
0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

1

Robot Planning based on Boolean Specifications

using Petri Net Models

Cristian Mahulea, Senior Member, IEEE, and Marius Kloetzer

Abstract—In this paper we propose an automated method
for planning a team of mobile robots such that a Boolean-
based mission is accomplished. The task consists of logical
requirements over some regions of interest for the agents’
trajectories and for their final states. In other words, we allow
combinatorial specifications defining desired final states whose
attainment includes visits to, avoidance of, and ending in certain
regions. The path planning approach should select such final
states that optimize a certain global cost function. In particular,
we consider minimum expected traveling distance of the team
and reduce congestions. A Petri net (PN) with outputs models the
movement capabilities of the team and the regions of interest. The
imposed specification is translated to a set of linear restrictions
for some binary variables, the robot movement capabilities
are formulated as linear constraints on PN markings, and the
evaluations of the binary variables are linked with PN markings
via linear inequalities. This allows us to solve an Integer Linear
Programming problem whose solution yields robotic trajectories
satisfying the task.

Index Terms—Discrete Event Systems, Autonomous Robots,
Optimization, Petri nets.

I. INTRODUCTION

A
fair amount of research proposes planning algorithms

for mobile robots. The motion tasks range from clas-

sical single-robot target reachability and obstacle avoidance

[2] to high-level missions for a whole team [3], [4]. Many

approaches reduce the robot interaction with the environment

into finite representations, and then reason on the obtained

discrete event systems [5], [6], [7], [8], [9], [10].

In general, the robot model that is used for the discrete

abstraction is based on transition systems or Markov decision

processes, i.e., a graph based model. The high-level mission

is given in general as a Linear Temporal Logic (LTL) for-

mula that is automatically transformed into a Büchi or Rabin

automaton. By doing the synchronous product of the team

model with the Büchi or Rabin automaton the robot trajectories

can be computed by using a shortest path algorithm on the

graph which has polynomial time complexity. However, if the

number of robots in the team is increased, the number of

states of the team model is also increased, being necessary to

perform synchronous product of different transition systems

as in [10] or duplicate the automatons of robots as in [8].

C. Mahulea is with the Aragón Institute of Engineering Research
(I3A), University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
{cmahulea@unizar.es}.

M. Kloetzer is with the Dept. of Automatic Control and Applied
Informatics, Technical University “Gheorghe Asachi” of Iasi, Romania
{kmarius@ac.tuiasi.ro}.

This work has been partially supported by CICYT - FEDER (Spain-EU)
under Grants DPI2014-57252-R and DPI2017-88233-R, by the Aragonese
Government (Spain) under grant T27 (GISED group), and by PN-III-P1-1.1-
TE-2016-0737 grant.

This work is based on our preliminary results from [1].

To overcome the state-space explosion problem for the team

model, in [9] we used a Petri net (PN) to model the team

of robots. These models are scalable with the size of the

team under the assumption that the robots are identical. If

one wants to add one more robot to the team, the structure of

the PN model is not changing, being necessary only to add

a new token. Moreover. the PN models can be used to study

other properties of the system related to task planning, plan

execution and plan analysis. In particular, for plan analysis,

properties such as boundedness and liveness of Petri nets

correspond to checking if resources’ usage is stable and plans

have no deadlocks [11].

In this paper we propose the problem of planning a team

of identical robots such that a Boolean-based specification

over some regions of interest is accomplished. The robotic

environment is known and static, while the specification

imposes Boolean requirements on regions visited during the

team motion, as well as on the final robot positions. The

specification is globally given for the whole team, without

allowing specific robot-to-task assignments. For developing a

solution, we model the team movement and the satisfaction

of regions with a discrete event system in the form of a

PN with outputs. Then, we convert the mission into a set

of linear inequalities, we link the binary variables from these

inequalities with PN markings and we obtain an Integer Linear

Programming (ILP) formulation for the initial problem. The

solution yields individual robot trajectories optimal in the

sense of minimizing a cost function that includes possible con-

gestions and expected traveled distances for robot trajectories

that cross through specific waypoints.

The paper is structured as follows. Some related works and

their differences with our approach are discussed in Sec. II.

Sec. III includes preliminaries, team model construction and

definition of the supported specifications, while Sec. IV for-

mulates the problem. The solution is given in Sec. V, by

minimizing a weighted cost based on traveled distance and

possible congestions. Sec. VI shows some simulation results

and Sec. VII provides concluding remarks.

