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Abstract 

It has been suggested that the transient receptor potential cation (TRP) channel subfamily V 

(vanilloid) type 4 (TRPV4) and intermediate-conductance calcium-activated potassium 

(KCa3.1) channels contribute to endothelium-dependent vasodilation. Here we summarize 

very recent evidence for a synergistic interplay of TRPV4 and KCa3.1 channels in lung 
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disease. Among the endothelial Ca2+-permeable TRPs, TRPV4 is best characterized and 

produces arterial dilation by stimulating Ca2+-dependent NO synthesis and endothelium-

dependent hyperpolarization. Besides these roles, some TRP channels control 

endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide 

the driving force required for Cl- and water transport in some cells and most secretory 

epithelia. The three conditions, increased pulmonary venous pressure caused by left heart 

disease, high inflation pressure, and chemically-induced lung injury may lead to activation of 

TRPV4 channels followed by Ca2+ influx leading to activation of KCa3.1 channels in 

endothelial cells ultimately leading to acute lung injury. We find that a deficiency in 

KCa3.1channels protects against TRPV4-induced pulmonary arterial relaxation, fluid 

extravasation, hemorrhage, pulmonary circulatory collapse, and cardiac arrest in vivo. These 

data identify KCa3.1 channels as crucial molecular components in downstream TRPV4-

signal transduction and as a potential target for the prevention of undesired fluid 

extravasation, vasodilatation, and pulmonary circulatory collapse. 

 

Key words: pulmonary circulation, collapse, endothelium, lung oedema, KCa3.1, TRPV4 

 

Introduction 

 Left heart disease and increased pulmonary venous pressures cause pulmonary 

oedema of cardiac origin. Non-cardiogenic acute lung injury and adult respiratory distress 

syndrome (ARDS) can also cause pulmonary oedema because of an increased permeability 

for salts, proteins, and water in the lung (Ranieri et al. 2012). In man, acute lung injury and 

ARDS are characterized by an acute onset of respiratory failure with bilateral infiltrates on 

chest x-rays, the absence of left atrial hypertension (pulmonary artery wedge pressure < 18 

mmHg), and pulmonary arterial oxygen pressure that in case of acute lung injury is less than 
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300 mmHg and in case of ARDS less than 200 mmHg (Ranieri et al. 2012). The 28 day 

mortality is approximately 25-30% of both acute lung injury and ARDS in man (Ware & 

Matthay 2000). Among the events leading to acute lung injury and ARDS, an inflammation 

with infiltration of immune cells and leakage of protein-rich fluid into interstitium and alveoli 

are of major pathomechanistic importance. The resulting lung oedema produces a diffusion 

mismatch, and shunting of the blood in the lung, finally leading to respiratory failure. Despite 

the presence of inflammation, the effect of steroids on the conditions is limited to less need of 

use of vasopressors, more ventilator and shock free days, less skeletal muscle weakness, and 

short-term improvement in oxygenation. However, the steroid treatment does seemingly not 

reduce mortality (Steinberg et al. 2006). Although some studies with small numbers of 

patients have shown potential benefit of e.g. inhaled prostacyclin, epoprostenol, and nitric 

oxide (NO), there is no convincing evidence to date that any of these drugs saves lives in 

acute lung injury and ARDS (Duggal et al. 2015, Searcy et al. 2015). Therefore, there is a 

clear need for novel therapeutic strategies for these conditions as well as a more profound 

understanding of the underlying pathophysiological mechanisms. 

The role of transient potential receptor channels vanilloid type 4 (TRPV4) channels in 

respiratory diseases has been reviewed recently (Goldenberg et al. 2015). Here we review 

new evidence for TRPV4 channels in endothelium-dependent vasodilatation in the pulmonary 

circulation and the role of these channels in lung oedema and pulmonary circulatory collapse. 

Finally, we review recent evidence showing that lung TRPV4 channels interact with 

countercurrent producing and membrane hyperpolarizing calcium-activated channels with 

intermediate conductance (KCa3.1) and that genetic deficit of these K channels in mice 

(KCa3.1-/-) is protective against TRPV4-induced pulmonary circulatory collapse and oedema. 
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Role of endothelial TRPV4 channels and KCa3.1 in endothelium-dependent 

vasodilatation 

The TRPV4 channel is a remarkable non-selective cation channel with considerable 

calcium conductance (PCa/PNa ≈ 8) that is gated poly-modally by chemical factors such 

endogenous arachidonic acid (AA) and eicosanoids (Table 1), as well as by physical forces 

e.g. osmotic stress and membrane stretch (Figure 1, (Clapham 2003)). It is well established 

that TRPV4 is expressed in the endothelium of systemic and renal arteries (Chen et al. 2015a, 

