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SUMMARY

Motivated by the search for new strategies for fitting a material model, a new approach is explored in the

present work. The use of numerical and complex algorithms based on machine learning techniques such as

support vector machines for regression, bagged decision trees and artificial neural networks is proposed for

solving the parameter identification of constitutive laws for soft biological tissues. First, the mathematical

tools were trained with analytical uniaxial data (circumferential and longitudinal directions) as inputs, and

their corresponding material parameters of the Gasser, Ogden and Holzapfel strain energy function as

outputs. The train and test errors show great efficiency during the training process in finding correlations

between inputs and outputs; besides, the correlation coefficients were very close to 1. Second, the tool was

validated with unseen observations of analytical circumferential and longitudinal uniaxial data. The results

show an excellent agreement between the prediction of the material parameters of the SEF and the analytical

curves. Finally, data from real circumferential and longitudinal uniaxial tests on different cardiovascular

tissues were fitted, thus the material model of these tissues was predicted. We found that the method was

able to consistently identify model parameters, and we believe that the use of these numerical tools could

lead to an improvement in the characterization of soft biological tissues.
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1. INTRODUCTION

The experimental study of the mechanical properties of biological tissues is vitally important.

Research into the mechanical response of biological tissues and organs is the basis for the creation of

computational models which can accurately reproduce their mechanical behaviour. In order to obtain

the material properties of these tissues, classical engineering testing techniques have been applied

to biological materials [?, see e.g.,]and references therein]Fung1979,Fung1990,Humphrey2001.

Specifically, the characterization of the mechanical properties of soft biological tissues, such

as blood vessels, is especially challenging due to the particular characteristics of these tissues

(anisotropy, incompressibility, active and passive behaviour or presence of residual stresses), which

noticeably complicate the obtaining of valid results. For this reason, the experimental study of soft

biological tissues is one of the fields of biomechanics in which more research effort is required.

In particular, the huge variability in the mechanical response of vascular tissues is one of the

most serious difficulties in the determination of their mechanical properties. Due to the different

physiological role of each vessel and the different mechanical loading they are subjected to, their

mechanical properties are highly variable [1, 2].

In the testing procedures used for the characterization of the mechanical properties of soft

biological tissues, such as blood vessels, three different techniques are mainly used for the

measurement of their mechanical response; simple tension, planar biaxial and inflation tests. Of

these, the uniaxial test is the easiest and therefore the most commonly used for the mechanical

characterization of soft tissues. This type of test, widely used for the determination of the

mechanical properties of all kinds of materials, has been applied to soft biological tissues [?, see,

e.g.,]]Hayashi1981,Hayashi1997,Schulze-Bauer2003,Holzapfel2005a. Among its main advantages,

it is worth noting its simplicity and versatility, which allows its application to very small samples.

Nevertheless, it allows obtaining the mechanical properties only in the testing directions. This

is irrelevant when dealing with isotropic materials, but it is an important shortcoming in testing

anisotropic materials. A feasible possibility to complete the information provided by simple tension

tests is to apply them to different tension directions [8], which partly compensates for this limitation.

This kind of test involves gripping a sample specimen at both ends and pulling it at a specified rate

until the sample breaks. During the test, the force is recorded as a function of elongation, and then

the mechanical behavior of the tissue is extracted. By considering the dimensions of the sample, it

is possible to determine the properties of the biological material.

In the context of mathematical modelling and computational simulations, the experimental data

are usually used to estimate the material model parameters through a strain energy function (SEF)
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within the framework of the continuum theory of large deformation hyperelasticity. In recent years,

the constitutive modelling of soft biological tissues has constituted a very active field of research

[?, see, e.g.,]]Ogden2003. These materials have commonly been modelled as hyperelastic continua

embedded into continuum mechanical formulations. Accordingly, one of the main tasks consists

of the determination of appropriate strain energy density functions, from which local mechanical

quantities are derived [10]. Many constitutive laws have been proposed for soft tissue modelling

[?, see e.g.,]]Demiray1972,Fung1979,Humphrey1987,Weiss1996 which would be suitable or not

depending on the kind of soft biological tissue in question. For instance, the most common SEFs for

modelling the behaviour of blood vessels are the models developed by Holzapfel et. al [14, 8],

which account for two preferred directions and incorporate fibre dispersion with respect to the

deterministic preferred orientation direction, and the more recent work by Gasser et. al [15], which

includes microstructural information in the model by means of the assumption of a fibre orientation

distribution function.