II. RELATED WORKS

Related problems to the one we consider are reported in

works as [3], [7], [12]. Although the specifications we consider

here are less expressive than Linear Temporal Logic or regular

expressions (as in [6], [3]), our solution is completely different

and brings advantages especially in terms of computational

feasibility. Thus, instead of combining individual robot ab-

stractions and specification automaton into a complex model,

the PN model we construct has fixed topology and only the

number of tokens varies with the number of robots (similar

to models from [9], where simpler reachability tasks were

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/289998284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

solved). Performed numerical simulations (Sec. VI) show that

our solution can solve demanding situations (e.g. with 10

robots), while such scenarios are not computationally suitable

for approaches based on parallel compositions of individual

robot models and task automaton (as [3], [10]), due to the

state-space explosion problems. Due to the assumed speci-

fication, the robots can individually follow their trajectories,

without having to synchronize as it is necessary in the case

of more complex specification formalisms [3], [13]. Moreover,

some methods for high level planning of mobile agents assume

individual specifications for each robot [13], [14], whereas the

current approach falls in the class of problems that impose a

global specification for the whole team, without any specific

priori assignment for agents.

Other related discrete path planning solutions are presented

in [7], [8], where the authors assume tasks combining Boolean

variables on the graph nodes and define a new language as an

extension of the Generalized Traveling Salesman Problem for

final system states, and in [15], [16], [17], where MILP (Mixed

ILP) techniques were proposed for solving different planning

or allocation problems in a centralized or distributed fashion.

With respect to these works, our method allows Boolean

specifications also on robot trajectories, not only on the system

final states. Also, the PN team model can be used for other

analysis purposes, and our solution is based on a mathematical

programming that accepts various cost functions.

PN models have been used for modeling and controlling

mobile robots in the recent literature [11], [18], [19], [20],

[21], [22], [23]. The modeling methodology is distinct and the

models have different significance, in our case the environment

being partitioned depending on the regions of interest.

Recently, abstractions characteristic to Resource Allocation

Systems were used based on finite automata [24], [25], [26],

[27] or PNs [28], [29], [30], while methods available for

deadlock avoidance have been adapted for enforcing the reach-

ability of desired final states. In this paper we are interested

in computing robot trajectories to accomplish Boolean based

specifications for the robots by using the PN models, while

the collision avoidance is partially solved.

Many works exist in PN literature dealing with verifica-

tion of Petri nets properties with Boolean or LTL specifica-

tions [31], [32], [33]. Even if some structural properties exist,

it is usually necessary to explore the reachability space. Our

problem is a synthesis problem, not a verification one.

The main contributions of this work consist in defining a

PN system that easily handles a whole team of agents and

in developing an ILP formulation that embeds the constructed

model and the team specification, while allowing to compute

robot trajectories. The performed simulations suggest that the

method is computationally tractable for complex scenarios. So-

lution’s limitations include the task expressivity, which relies

on logical requirements on visiting and avoiding regions along

trajectories and in final states, without permitting temporal

sequencing. Robot congestions are partially addressed, while

collision and deadlock avoidance are briefly commented by

pointing to additional steps that can be addressed after a

movement plan is obtained. Also, local maneuvers that may

be employed in case of possible congestion would increase the

travel distances with respect to the nominal distances assumed

in the motion planning part.

III. PRELIMINARIES AND TEAM MODEL

Sec. III-A defines the discrete event model that we will

use for a team of identical robots. Sec. III-B introduces the

formalism for expressing mission requirements for a team of

robots.

A. Petri net model

This subsection introduces the basic notions of PN.

Definition 3.1: A Petri net (PN) is a 3-tuple N = 〈P, T, F 〉
with P and T two finite, non-empty and disjoint sets of places

and transitions; F ⊆ (P × T) ∪ (T × P) is the set of direct

arcs from places to transitions or transitions to places.

Instead of considering general PN where the arcs can have

weights greater than one, in this paper we consider that all

arcs are unitary. In the PN literature, this class of PN is called

ordinary PNs. Because of this, the PN structure can be rep-

resented by two binary matrices: Pre,Post ∈ {0, 1}|P |×|T |,

with Pre[pi, tj] = 1 if ∃(pi, tj) ∈ F , and Pre[pi, tj] = 0
otherwise; Post[pi, tj] = 1 if ∃(tj , pi) ∈ F , otherwise

Post[pi, tj] = 0. 1

For x ∈ P ∪ T , the sets of its input and output nodes

(places or transitions) are denoted as •x and x•, respectively.

Let pi, i = 1, . . . , |P | and tj , j = 1, . . . , |T | denote the places

and transitions. Each place can contain a non-negative integer

number of tokens, and this number represents the marking

of the place. The distribution of tokens in places is denoted

by m, where m[pi] is the marking of place pi. The initial

token distribution, denoted by m0 ∈ N
|P |
≥0

, is called the initial

marking of the net system. A PN with an initial marking is a

PN system 〈N ,m0〉.
Because the PN is ordinary, a transition tj ∈ T is enabled

at m if all its input places contain at least one token, i.e.,

∀pi ∈ •tj ,m[pi] ≥ 1. An enabled transition tj can fire leading

to a new state m̃ = m+C[·, tj], where C = Post−Pre is

the token flow matrix and C[·, tj] is the column corresponding

to tj . It will be said that m̃ is a reachable marking that has

been reached from m by firing tj and it is written as m[tj〉m̃.