Kohler et al. 2006, Watanabe et al. 2003), and is likely to mediate Ca2+ entry in the 

endothelium in response to AA-release stimulating signals (Qian et al. 2014) and to sudden 

increases in hemodynamic forces such as flow and shear stress as it occurs during reperfusion 

(Hartmannsgruber et al. 2007, Kohler et al. 2006) as well as to abnormally high intracapillary 

pressure (Hamanaka et al. 2007, Yin et al. 2008). In the lung, TRPV4 channels are expressed 

in the bronchial epithelium, capillary endothelium, and in smooth muscle of extra-alveolar 

arterioles (Alvarez et al. 2006, Fernandez-Fernandez et al. 2008). By patch clamp we 

recently provided evidence for functional TRPV4 channels in native mouse pulmonary 

arterial endothelial cells (Wandall-Frostholm et al. 2015) and mRNA-expression studies 

suggest the presence of TRPV4 in both, the endothelium and smooth muscle layer of rat large 

pulmonary arteries (Sukumaran et al. 2013). This is further supported by immunohistological 

proof of TRPV4 protein in both media and intima of pulmonary arteries in rats (Pankey et al. 

2014). However, it remains to be elucidated, which humoral stimulus and/or 

chemical/physical forces that lead to activation of the TRPV4 channels in the pulmonary 

circulation. Indeed, mechanical stretch during respiration has been proposed to activate 

stretch-sensitive channels (Goldenberg et al. 2015), and TRPV4 is likely to act as such a 

mechanosensitive channel in the lung. 
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In addition to mechanical stimulation, formation of epoxyeicosatrienoic acids (EETs) 

from their precursor AA has been suggested to activate TRPV4 channels (Vriens et al. 2004, 

Watanabe et al. 2003).Agonist-induced stimulation with acetylcholine also leads to TRPV4 

activation and Ca2+ entry causing vasodilatation that is mediated by the two major endothelial 

vasodilator systems, the Ca2+-dependent endothelial nitric oxide synthase (eNOS) (Kohler et 

al. 2006) and the endothelium-derived hyperpolarization (EDH) pathway as concluded from 

studies in carotid and mesenteric arteries from mice and rats (Hartmannsgruber et al. 2007, 

Sonkusare et al. 2012, Sonkusare et al. 2014). Yet, there is no clear evidence that TRPV4 

channels contribute to the physiologic regulation of systemic blood flow and pressure as 

concluded from the normal/low systemic blood pressure in TRPV4-deficient mice (Earley et 

al. 2009). Nonetheless, pharmacological activation of TRPV4 by systemic administration of 

the potent TRPV4-activators GSK1016790A and 4α-phorbol-12,13-didecanoate (4αPDD) 

produces a strong drop in systemic blood pressure in mice, rats, and dogs (Pankey et al. 2014, 

Willette et al. 2008). In the pulmonary circulation activation of TRPV4 channels by 

GSK1016790A was initially suggested to lead to vasoconstriction (Willette et al. 2008). In 

the intact-chest rat model infusion of GSK1016790A only evoked constriction in the 

pulmonary circulation after treatment with the NO synthase inhibitor, N-nitro-L-arginine, 

while low doses of GSK1016790A in the absence of NO synthase inhibitor, caused small 

decreases in pulmonary arterial pressure (Pankey et al. 2014). In isolated constantly perfused 

mouse lungs, GSK1016790A increased pressure suggesting that it induced vasoconstriction 

(Ke et al. 2015). However, as previously pointed out by others a major limitation of these 

studies were that they were performed in perfused lungs without ventilation (Gollasch & 

Kubler 2016). In isolated pulmonary arteries, blockade of TRPV4 channels inhibited 5-

hydroxytryptamine-induced contraction (Xia et al. 2013, Yang et al. 2012), and in murine 

pulmonary arteries without endothelium, GSK1016790A increased contractions induced by 
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phenylephrine suggesting that smooth muscle TRPV4 channels were involved in the 

contraction (Wandall-Frostholm et al. 2015). In chronic hypoxic rats expression of TRPV4 

channels is increased and contributes to the increased 5-hydroxytryptamine-induced 

contraction in the pulmonary arteries (Yang et al. 2012). Moreover, it has been suggested that 

TRPV4 channels may also contribute to acute hypoxic vasoconstriction in the lung (Morty & 

Kuebler 2014), implying that these channels may play a role in the von Euler-Liljestrand 

mechanism, where the blood is redistributed by vasoconstriction from poorly to better 

ventilated lung areas. In addition to TRPV4 channels, TRPV2 channels have been proposed 

to contribute to acute hypoxic vasoconstriction (Yoo et al. 2012), and therefore, further 

studies are warranted to clarify the role of smooth muscle TRPV4 channels in the von Euler-

Liljestrand mechanism.   