Nevertheless, apart from the relevant features of the soft biological tissues, the type of mechanical

test and their conditions, or the selected SEF for modelling the behaviour of the tissue, there

are also differences in the methods that can be used to determine the coefficients of a material

model. Traditionally, material parameters associated with the material model have been fitted by

means of a Levenberg-Marquardt type minimization algorithm [16] and/or inverse models combined

with Finite Element (FE) models [17]. Although significant advances have been made in the

prediction of mechanical parameters of soft biological tissues, there is still much work left to be

done since these and other implementations have, in general, made use of numerical gradients.

Numerical gradients are limited to local optimization and are thus very dependent on the initial

seed, which is a number or vector used to initialize the numerical algorithm, minimizing their

reliability and efficiency. In addition, for each experimental test, a new fitting and a good choice

of a seed should be made, which sometimes leads to an elaborate process. As a result of the

constant search for effective solutions to the problem of the parameter fitting of soft biological

tissues, the present study proposes the use of Machine Learning Techniques (MLTs) such as Support

Vector Machines (SVMs), Bagged (Bootstrap-Aggregated) Decision Trees (BDT) or Artificial

Neural Networks (ANNs). MLTs explore the development of algorithms that can learn and make

predictions from data. These techniques are characterized by complex algorithms that can be

trained to reproduce the behaviour of a model [18, 19]. In technical fields such as mathematics,

engineering, computer science or statistics, the multidisciplinary nature of MLTs is highlighted by

their applicability to many different areas, such as electronics [?, see e.g.,]]Jabbour1987, industry

[?, see e.g.,]]Evans1992, geology [?, see e.g.,]]Taboada2007,Lopez2010b, space science [?, see

e.g.,]]Fayyad1993, or language [?, see e.g.,]]Liu2005 amongst many others. Within the biomedical
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context, these techniques have also been successfully applied to several clinical applications, for

instance interpreting electrocardiograms, diagnosis of breast cancer or melanomas, predicting femur

loads or optimized hip implant geometries [?, see e.g.,]]Handels1999,Gniadecka2004,Huang2005,

Garijo2014, Cilla2017. They have also been used for treating cardiovascular diseases [?, see

e.g.,]]Poli1991,ltchhaporia1995,Itchhaporia1996, MCilla2011, LiangL2017.

The goal of this study is to develop a tool, using MLTs, to estimate the material parameters of a

SEF in a fast and efficient way. Once the tool is trained, a new fitting is immediate and the response

time is negligible. Specifically, we have focused on the mechanical characterization of blood vessels

by means of the SEF proposed by Gasser et. al [15]. In addition, this methodology has been proposed

for the most common experimental test for blood vessels, that is, the uniaxial test.

2. MECHANICAL CHARACTERIZATION OF BLOOD VESSELS

In this section, we summarize briefly the equations of incompressible non-linear elasticity that

are required for comparing the theory with experimental data in standard uniaxial experimental

protocols for the characterization of blood vessels.

2.1. Pure homogeneous uniaxial test

We consider homogeneous deformations that can be classified as pure homogeneous strain, that

is, deformations of the form

x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (1)

where (X1, X2, X3) are rectangular Cartesian coordinates that identify material points in the

reference configuration, (x1, x2, x3) are the corresponding coordinates after deformation with

respect to the same axes, and (λ1, λ2, λ3) are the principal stretches of the left Cauchy-Green

deformation tensor C = FT · F with F := ∇Xϕ(X) the two-point deformation gradient tensor. The

deformation gradient and the Cauchy stress tensor σ in this particular case are defined as

F =


λ1 0 0

0 λ2 0

0 0 λ3

 σ =


σ1 0 0

0 σ2 0

0 0 σ3

 (2)

Furthermore, the principal stretches satisfy the constraint λ1λ2λ3 = 1 for an incompressible

material. If the deformation of eq. (2.1) is applied to a thin material, a plane stress condition applies

This article is protected by copyright. All rights reserved.
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and we may set σ3 = 0, the stress normal to the plane and, for simple uniaxial tension, we set σ2 = 0

and σ1 = σ.