If m̃ is reachable from m through a finite sequence of tran-

sitions σ = ti1ti2 . . . tik , the following state (or fundamental)

equation is satisfied:

m̃ = m+C · σ, (1)

where σ ∈ N
|T |
≥0

is the firing count vector, i.e., its jth element

is the number of times transition tj appears in sequence σ.

Notice that Eq. (1) is only a necessary condition for the

reachability of a marking. The marking solutions of (1) that

are not reachable are called spurious markings. In general,

checking if a marking m is reachable or not is not an easy

problem due to these spurious markings.

A PN with each transition having at most one input and

at most one output place is called state machine. Formally,

1Throughout this paper, instead of using integers to reference elements of
matrices or vectors, we use symbolic variables which reference the element
corresponding to the used symbol.

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

a PN is state machine if |•t| ≤ 1 and |t•| ≤ 1, ∀t ∈ T . A

PN is called live if from any reachable marking any transition

can eventually fire (possibly after first firing other transitions).

It is well known that for state machine PNs, liveness is

equivalent to strongly connectedness and non-emptiness of

(initial) marking. Moreover, in a live state machine, there

exist no spurious markings [34], i.e., the solutions of the

fundamental Eq. (1) give the set of reachable markings.

We will use the PN to model a team of identical robots

evolving in an environment where some convex polygonal

regions of interest exist. The regions of interest are labeled

with elements from set Π = {Π1,Π2, . . . ,Π|Π|}. For this

reason, we define a class of Petri nets with outputs, which

is a restrictive class of Interpreted Petri nets, without inputs

associated to transitions.

Definition 3.2: A Petri net Q with outputs is a 4-tuple Q =
〈N ,m0,Π, h), where:

• 〈N ,m0〉 is a Petri net system;

• Π∪{∅} is the output alphabet (set containing the possible

output symbols (observations)), where ∅ denotes the

empty observation;

• h : P → 2Π is an observation map, where h(pi) yields

the output of place pi ∈ P . If pi has at least one token,

then observations from h(pi) are active.

Let vΠi
∈ {0, 1}1×|P | be the characteristic row vector of

the observation Πi ∈ Π such that vΠi
[pk] = 1 if Πi ∈ h(pk)

and vΠi
[pk] = 0 otherwise. It is easy to observe that, for a

reachable marking m, if the product vΠi
· m > 0 then the

observation Πi is active at m. Let V ∈ {0, 1}|Π|×|P | be the

matrix formed by the characteristic vectors of all observations,

i.e, the first row is the characteristic vector of Π1, etc. The

product V · m is a column vector of dimension |Π| where

the ith element is non-zero if observation Πi is active. We

denote by ||V ·m|| the set of outputs corresponding to non-

zero elements of V · m, i.e. ||V · m|| is the set of active

observations (element of 2Π) at marking m.

A run (or trajectory) of Q is a finite sequence r =
m0[tj1〉m1[tj2〉m2[tj3 . . . tj|r|〉m|r| that induces an output

word denoted by h(r), which is the observed sequence of

elements from 2Π, i.e., h(r) = ||V ·m0||, ||V ·m1||, . . . , ||V ·
m|r|||, h(r) ∈

(

2Π
)∗

, where
(

2Π
)∗

is the Kleene closure of

set 2Π.

Team model. The above PN with outputs can model the

movement capabilities of a team of identical mobile robots in

a partitioned environment cluttered with overlapping and static

regions of interest denoted by elements of set Π. Such finite

abstractions can be constructed based on partitions yielded by

cell decompositions [35] and control laws for specific robot

dynamics [36], [37]. The main idea is that the environment

is partitioned based on regions of interest, every place of

N corresponds to a partition cell, while transitions of PN

correspond to robot’s movement capabilities between adjacent

cells. The satisfaction map h shows the regions from Π that are

satisfied (visited) when the robots are inside particular cells,

with empty observation corresponding to partition cells that

are not included in any region from Π. The number of tokens

of the PN model is equal with the number of robots, and the

initial marking is given by the cells initially occupied by the

team. Thus, adding a robot in the team implies adding a token

to a place, without changing the PN structure.