In addition to functional smooth muscle TRPV4 channels, TRPV4 channels in the 

endothelium play an important role in the pulmonary circulation (Figure 2). In rat pulmonary 

arteries contracted with phenylephrine, increasing concentrations of GSK1016790A caused 

endothelium-dependent relaxations (Sukumaran et al. 2013), and these relaxations were 

presumably mediated both by NO and activation of calcium-activated K channels 

(Sukumaran et al. 2013). In isolated pulmonary arteries from mice, GSK1016790A also 

caused endothelium-dependent relaxations that were sensitive to a selective blocker of 

TRPV4 channels, HC067047. Moreover, GSK1016790A relaxations were reduced by 

inhibition of NO synthase and by KCa3.1 deficiency in pulmonary arteries from KCa3.1-/- 

mice. The impairment of the GSK1016790A relaxations was more pronounced in more distal 

intrapulmonary arteries from KCa3.1-/- mice (Wandall-Frostholm et al. 2015). These studies 

suggest that activation of TRPV4 channels in the proximal pulmonary arteries mainly leads to 

relaxations mediated by NO, while in distal smaller arteries, TRPV4 channel activation leads 

also to activation of the EDH pathway. This was also supported by our observations that 
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inhibition of NO synthase inhibited only weakly the blood pressure lowering effects of 

infused GSK1016790A in the mouse pulmonary lung. In contrast, KCa3.1 channel deficiency 

in KCa3.1-/- mice prevented this pressure drop (Wandall-Frostholm et al. 2015) suggesting a 

major role of KCa3.1-activation in here. Indeed, in patch-clamp studies in freshly isolated 

pulmonary arterial endothelial cells we found that GSK1016790A co-activated KCa3.1 and 

also to a minor extent small conductance calcium-activated K channels (KCa2) (Wandall-

Frostholm et al. 2015). It has also been shown that TRPV4-induced endothelial Ca2+ events 

(sparklets) are capable of activating co-localized KCa3.1 in mesenteric resistance arteries 

(Sonkusare et al. 2012). Thus, from the cell biological perspective, our and previous findings 

prove functional synergism of the two channels. 

The finding of a major role of KCa3.1 in endothelial vasodilator function in the 

pulmonary arteries is in line with previous findings in other vascular beds showing impaired 

EDH- and NO-type relaxations to acetylcholine in the cremaster microcirculation and in large 

carotid arteries of KCa3.1-/- mice (Hasenau et al. 2011, Si et al. 2006, Wolfle et al. 2009).  

As already indicated above, KCa3.1 is apparently co-expressed with the 

calcium/calmodulin-gated KCa2.3 subtype (a close phylogenetic relative with smaller 

conductance) in pulmonary arterial endothelium and the endothelium of systemic vessels 

(Brahler et al. 2009, Edwards et al. 1998, Kroigaard et al. 2012). The presence of the two 

channels is explained by the fact that they serve different physiological functions: in isolated 

mesenteric arteries KCa2.3 channels were suggested to exert a more tonic hyperpolarizing 

and vasodilating impact while the role of KCa3.1 channels is to help repolarizing the 

endothelium (Crane et al. 2003).  Moreover, KCa3.1 channels are particularly responsive to 

acetylcholine-induced calcium-release from IP3-sensitive stores  promoting subsequent 

calcium-entry through TRPV4 channels (Qian et al. 2014), and initialization of EDH-type 

dilatations in murine arteries. However, in isolated human and murine pulmonary arteries and 
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bronchioles KCa2.3 channels seem to be more important than KCa3.1 for EDH dilations as 

concluded from the stronger inhibitory effect of the KCa2 blocking toxin apamin on 

relaxations produced by an unselective opener, NS309 of KCa3.1 and KCa2 channels 

(Kroigaard et al. 2012, Wandall-Frostholm et al. 2014). Also another blocker of KCa2 

channels, UCL1618, inhibits strongly the relaxations following pharmacological opening of 

TRPV4 in mouse pulmonary arteries, although the contributions of KCa2 channels to current 

is small in pulmonary endothelial cells from wild type animals,  but appreciable in pulmonary 

artery endothelial cells from KCa3.1-deficient mice (Wandall-Frostholm et al. 2015).  

Therefore, the physiological role of activation of KCa2.3 by TRPV4 channel opening in the 

lung remains to be clarified. 