2.2. Constitutive modelling of blood vessels

Stress-stretch experimental curves of blood vessels have a high nonlinearity. This fact motivates

the use of an exponential function for describing the strain energy stored in the collagen fibers

where each family of fibers represents the main direction of collagen bundles that are orientated in

a helicoidal manner at ±θ degrees, where θ is a phenomenological variable. Both families of fibers

were assumed to have the same mechanical response [14].

The Gasser, Ogden and Holzapfel (GOH) model [15] extended the model of Holzapfel et. al [14]

by the application of generalized structure tensor H = κ1 + (1− 3κ)M0 (where 1 is the identity

tensor and M0 = m0 ⊗m0 is a structure tensor defined using unit vector m0 specifying the mean

orientation of the fibers) and they come up with a new constitutive model

Ψ = µ[I1 − 3] +
k1

2k2

∑
i=4,6

exp
(
k2

[
κ[I1 − 3] + [1− 3κ][Ii − 1]

]2)−1, (3)

where µ > 0 and k1 > 0 are stress-like parameters and k2 > 0 and 0 ≤ κ ≤ 1
3 are dimensionless

parameters (when κ=0 the fibres are perfectly aligned (no dispersion) and when κ= 1
3 the fibres are

randomly distributed and the material becomes isotropic) , I1 = tr(C) is the first invariant of C,

with C = FTF the right Cauchy-Green tensor and F the deformation gradient tensor, I4(C, a1) =

a1 ·C · a1 and I6(C, a2) = a2 ·C · a2 are invariants which depend on the direction of the family

of fibres at a material point X that is defined by the unit vectors field a1 and a2 [36]. Finally, the

anisotropic invariants are defined by θ angle. It should be noted that it was assumed that the two

principal axes of C coincide with the circumferential and longitudinal directions.

I4 = λ2
θ cos2(θ) + λ2

z sin2(θ), I6 = λ2
θ cos2(−θ) + λ2

z sin2(−θ). (4)

2.3. Standard fitting of experimental data

The most common methods found in the literature for fitting uniaxial experimental data are based

on the use of a Levenberg-Marquardt non-linear least square fitting algorithm [16], which typically

minimizes the objective function represented by

χ2 = Σni=1

[(
σθθ − σΨ̃

θθ

)2

i
+
(
σzz − σΨ̃

zz

)2

i

]
, (5)

This article is protected by copyright. All rights reserved.
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where n is the number of data points, σθθ and σzz are the Cauchy (true) stress of the experimental

data, σΨ̃
θθ and σΨ̃

zz are the Cauchy stresses for the ith point computed by the equation

σΨ
ii =2µ

[
λ2
i −

1

λi

]
+
k1

k2
λie

k2

[
[1−ρ]

[
λ2
i+

2
λi
−3
]2

+ρ
[
λ2
i cos2 θ+ sin2 θ

λi
−1
]2]

[
2k2[1− ρ]

[
λ2
i +

2

λi
− 3

] [
2λi −

2

λ2
i

]
+ 2ρ

[
λ2
i cos2 θ +

sin2 θ

λi
− 1

] [
2λi cos2 θ +

sin2 θ

λ2
i

]]
,

(6)

with i = z, θ corresponding to the longitudinal and circumferential directions respectively. It is well-

known that the problem of these numerical methods based on gradients is their limitation to local

optimization, and therefore their instability and dependence on the selected initial seed. This means

that many attempts may be requited to get a good fitting.

3. MATHEMATICAL BACKGROUND

Machine Learning Techniques represent a branch of artificial intelligence based on mathematical

models able to solve different problems which present a relevant non-linearity [18]. In the present

case, three supervised-learning techniques have been selected, namely: Support Vector Machines for

Regression, Bagged Decision Trees and Artificial Neural Networks in their most popular version,

the so-called Multi-Layer Perceptron (MLP) [37].

