1

of rank n+1 whose j-th column is of the form w(x) ei for some linear function
w and some i ∈ {1, . . . , n+ 1} and j ∈ {0, . . . , n+ 1}. Then W is a maximal
line for Yn.

The results from the preceding section also allow us to give a converse
statement of Proposition 1 that says that any maximal line can be found in a
proper syzygy matrix.

Proposition 2 If a Πn-poised set Yn ⊂ R2 contains a maximal line W , then
there exists a basis h0, . . . , hn+1 of Πn+1 ∩ I(Yn) with a syzygy matrix Σ ∈
Π

(n+1)×(n+2)
1 of rank n+ 1 whose last column is of the form w(x) en+1.

Proof Let Yn−1 be any (n−1)-poised set in R2 andW be a line withW∩Yn−1 =
∅. Choose n + 1 points t0, . . . , tn on W and let Yn be the union of Yn−1 and
these n+ 1 points. Now set, with the notation from the preceding section,

gj(x) := w(x)htj (x), j = 0, . . . , n, gn+1(x) := −(m(x)−m(t0))ht0(x).

These polynomials are linearly independent. Indeed, evaluating

n+1∑
j=0

cj gj(x) = 0

along W yields cn+1 = 0 and then

0 = w(x)

n∑
j=0

cj htj (x),

which implies that c0 = · · · = cn = 0. Since, in addition, gj(Yn) = 0, it follows
from Lemma 1 that g0, . . . , gn+1 are an H-basis of I(Yn). The syzygy matrix
for this basis takes the form

σt0,t1t0 (x) σt0,t1t1 (x) . . . σt0,t1tn (x) 0
...

...
. . .

...
...

σt0,tnt0 (x) σt0,tnt1 (x) . . . σt0,tntn (x) 0
m(x)−m(t0) 0 . . . 0 w(x)

 ,
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with σt0,titj given by (4). The upper left part of this matrix is the syzygy matrix
for Yn \W . The last column now consists of the linear polynomial w marking
the maximal line. ut

Combining Proposition 1, Proposition 2 and Theorem 5, we can now even
give a characterization of maximal lines in terms of syzygies.

Theorem 6 A Πn-poised set Yn ⊂ R2 contains a maximal line if and only if
there exists a basis h0, . . . , hn+1 of Πn+1 ∩ I(Yn) with a syzygy matrix Σ ∈
Π

(n+1)×(n+2)
1 of rank n+ 1 whose j-th column is of the form w(x) ei for some

polynomial w of degree 1 and some i ∈ {1, . . . , n+ 1} and j ∈ {0, . . . , n+ 1}.
The polynomial w determines the maximal line W = V (w).

5 Syzygy matrices of GCn sets

We recall that a GCn set, introduced by Chung and Yao [10], is a Πn-poised set
whose Lagrange fundamental polynomials are products of linear factors. Gasca
and Maeztu conjectured in [13] that any GCn set contains a maximal line. In
this section we consider some special GCn sets and their syzygy matrices,
namely the two most important and best investigated [2,8] examples of GCn
sets: natural lattices and (generalized) principal lattices. We start with the
natural lattice Yn corresponding to the intersections of n+2 linesW0, . . . ,Wn+1

in general position, such that Wi ∩Wj , 0 ≤ i < j ≤ n+ 1, form a set of
(
n+2
2

)
points xij in R2. The Lagrange fundamental polynomial `ij corresponding to
xij is then of the form

`ij(x) =
∏

r∈{0,...,n+1}\{i,j}

wr(x)

wr(xij)
.

Then we can construct an H-basis of I(Yn) basis using Theorem 2. Let Wn+2

be a line intersecting all previous lines at xi,n+2, then

`i,n+2(x) =
∏

r∈{0,...,n+1}\{i}

wr(x)

wr(xi,n+2)
.

So,

hi(x) = `i,n+2(x)
∏
r 6=i

wr(xi,n+2) =
∏

r∈{0,...,n+1}\{i}

wr(x), i = 0, . . . , n+ 1,

form an H-basis of I(Yn). For this H-basis we obtain the following syzygy
matrix:

Σ(x) =


w0(x) −w1(x) 0 . . . 0

w0(x) 0 −w2(x)
. . .

...
...

...
. . .