 

Role of TRPV4 in pulmonary vascular collapse and lung oedema 

There is emerging evidence suggesting that stretch activation of TRPV4 channels 

followed by pulmonary vascular pressure-mediated Ca2+ uptake is involved in acute lung 

injury (Figure 3). Alvarez and colleagues found that disruption of the lung and perivascular 

and alveolar liquid accumulation following stimulation with the TRPV4-activators, 4-αPDD 

and 14,15 EET, was reduced in mice deficient of TRPV4 channels, while this was not the 

case for lung injury induced by calcium overload that was evoked by thapsigargin-induced 

endoplasmic reticulum calcium depletion (Alvarez et al. 2006). Moreover, in isolated lungs, 

high intravascular pressure is associated with increased endothelial cell calcium and alveolar 

liquid accumulation, effects, which were not present in lungs from TRPV4-/- mice and were 

blocked by inhibition of P450 epoxygenase or by blocking TRPV4 channels with ruthenium 

red (Jian et al. 2008, Yin et al. 2008). However, it is also worth mentioning that increases of 

cyclic GMP caused by either NO donors or by inhibition of phosphodiesterase type 5 with 

sildenafil were likewise capable of preventing oedema and the capillary endothelial calcium 
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overload in lungs of rats with acute failure of the left ventricle after induction of a large 

myocardial infarction (Yin et al. 2008). Intriguingly, the novel potent TRPV4 blocker, 

GSK2193874, inhibited oedema in isolated lungs generated by high pulmonary venous 

pressure in mice and was also found to be efficient in preventing lung oedema in a murine 

myocardial infarction model (Thorneloe et al. 2012). These data from preclinical 

investigations suggest a role for TRPV4 channel activation and increased endothelial calcium 

in lungs exposed to sudden increases of high hydrostatic intravascular pressure, and that 

TRPV4 channel blockers may have efficacy in at least lung oedema with cardiac origin. 

Interestingly, in a rat model of chronic congestive heart failure (supracoronary aortic 

banding) impairment of pulmonary endothelium-dependent vasodilatation and endothelial 

cell calcium responses were observed in response to mechanical stress and agonist 

stimulation, and these alterations were associated with downregulation of TRPV4 channel 

expression (Kerem et al. 2010). The authors also found reduced NO formation and marked 

cytoskeletal reorganization in the endothelial cell layer (Kerem et al. 2010), suggesting that 

in chronic heart failure of the left ventricle, the pulmonary vasculature adapts by functional 

and morphological remodeling to increased pulmonary pressure.  

 

 Ventilation by use of a respirator can at least in certain conditions (e.g. high peak 

inflation pressure or by high end expiratory pressure) lead to lung injury in human subjects 

(Neto et al. 2015). In isolated mouse lungs exposed to either low or high peak inflation 

pressure, the pulmonary filtration coefficient (Kf) was increased in the mouse lungs exposed 

to high peak inflation pressure, but this was not the case in lungs from TRPV4-/- mice, and the 

effect of high inflation pressure was also blocked by ruthenium red (Hamanaka et al. 2007). 

The effect of high inflation pressure may, in addition to activation of TRPV4 channels in the 

epithelium and endothelium, also lead to activation of TRPV4 channels in macrophages, 
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since instillation of macrophages from TRPV4+/+ mice markedly increased Kf in isolated 

lungs from TRPV4-/- mice (Hamanaka et al. 2010).   

Chemical and acid exposure e.g. by aspiration of gastrointestinal content can produce 

non-cardiogenic acute lung injury and ARDS. In mice instillation of HCl or inhalation of 

chlorine were associated with infiltration of the lungs with macrophages and neutrophils and 

a worsening of the lung damage in TRPV4+/+ mice, while these effects were absent in lungs 

from TRPV4-/- mice (Balakrishna et al. 2014). Administration of two selective TRPV4 

channel inhibitors after exposure to HCl or chlorine, also reduced infiltration of  macrophages 

and neutrophils, reduced the elevated levels of cytokines, and improved the histopathological 

score (Balakrishna et al. 2014). However, a recent study reported only a prophylactic effect 

of GSK2193874 against acid-induced acute lung injury and infiltration of neutrophils in 

murine lungs, while there was no effect of another TRPV4 blocker, HC067047 against lung 

injury (Yin et al. 2016). Still, the expression of TRPV4 channels in both macrophages and 

neutrophils opens the possibility/perspective that blockade of these channels may reduce 

tissue damage caused by e.g. lung infection and damaging chemical substances. 

 

 In summary, TRPV4 channels appear to be involved in acute lung injury caused by 

increased hydrostatic pressure due to left heart disease, high inflation pressure, and 

chemically induced lung injury. These preclinical studies clearly suggest that there could be a 

potential for use of TRPV4 channel blockers for treatment of patients with acute lung injury. 

The treatment may be safe as concluded from animal studies, in which TRPV4 channels 

blockers do not seem to possess obvious adverse cardiovascular effects. However, it remains 

to be clarified whether these blockers inhibit the Euler-Liljestrand mechanism as previously 

proposed (Morty & Kuebler 2014), and hence the redistribution of blood from hypoxic to 

oxygenated areas in the lung which could be devastating due to even lower blood oxygen 
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saturation levels in lung injury. Thus, pharmacological TRPV4 blockade in contrast to 

pharmacological TRPV4 activation appears to be safe, although this still needs to be proven 

experimentally. 