3.1. Support Vector Machines for Regression

Support Vector Machines represent a family of supervised-learning methods used both as

classification and regression tools, capable of approximating any multivariate function to any level

of accuracy. They were initially developed to address classification problems and later extended to

solve regression problems [38, 39, 40]. The model produced by a SVR is only dependent on a subset

of the training data, because the cost function for building the model ignores any training data that

are close (within a threshold ε) to the model prediction. Rather than classifying new unseen variables

−→x into one of two categories (ŷ=±1), the idea is to predict a real-valued output for y′. Therefore,

training data will be of the form {−→x , t2}, where i = 1, 2, ..., L, y ∈ R, −→x ∈ RD:

yi = −→w · −→xi + b (7)

This article is protected by copyright. All rights reserved.
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The SVR uses a somewhat more sophisticated penalty function in such a way that the penalty is

not imposed if the predicted value yi is less than a distance ε away from the actual value ti.

3.2. Bagged Decision Trees

Bagging or bootstrap aggregation is usually used when the variance of a decision tree has to be

reduced. The combination of results from many decision trees reduces the effects of overfitting and

improves generalization. The algorithm selects a random subset of predictors to use at each decision

split as in the random forest method [41].

3.3. Multi-Layer Perceptron

ANNs are inspired by biological neural networks such as those encountered in human beings [42].

These algorithms are made up of two main elements: a structure formed by basic units (neurons)

and the algorithm used to learn and to be trained. Although, recently studies has been explored other

possibilities to facilitate the optimization of neural networks [43], traditional definition of ANN has

been implemented in this work, and therefore, the functional model of neural networks implements

the function f : X ⊂ Rd → Y ⊂ Rc :

f(x) = φ(ψ(x)), (8)

ψ : X ⊂ Rd → T ⊂ Rp,

φ : T ⊂ Rp → Y ⊂ Rc,

where X is the input space, Y is the output space, T is the hidden space, ψ is the activation function

of the hidden layer, and φ is the activation function of the input layer. The implemented function for

the MLP is

f =

h∑
j=1

φj(cjψ)(wT
j x) + w0 + c0, (9)

where w and w0 are the weights of the input layer and c and c0 are the weights of the hidden layer.

This article is protected by copyright. All rights reserved.
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3.4. Application of Machine Learning Techniques (MLTs) to the constitutive fitting of uniaxial

curves of blood vessels

The use of MLTs for the prediction of material parameters of a SEF is explored in this work. The

workflow, which is shown in Figure 1, is divided into two phases: the application and verification

stages. According to this figure, data is initially collected from circumferential and longitudinal

uniaxial tests carried out on soft biological tissues. 1080 analytical curves, which cover a range of

responses from highly anisotropic to quasi-isotropic, were used at this stage. From uniaxial tests,

it is possible to recover stress-strain pairs for each longitudinal and circumferential case. The input

of the MLT was initially defined in two ways with the purpose of defining an input of the machine

learning tool: on the one hand, by fitting a double exponential equation (aebx + cedx) and, on the

other hand, by extracting three customized parameters (initial slope, middle point and final slope)

from the stress-strain curves. This kind of experimental curve has an infinite number of points, and

therefore, a parametrization of the curve is required to characterize and capture the behaviour of

the tissue. The MLTs were trained providing the five material parameters of the SEF defined by

the GOH model [15]. The performance of both inputs (parameters of the double exponential and

customized parameters) was initially compared using ANNs, and then the method of the extraction

of three customized parameters (initial slope, middle point and final slope) from the stress-strain

curves, which was the most effective method, was used for the subsequent training. Therefore, the

two proposed fitting methods were trained repetitively until convergence, and this was carried out

by considering a different number of neurons in the hidden layers. After that, the other machine

learning tools were built and trained. This part is the application stage.