. . . 0
w0(x) 0 . . . 0 −wn(x)

 .
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Corollary 2 proves that Wj , j = 0 . . . , n+ 2, are maximal lines.
Now let us consider the case of a generalized principal lattice, introduced

in [6,7] and further analyzed in [9]. In this case, we have 3n lines Wi,j , i =
0, . . . , n, j = 0, 1, 2, where

Wβ0,0 ∩Wβ1,1 ∩Wβ2,2 = {xβ}, |β| = n.

are requested to be distinct. Then Yn = {xβ : |β| = n} is an Πn-poised set
and GCn because the corresponding Lagrange polynomials are of the form

`β(x) =
∏
γ0<β0

wγ0,0(x)

wγ0,0(xβ)

∏
γ1<β1

wγ1,1(x)

wγ1,1(xβ)

∏
γ2<β2

wγ2,2(x)

wγ2,2(xβ)
.

One H-basis of I(Yn) is

hj(x) =
∏
γ1<j

wγ1,1(x)
∏

γ2<n+1−j
wγ2,2(x), j = 0, . . . , n+ 1, (5)

whose syzygy matrix is of the form

Σ(x) =


w0,1(x) −wn,2(x) 0 . . . 0

0 w1,1(x) −wn−1,2(x)
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 wn,1(x) −w0,2(x)

 .

Thus W0,1 and W0,2 turn out to be maximal lines by inspecting first and last
column of the syzygy matrix. Since we left out any factor with wj,0 in the H–
basis (5), the line W0,0 is not detected by the syzygy matrix. However, there
must exist a basis transform that maps the polynomials from (5) to

h′j(x) =
∏
γ0<j

wγ0,0(x)
∏

γ2<n+1−j
wγ2,2(x), j = 0, . . . , n+ 1, (6)

which implies that a column transform of Σ(x) then gives a column consisting
only of a multiple of w0,0.

The particular structure of the fundamental polynomials of GCn sets,
namely the rare property that they can be factored into linear polynomials,
and the preceding examples suggest the following construction of a factoriz-
able H-basis for I(Yn) which is originally due to Schenck in an unpublished
manuscript and for which we can now give a more direct and elementary ex-
position. To this end, we choose a point z ∈ R2 such that `y,Yn

(z) 6= 0, y ∈ Yn,
and define the sets

L(y) := {m ∈ Π1 : m|`y,Yn
,m(z) = 1}, y ∈ Yn, L :=

⋃
y∈Yn

L(y).

The purpose of the point z is only to uniquely normalize the polynomials in L.
Moreover, let Yn−1 be any Πn−1-poised subset of Yn and set T := Yn \ Yn−1.
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Proposition 3 The set⋃
t∈T
{m`t,Yn : m ∈ L,m(t) = 0} (7)

contains an H-basis for I(Yn) whose elements are products of first degree poly-
nomials.

Proof Since there always exist at least two nonparallel lines belonging to L
that vanish on t, we find that

span {m`t,Yn
: m ∈ L,m(t) = 0} = span {x1 − t1, x2 − t2} `t,Yn

.

Since, on the other hand,

span {`t,Yn
: t ∈ T} = span {EYn−1

[(·)α] : |α| = n},

it follows that the space∑
t∈T

span {m`t,Yn : m ∈ L,m(t) = 0} ⊂ I(Yn)

contains all polynomials of the form EYn
[xα], |α| = n + 1. Indeed, write, for

some α with |α| = n

EYn−1
[xα] =

∑
t∈T

ct `t,Yn
(x),

and use ε1 := (1, 0) and ε2 := (0, 1) for the unit multiindices in N2
0. It then

follows for j = 1, 2, that

xj EYn−1
[xα]−

∑
t∈T

ct tj `t,Yn
(x) =

∑
t∈T

ct (xj − tj)`t,Yn
(x),

is a polynomial of degree n+1 which vanishes on Yn. This polynomial coincides
with EYn

[xα+εj ] because xα+εj − xjEYn−1
[xα] ∈ Πn. So, we have

EYn
[xα+εj ] =

∑
t∈T

ct (xj − tj)`t,Yn
(x)

and therefore the set from (7) spans Πn+1 ∩ I(Yn). By Corollary 1 the set is
an H-basis as claimed. Since all candidates are factorizable by construction,
so is the resulting H-basis. ut

Remark 1 Proposition 3 can also be found in [12] where it is in turn attributed
as implicitly given already in [18].
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