 

Protective role of genetic deficit of KCa3.1 against TRPV4-induced pulmonary 

circulatory collapse and oedema  

In normal physiological conditions osmotically-driven water transport across cell 

membranes is thought to be the principle mechanism of fluid transport. In the lung, it has 

been suggested that water channels, aquaporins, and especially aquaporin 4 and 5 are 

important for liquid clearance in the alveoles, while in lung microvascular endothelium 

aquaporin 1 is considered the main predominantly expressed water channel (Verkman 2007). 

However, mice deficient of either aquaporin 1, 4, or 5 accumulate liquid in the lung to similar 

levels as control mice in response lung injury (Song et al. 2000). However, the slow rates of 

fluid transport support that aquaporins may add only marginally to transepithelial water 

transport in the lungs (Verkman 2007). In heart failure pressure-driven bulk fluid flow 

produces lung edema and pleural effusions (Berthiaume & Matthay 2007, Verkman 2007), 

while in lung injury (ALI and ARDS) there is pulmonary permeability edema and it can be 

accompanied by (Lucas et al. 2009): (1) reduction of alveolar liquid clearance capacity, 

thought to be caused by an inhibition of the expression of crucial sodium transporters (ENac), 

the cyclic AMP-regulated cystic fibrosis transmembrane regulator chloride channel (CFTR),  

and the Na+K+-ATPase (Figure 3), (2) an endothelial/epithelial hyperpermeability, which to a 

large degree is cytokine induced, and (3) a disruption of the epithelial and endothelial barriers 

caused by increased apoptosis and necrosis. As mentioned above TRPV4 channels appear to 

play a role both in cardiac and lung jnjury-induced oedema, and the coupling of the TRPV4 

activation to KCa3.1 channels seems to be important. 
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To remind the reader, the KCa3.1 channel is a calcium-activated K channel of 

intermediate-conductance (20-40 pS) that is activated by calcium-binding to calmodulin that 

is constitutively bound to the cytosolic c-terminus and acts as the Ca2+ sensing beta-subunit 

of the channels (EC50, 250-500 nM). KV channels and the KCa1.1 channels have a voltage 

sensor that causes channel inactivation at negative membrane potentials, but this is not the 

case for the KCa3.1 channel which lacks a voltage sensor. This enables the channel, unlike 

KV channels, to produce solid and lasting hyperpolarization up to the K channel equilibrium 

potential of around -89 mV. KCa3.1 is found in several white blood cell linages, in 

erythrocyte (Gardos channel) and in most secretory epithelia where KCa3.1 channels play 

important roles in the control of fluid movements because K efflux through the channel and 

concomitant hyperpolarization provide the electrical driving force for chloride efflux through 

apical Cl- channels (occurring at potentials more negative than the chloride equilibrium 

potential of around -30-50 mV in epithelia) and concomitant water movements. This could be 

an important mechanism in airway epithelia and other epithelia, in which presumably 

basolateral located KCa3.1 channels functionally interplays with the apical CFTR chloride 

channel, and Ca2+-activated Cl- channels (CaCC encoded by the TMEM16A gene) to enable 

transepithelial chloride and water secretion in response to stimuli triggering cAMP-elevations 

and increase of intracellular Ca2+ (Bertuccio et al. 2014, Mall et al. 2003, Vazquez et al. 

2001). Thereby, KCa3.1 channels could pivotally contribute to the control of mucus 

production and its stickiness in the airways and to transepithelial chloride and water transport 

as previously described for gastric and intestinal epithelia as well as exocrine salivary glands 

(Catalan et al. 2014). Therefore, KCa3.1 channel blockade, deficiency or downregulation 

could be strategies to prevent excessive transepithelial fluid transport caused by 

pathologically high pressures in the pulmonary arterial and venous circulation. 
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Phenotyping of KCa3.1 gave important information about the in-vivo roles of the 

channel. Concerning erythrocytes, in which KCa3.1 is known to be involved in the control of 

cell volume, we found that KCa3.1-deficiency produced subtle macrocytosis (a sign of mild 

overhydration and fragility) and progressive splenomegaly as the perhaps an anatomical  

“visible” phenotype (Grgic et al. 2009). Considering the large body of literature regarding the 

role of T cell KCa3.1 in the immune response, it is interesting to realize that the KCa3.1-/- 

mice are generally not immune suppressed. With respect to the systemic circulation, 

deficiency of KCa3.1 channels leads to a significant increase in pulse pressure and a mild 

elevation of systolic blood pressure exclusively during physical activity with no change in 

diastolic pressure (Si et al. 2006).  Regarding alterations in the pulmonary system, we have 

studied a series of lung parameters in KCa3.1-/- mice and wild type mice. By use of a 

flexiVent system (SCIREQ Inc, Montreal, Qc, Canada) we fitted dynamic pressure-volume 

loops to a single compartment model to calculate system resistance and elastance, and by use 

of the forced oscillation technique data were fit to the constant phase model to calculate 

central airway resistance and tissue elastance and tissue damping as previously described 