The verification stage considers the five outputs of the previous stage as new equation inputs

in order to check the performance of the application. First, a validation with new observations of

analytical curves (previously unseen observations by the MLT) was performed, following which the

tool was re-validated with two kinds of experimental data; (i) experimental data of a coronary artery

(adventitia layer) obtained by Holzapfel et. al [8] and (ii) uniaxial test data from a carotid artery of

swine obtained previously by our research group [44]. Simple tension tests on the circumferential

and axial strips of the swine vessels were performed with a high precision drive Instron Microtester

5548 system adapted for biological specimens [44]. Different loading and unloading cycles were

applied corresponding to approximately 120 [kPa] Engineering stress level at 30%/min of strain

rate. Several cycles were applied in order to precondition the sample. The last cycle was used in the

subsequent stress-stretch analysis. The Cauchy stress in the direction of the stretch was computed

as σθθ,zz =
Fθ,z

tθ,zwθ,z
λθ,z , where F is the load registered by the Instron machine and tθ,z and wθ,z are

the initial thickness and width, and λθ,z is the stretch in circumferential and longitudinal directions

respectively measured by the video-extensometer.

This article is protected by copyright. All rights reserved.
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Figure 1. Workflow for the application and verification stages.

The assessment of models was carried out by using the well-known coefficient of determination,

R2: the closer this value is to 1, the better the fitting becomes. Moreover, the assessment of

relative errors (REs) for both training and testing sets was considered necessary in order to show

the efficiency in finding correlations between inputs and outputs. By doing so, it is possible to

determine the quality of the training stage (higher performances for lower training error) as well as

the ability of the predictive phase (higher performance for a lower testing error).

R2 =
σθ̂θ
σθ̂σθ

, (10)

RE = abs(
θ̂ − θ
θ

), (11)

where σθ̂θ is the covariance of the predicted and real values, σθ̂, σθ the standard deviations of

predicted and real values, respectively, and θ̂ and θ the predicted and real values, respectively.

The sample was initially divided into three sets (train (80%), test (10%) and validation(10%))

in order to generate and validate the ANN models. The model was trained using the train set, the

test set was used for the determination of the optimal parameters of the model, and the model was

validated with the validation test. Thus, the model was validated with an unseen set at the training

stage in such a way that the model would be able to predict elements not utilized in its construction.

This article is protected by copyright. All rights reserved.
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In addition, in order to minimize the selection of this validation set, a process of 10-fold cross-

validation was implemented [45]. This performs the process described above for 10 iterations, all

the elements being used eventually to train or validate the model. Finally, the error rates shown in

the pair are the mean values of the selected criteria for these iterations. Additionally, the tool was

re-validated with real experimental curves of blood vessels in order to rule out the influence of the

sample on the tool performance.

4. RESULTS

The flow diagram shown in Figure 1represents the two stages carried out in this work.

Parametrization of the experimental curves was initially implemented using a double exponential

function and four customized parameters, namely initial slope, middle point (x, y) and final slope.

A preliminary analysis with the ANN achieved better results when fed with customized parameters

instead of those coming from the double-exponential fitting. These customized parameters were

thus used as the inputs of the three employed algorithms (SVM, Bagged Decision Trees and ANNs)

so as to obtain the physical parameters. All the results are displayed in TableI.

The SVM model for regression produced acceptable results when predicting parameters. It should

be pointed out that even when values of R2 are not high (close to 1), they are sufficiently good to

establish the output parameters, since in our case the variation of these parameters does not produce

a great variation in the generation of the estimated curves.

The results presented in Table I show coefficients of determination (R2) for both the training

and test sets for the Bagged Decision Trees, evaluated with 50, 100 and 500 decision trees at the

input. As can be appreciated in Table I, the optimal number of decision trees seems to be 100 (trials

with fewer number of decision trees did not work appropriately, so it was decided to select 50 as

the lower threshold). For the testing set, 100 trees can thus be considered as the best or optimal

solution for this technique not only in terms of computing load, but also for a reasonably accurate

model performance since the accuracy criteria become stabilized. Nevertheless, for a higher number

of trees (in this case, 500) the method suffers from overfitting. It is therefore possible to achieve

reasonable results (coefficients of determination above 0.7 in almost all variables) through this

bagged-decision-tree-based technique.

This article is protected by copyright. All rights reserved.
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ANN structures were also tested with the aim of optimizing the model in terms of computational

performance and mathematical robustness. For this reason, different networks, with different

numbers of artificial neurons, were built and the REs calculated to determine the optimum number

of neurons in the hidden layers. In the light of the results gathered in Table II, the optimal number

of neurons selected was 20. This was done not only to reduce the computational load but also to

maintain the accuracy of the model. In any case, it still presents a coefficient of determination greater

than 0.99 for the training stage. For this selected number of neurons, the custom fitting methodology

(R2
test = 0.9945) obtains better results than the double exponential one (R2

test = 0.46) as previously

remarked.

Accuracy SVM for Regression Bagged Decision Trees
No. of decision trees

50 100 500
R2train 0.6566 0.9285 0.9283 0.9331
R2 test 0.7330 0.7052 0.8062 0.7834

Table I. Accuracy criteria for SVR and Bagged Decision Trees (for three different numbers of trees using a
process of 10-fold cross-validation to 1080 pair of curves (circumferential and longitudinal).)

Fitting Type Accuracy Number of neurons
5 10 20 50 70 100

Custom. fitting R2 train 0.9981 0.9999 0.9985 0.9994 0.9989 0.9997
R2 test 0.9926 0.9979 0.9945 0.9904 0.9933 0.9956

Table II. Accuracy criteria for the ANN and different numbers of hidden neurons using a process of 10-fold
cross-validation to 1080 pair of curves (circumferential and longitudinal).

A verification stage was also implemented by generating estimated curves and comparing them

to the original ones. This stage can be initiated after the optimal model has been selected (Figure 1),

that is, for the Bagged Decision Trees, an optimal number of 100 and the customized parameters;

for the ANN, 20 neurons in the hidden layer and again the model with the customized parameters.

The Support Vector Machine for Regression was directly applied without any modification at the

input.

By using the estimated parameters provided by the Support Vector Machine for Regression, it was

possible to obtain some curves through the analytical process described in the previous sections. An

unseen set of data was employed in order to generate new curves with the SVMs, with the aim of

validating the tool. After that, the curves obtained were compared with the estimated ones. It is also

possible to compare the original and estimated material parameters, as presented in Figure 2.

This article is protected by copyright. All rights reserved.
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Bagged (Bootstrap-Aggregated) Decision Trees with three different numbers of trees at the input

(50, 100 and 500) were also implemented to predict the parameters. The datasets were divided into

two groups each: training and testing sets. The results presented in Figure 2 show that this method

yields, in a very similar way, reasonably good results.

The ANN has been used in a similar fashion: with the estimated parameters provided by this

tool, several curves were plotted. Figure 2 shows two particular cases, with different degrees of

anisotropy, of the validation process. In view of the customized parameters, this fitting was finally

selected due to its excellent mathematical response in terms of the coefficient of determination.

These cases correspond to this curve parametrization. The results in Figure 2 show that the ANN

is capable of achieving a good fitting of the experimental data for both highly-anisotropic and

quasi-isotropic mechanical responses. In addition, due to the fact that the initial slope of the curve

is one of the three parameters used to represent each curve, the fitting ability at lower strains is

better than that corresponding to the optimization using classical methodology (double exponential)

which usually fails to fit at small strains where there is a high stiffening of the curve.

Table III shows the results corresponding to the mean accuracy of the cases presented in Figure 2,

in terms of the coefficient of determination, for functions coming from the testing set and both for

circumferential and longitudinal cases. It is worth mentioning that all cases exceed a value of 0.99.

Fitting Type Accuracy Anisotropic response Quasi-isotropic response
ANN R2 longitudinal 0.9982 0.9989

R2 circumferential 0.9962 0.9981
SVM for Regression R2 longitudinal 0.9982 0.9989

R2 circumferential 0.9962 0.9981
Bagged Decision Trees R2 longitudinal 0.9974 0.9998

R2 circumferential 0.9998 0.9986
Table III. Assessment of all fittings for highly-anisotropic and quasi-isotropic curves

Finally, the tool was also validated with the real experimental curves of two kinds of blood vessels;

coronary artery (Figure 3.a) [8] and carotid artery (Figure 3.b) [44]. The results were again very

satisfactory, the behaviour of these biological tissues being well captured by the different machine

learning tools. These examples were also fitted by using the customized curve parametrization.