(McGovern et al. 2013, Phillips et al. 2012). Tracheal instillation of bleomycin markedly 

increased system and tissue elastance, reflecting increased stiffness in these functional lung 

fibrosis parameters both in wild type and KCa3.1-/- mice (Figure 4), and the changes in other 

respiratory parameters also changed similarly in wild type and KCa3.1-/- mice suggesting that 

these patophysiological changes were independent of the KCa3.1 channel.  Considering 

ventricular and pulmonary pressure, the right ventricular pressure is unaltered in KCa3.1-/- 

mice (Wandall-Frostholm et al. 2015). Moreover, the combination of complete lack of 

KCa3.1 and reduction of KCa2.3 expression in KCa3.1-/-/KCa2.3T/TDox mice (Brahler et al. 

2009) did not alter pulmonary hypertension although there were structural changes of the 

heart (increased right ventricular wall thickness) and larger pulmonary arteriole lumen 
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diameters in this strain compared to wild-type mice (Wandall-Frostholm et al. 2014), which 

are presumably caused by the manipulation of the KCa2.3 expression levels rather than by 

KCa3.1-deficiency.  

 Importantly, we found that following infusion of the TRPV4 opener GSK106790A, 

KCa3.1-/- mice were protected against lung hemorrhage and lung oedema as concluded from 

histological examination and measurements of perivascular cuffing and widening of 

extravascular spaces in the lung (Wandall-Frostholm et al. 2015). Moreover, infusion of 

GSK106790A caused vascular collapse and death in wild type mice, but not in KCa3.1-/- 

mice. Recent findings further support this concept by showing that in the isolated rat lung, 

infusion of the endogenous TRPV4-activators, EETs increase the filtration coefficient, an 

effect prevented by blocking KCa3.1 channels with TRAM-34 (Lin et al. 2015). This 

suggests that activation of KCa3.1 channels plays a pivotal role in fluid extravasation in the 

lung induced by TRPV4 activation as outlined in Figure 3. Thus, we speculate that the three 

conditions, 1) increased pulmonary venous pressure caused by left heart disease, 2) high 

inflation pressure, and 3) chemically-induced lung injury activate calcium influx through 

TRPV4 in the lung  endothelium/epithelium that in turn triggers opening of KCa3.1 channels. 

The concomitant hyperpolarization generates a positive feed-back loop on calcium influx 

through TRPV4 channels while at the same time the hyperpolarization provides a sufficiently 

negative membrane potential to push also negatively charged chloride through chloride 

channels out of the cells. These movements of K and Cl force water to follow and to 

accumulate in the interstitium and alveoli. There are several pieces of additional evidence 

supporting this concept. 1) When comparing the ratios of dry weight and wet weight as a 

measure of water content between genotypes, we found that the ratios were higher (indicative 

of liquid accumulation) in wild type lungs exposed to the TRPV4 channel opener, 

GSK106790A, than in lungs from KCa3.1-/- mice (Figure 5). 2) Liquid accumulation 
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measured as cuffs around extra-alveolar vessels or widening of extracellular space in 

histological sections were increased in response to GSK106790A in wild type mice, but these 

effects were markedly reduced in KCa3.1-/- mice (Wandall-Frostholm et al. 2015). 3)We 

found that TRAM-34 was able to prevent TRPV4-induced cell swelling and to reduce 

membrane blebs in endothelial cell cultures, again suggesting that K efflux through KCa3.1 

channels plays a role in endothelial cell integrity and barrier function (Figure 3, (Wandall-

Frostholm et al. 2015). 

ARDS is characterized by leakage of protein-rich oedema fluid, and this is mimicked 

by activation of the TRPV4 channel and is absent in TRPV4 -/- mice (Alvarez et al. 2006). In 

the KCa3.1-/- mice, we investigated protein extravasation by using Evans blue and found a 

massive accumulation of Evans blue in the lungs from both wild type and KCa3.1-/- mice. 

There was no obvious difference between the genotypes (Wandall-Frostholm et al. 2015). 

These findings suggest that the KCa3.1 channel plays a pivotal role at least for interstitial 

fluid accumulation and vascular collapse leading to death following pharmacological TRPV4 

channel activation. As mentioned earlier, TRPV4 channel blockade prevents infiltration with 

neutrophils and macrophages in lung injury in mice (Yin et al. 2016), but at present it is 

unclear whether infiltration of immune cells in the lung is affected by KCa3.1 channel 

deficiency. 

In summary, the findings that TRPV4 channels play a role in both cardiac and non-

cardiac lung oedema suggest that, TRPV4 channel activation, in addition to perhaps reduced 

alveolar liquid clearance by ENac, CFTR, and Na+K+-ATPase, mediate rapid liquid 

extravasation by coupling to the KCa3.1 channels and likely to calcium-activated chloride 

channels (CaCC) to produce potassium and chloride outflow, and concomitant fluid 

movement into the interstitium and alveoli (Figure 3).   
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Do KCa3.1 blockers have therapeutic utility against pulmonary circulatory collapse and 

oedema? 

Based on our studies in mice KCa3.1-/- mice (Wandall-Frostholm et al. 2015), 

blockade of KCa3.1 could be a strategy to prevent excessive transepithelial fluid transport 

caused by pathologically high pressures in the pulmonary arterial and venous circulation. In 

such a scenario, selective blockers of KCa3.1 such as TRAM-34, Senicapoc (ICA-17043), 

cyclohexadienes (Mauler et al. 2004) or the novel negative-gating modulator, the dibenzoate 

ester, RA-2 (Olivan-Viguera et al. 2015) may prevent lung oedema formation when applied 

from the bronchial side to minimize potential systemic effects on blood pressure. While this 

is hypothetical for the lung, there are studies on the brain that suggest such utilities for 

prevention of oedema: A cyclohexadiene compound efficiently reduces brain oedema in a rat 

acute subdural haematoma model (Mauler et al. 2004). TRAM-34 has been shown to block 

blood-brain-barrier KCa3.1 and thereby sodium-uptake to the affected brain areas after 

ischemic stroke (Chen et al. 2015b). Therefore, a series of preclinical studies have to be 

conducted to explore the possibility of using KCa3.1 blockers for treatment of pulmonary 

oedema and vascular collapse. Moreover, it is required to address whether combined 

blockade of KCa2 and KCa3.1 channels provide additional beneficial effect, and whether 

blockade of KCa3.1 channels provide similar or better outcome compared to TRPV4 channel 

blockade in the treatment of pulmonary oedema and collapse. 

Drugs for treating pulmonary oedema of cardiac origin (acute heart failure) are 

diuretics, positive inotropic drugs (e.g. levosimendan, dobutamine, dopamine), and 

depending on the systemic blood pressure also vasodilators according to the guidelines of the 

European Society of Cardiology (McMurray et al. 2012). In keeping with the potential roles 

of TRPV4 channels in lung oedema with cardiac origin, it is thinkable that specific blockade 

of these channels may resolve or help to resolve the condition. Concerning KCa3.1 channels 
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it remains to be clarified whether they represent potential drug targets in pulmonary oedema 

of cardiac origin.   

Treatment with KCa3.1 blockers affects hematological parameters. In mice, treatment 

with TRAM-34 (120 mg/kg/day, i.p.) over 4 weeks produced mild splenomegaly (142% of 

control) and hepatomegaly (+153%) and improved erythrocyte hemoglobin content and 

hematocrit, although the treatment caused a decrease in erythrocyte count (-8 %) and an 

increase in reticulocyte count (+66 %). The treatment did not cause erythrocyte macrocytosis 

but led to a significant increase in red blood cell distribution width (Köhler, unpublished 

observations), suggesting alterations in erythrocyte volume regulation in mice. Another 

KCa3.1-blocker, Senicapoc, advanced into clinical trials for sickle cell disease and was found 

to increase hemoglobin levels and reduce hemolysis although it failed to reach the primary 

endpoint, a reduction in painful vaso-oclusive crisis. Yet, a 12-week treatment with the 

compound was found to be safe in humans at a peroral dosage of 10 mg/day (Ataga et al. 

2008). Although this drug at first sight appears clinically safe, additional safety studies will 

be required before repurposing this drug or using other drug candidates for treating patients 

with the above-mentioned lung conditions. 

Small molecule activators of the KCa2 and KCa3.1 channels such as DC-EBIO, 

NS309, and the more KCa3.1-selective SKA-121 may have therapeutic potential in cystic 

fibrosis, chronic obstructive pulmonary disease (COPD), and in other diseases characterized 

by impaired secretory activity (Christophersen & Wulff 2015, Coleman et al. 2014, Kroigaard 

et al. 2012, Syme et al. 2000). However, with respect to the lung, there are some concerns 

regarding the utility of KCa3.1 activators because they may bear the risk to promote oedema 

formation by stimulating transepithelial Cl- secretion, fluid extravasation, and alveolar 

flooding. 
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Table 1. Characteristics of transient receptor potential vanilloid type 4 (TRPV4) and 
calcium-activated potassium channels with intermediate conductance (KCa3.1). 