Table IV shows the coefficient of determination of the two cases presented in Figure 3. The R2

circumferential and longitudinal are also very close to 1, confirming the quality of the fitting.

This article is protected by copyright. All rights reserved.
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Figure 2. Comparison of estimated (circular markers) and real (asterisk markers) curves. (a) Anisotropic
behaviour and (b) quasi-isotropic response for the three methods.

Fitting Type Accuracy Coronary artery Carotid artery
ANN R2 Longitudinal 0.983 0.964

R2 circumferential 0.992 0.99
SVM for Regression R2 Longitudinal 0.96 0.83

R2 circumferential 0.89 0.979
Bagged Decision Trees R2 Longitudinal 0.98 0.971

R2 circumferential 0.991 0.992
Table IV. Assessment of the three fittings for coronary and carotid arteries.
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Figure 3. Comparison of estimated (circular markers) and real (asterisk markers) curves for experimental
tests of a (a) coronary artery [8] and a (b) carotid artery [44].

5. CONCLUSIONS

In this study, we have investigated whether a constitutive model based on a SEF can be fitted using

different MLTs, namely: an Artificial Neural Network, a Support Vector Machine for Regression,

and Bagged (Bootstrap-Aggregated) Decision Trees. Uniaxial experimental tests, performed both

in circumferential and longitudinal directions, were used for this purpose. The fitting of uniaxial

experimental data is usually done using a Levenberg-Marquardt non-linear least square fitting

algorithm [16] which minimizes an objective function. Given the well-known problem of numerical

methods based on gradients for the fitting of a material model, that is, their limitation to local

optimization and, therefore, their instability and dependence on the selected initial seed, three
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numerical and complex algorithms based on MLTs have been proposed. These techniques have been

previously used to solve different problems in biomechanics, such as the geometry optimization

of a short stem hip implant to reduce stress shielding at the proximal femur [30] or the prediction

of an atheroma plaque rupture [34]. However, the potential of this technique to accurately obtain

the material parameters of the SEF of soft biological tissues, such as the SEF proposed by Gasser,

Ogden and Holzapfel (GOH) [15], has never before been investigated. Here, we show that the

use of these complex mathematical algorithms could be an alternative to traditional mathematical

optimization algorithms based on gradients.

The use of MLTs also has an important advantage in terms of computational costs. The

computation training time for the ANN was 15 ± 1 minutes for an optimal number of neurons (once

the optimal parameters had been chosen by a k-fold cross validation), and the response time when a

new case is evaluated is negligible since ANNs only evaluate one function, providing an immediate

estimated response. However, when a method based on gradients such as the least square fitting

algorithm [16] is used, an indefinite amount of time is wasted in finding the appropriate initial seed.

This study confirms that it is possible to obtain a good fit of uniaxial experimental curves in a

reasonably simple way. It has been demonstrated that the use of only three simple parameters (initial

slope, middle point and final slope) per each family of curves (circumferential and longitudinal

directions), which can also be computed from the experimental data in a very simple way, could be

a good approach of the curves. The parameters could therefore be used to get a good fitting of the

experimental curves within a short computational time.

Although the aforementioned results are very interesting and promising, this study has some

limitations. A particular issue concerns the observed variability for the real curves: it might be

necessary to consider the study of new analytical or customized parametrizations which would

potentially provide better results. In addition, the complexity of the model and the techniques used

require simpler approaches. In this way, the capabilities for testing the methodology in real cases

might be enhanced.

Nevertheless, despite these limitations and given the results obtained, it is certainly reasonable

to conclude that MLTs are able to replace gradient methods of optimization to fit the material

parameters in the uniaxial experimental testing of soft biological tissue samples. In addition, the

methodology proposed in this work for uniaxial tests could be easily extended to other kinds of

experimental techniques such as biaxial or inflation tests.
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