                            TRPV4  
 

                             KCa3.1 

Conductance 30-60 pS at -60 
mV 

Ca2+>Mg2+>K+> 
Cs+>Rb+>Na+>Li+

11-40 pS K+>Rb+>NH4
+>Cs+

Activators  
4αPDD 
GSK1016790A 
RN1747 

*EC50 (µM) 
0.32 
0.002-0.02 
0.79 

 
NS309 
SKA-121 
DC-EBIO 

EC50 (µM) 
0.01 
0.10 
4.1-4.5 

Blockers  
HC067047 
GSK2193874 
RN1734 

EC50 (µM) 
0.016-0.13 
0.002-0.02 
2.0-6.3 

 
TRAM-34 
Charybdotoxin 
Senicaproc 

pEC50 (µM) 
0.01-0.025 
0.002-0.025 
0.01 

Endogenous 
activators 

EETs 
NO mediated 
S-nitrosylation 

 Intracellular 
calcium 

EC50 (µM) 
0.1-0.79 

EC50, concentrations causing half maximal effect. *, range of pEC50 depends on species 
where the compounds have been tested. EETs, epoxyeicosatrienoic acid; 4αPDD, 4α-phorbol 
12,13-didecanoate; NO, nitric oxide. Further details on the channels can be found on the 
following address: www.guidetopharmacology.org  
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Legends 

Figure 1. Structure and regulation of TRPV4 channel.  

Figure 2. Scheme showing calcium influx through TRPV4 channels in endothelial cell 

(E) followed by activation of calcium-activated potassium channels (KCa2.3 and 

KCa3.1) and endothelial nitric oxide synthase (eNOS).  The potassium released from the 

endothelial cells leads to increased Na+/K+-ATPase activation and smooth muscle 

hyperpolarization while NO stimulates soluble guanylyl cyclase (sGC), formation of cyclic 

GMP and opening of smooth muscle large conductance calcium-activated potassium channels 

(KCa1.1). The resulting hyperpolarization reduce calcium influx through voltage-gated L-

type calcium channels and relaxation of the underlying smooth muscle layer. Opening of the 

TRPV4 channels in the smooth muscle may occur during inhibition of eNOS activity.  

Figure 3. Hypothetical role of blood-alveolar lung KCa3.1 channels in oedema 

formation during involvement of TRPV4 channels. (A) The three conditions, increased 

pulmonary venous pressure due to acute left heart disease (ΔP), high inflation pressure, and 

chemically-induced lung injury leads to activation of transient receptor potential vanilloid 

type 4 channels (TRPV4). This activation produces permeability of the endothelial (E) cell 

layer and protein and liquid accumulation in the alveoles. (B) The scheme shows the 

mechanisms involved in the endothelial-alveolar barrier (alveolar epithelial type I (AEI) and 

type II (AEII) cells). Here calcium influx through TRPV4 channels activates calcium-

activated potassium channels (KCa3.1) which in turn produce hyperpolarization and 

promotes in terms of a positive-feed-back loop additional calcium influx in endothelial cells 

and AEI and AEII. Moreover, the hyperpolarization provides the driving force for chloride 

efflux through Ca2+-activated Cl- channels (CaCC) and cyclic AMP-regulated cystic fibrosis 

transmembrane regulator chloride channel (CFTR) causing extracellular liquid accumulation. 

The liquid clearance by sodium transport through the ENaC channel and the CFTR is reduced 
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in both AEI and AEII cells.  Water may diffuse paracellularly. Aquaporins in the 

endothelial/epithelium may be of less importance. White blood cells (WBC) including both 

macrophages and neutrophils may act as mediators of inflammatory responses and thereby 

contribute to the pathophysiological processes by further accelerating the endothelial 

dysfunction and barrier disruption.  RBC, red blood cells. 

Figure 4. Lung parameters measured in wild type (wt) and KCa3.1 channel deficient 

(KCa3.1-/-) mice by use of forced oscillatory pressure. Respiratory system elastance (A) 

and tissue elastance (B) measured as changes in pressure achieved per unit change in volume 

or stiffness in mice 2 weeks after tracheal instillation of vehicle or the lung fibrosis-inducing 

drug, bleomycin. There were no differences comparing parameters in wild type and KCa3.1-/-

. The results are means±s.e.m. of 8-10 mice. *P<0.05 versus control mice compared with 2-

way analysis of variance. There was no interaction. 

Figure 5. Accumulation of extracellular liquid is inhibited in lungs from KCa3.1-/- mice. 

GSK1016790A was infused and the wet weight was obtained, and expressed as ratio of the 

dried lung weight (W/D). The dry weight was obtained after the tissue has been dried in a 

microwave oven for four days. *P<0.05 versus GSK1016790A-infused wild type mice (n=4). 
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