We further assume that the model Q for robots evolving in

an environment is already available. The informal steps that

lead to its construction are captured in Alg. 1. For polygonal

regions of interest, multiple cell decomposition techniques can

be used in line 1 [35], our approach not being tailored for

a specific one. The transitions added on lines 4-7 assume

fully-actuated point robots, which can move from the current

cell to any adjacent cell, by straight movement to the middle

point of the line segment shared by the two cells. Alg. 1 also

returns the vector w ∈ R
|T |
≥0

that contains the average distance

for traveling between adjacent cells. Due to the polytopal

cells and the mentioned piece-wise straight movements of

robots, the expected distance for moving from cell pi to pj is

chosen, on line 9, as being the average of distances between

the exit point (middle of line segment shared by pi and pj)

and any possible entry point (middle of line segments shared

by pi with all other neighboring cells). For different robot

dynamics, the condition from line 6 can be replaced with the

existence of control laws steering the robot from cell pi to

adjacent cell pj in finite time, e.g., works as [36], [37] describe

the case of affine or multi-affine dynamics in polytopal or

rectangular environments. Line 11 adds the tokens, based on

robots’ initial positions. The observation map from line 12 is

well-defined, since the referred cell decomposition techniques

preserve boundaries and intersections of regions from Π.

Algorithm 1: Construct the PN system Q

Input: Environment, regions Π, initial team deployment

Output: Team model Q
1 Construct a cell decomposition of the environment based

on the polygonal regions of interest from Π;

2 Associate each cell from decomposition to a place from

P ; let P = {p1, p2, . . . , p|P |};

3 Let T = ∅, F = ∅, w = 0;

4 for pi ∈ P do

5 for pj ∈ P , pi 6= pj do

6 if cells pi and pj are adjacent then

7 Add transition ti,j to T ;

8 F := F ∪ {(pi, ti,j), (ti,j , pj)};

9 w[ti,j] = average distance traveled by a robot

that moves from cell pi to pj ;

10 for pi ∈ P do

11 m0[pi] = no. of robots initially deployed in cell pi;

12 h(pi) = {Πj ∈ Π|cell pi is included in region Πj};

Remark 3.3: The construction from Alg. 1 ensures that the

obtained PN is a state machine.

This result holds because all transitions added in step 7 of

Alg. 1 have a single input and a single output arc. If at least

one robot is deployed in the environment, the PN system is

live and no blocking situation will appear during robot motion.

B. Boolean-based specifications

Assume the finite set of atomic propositions Π =
{Π1,Π2, . . . ,Π|Π|}, where in a robot-inspired scenario, Πi

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

labels a specific region of interest from the environment.

Syntactically, we assume requirements expressed as

Boolean logic formulae defined over the set of variables

P = Pt ∪ Pf , where Pt = Π and Pf = {π1, π2, . . . , π|Π|},

by using the standard logical connectors ¬ (negation), ∧
(conjunction), ∨ (disjunction). The sets Pt and Pf refer to

the same regions of interest, but the elements of Pt suggest

regions that should be visited (or avoided, when negated) along

a trajectory, while Pf suggests regions that should be visited

(or avoided) in the last state of a run, as explained in the

following semantics.

The specifications are interpreted over finite words over

the set 2Π, as are those generated by the PN system with

outputs Q from Def. 3.2. Semantically, the lower- and upper-

case notations from the above set P have the following

meaning when interpreted over the word generated by a run

r = m0[tj1 〉m1[tj2〉m2[tj3 . . . tj|r|〉m|r|:

• Πi ∈ Pt evaluates to True over word h(r) if and only if

∃j ∈ {0, 1, . . . , |r|} such that Πi ∈ ||V ·mj ||;
• πi ∈ Pf evaluates to True over word h(r) if and only if

Πi ∈ ||V ·m|r|||.

In other words, an upper-case variable refers to a proposition

that is evaluated along the whole run, while a lower-case

one refers only to the final (terminal) marking. Under this

explanation, the formal definitions of syntax and semantics

of used specifications are not included, and can be found

in any study including Boolean formulae [38]. From now

on, we will assume that any Boolean-based requirement ϕ

is expressed into a Conjunctive Normal Form (CNF), the

conversion into such a form being possible for any logical

expression [38],[39].

For example, a specification for mobile robots as ϕ =
(Π1 ∨ Π2) ∧ ¬π1 ∧ ¬Π3 requires that either region Π1 or

Π2 is visited along the run, Π3 is always avoided, and region

Π1 is not true (no robot occupies it) in the final state, i.e.,

when all robots stop. A specification as ϕ = Π1 ∧Π2 requires

that regions Π1 and Π2 are visited along robot trajectories. An

implication formula as ϕ = ¬Π1∨Π2 is not interpreted in the

intuitive sense that a visit to Π1 implies a further visit to Π2,

but it is interpreted over the entire trajectories (e.g., the task

is accomplished if a robot visited Π2 at a moment, even if

Π1 was visited after). One cannot impose a specific order or

simultaneity when visiting Π1 and Π2, as it is possible when

using more complex specification formalisms or robot-specific

tasks [13], [10]. For more than one robot, the specification im-

poses a global requirement on the attainment or avoidance of

regions, without allowing individual requirements as visiting

two disjoint regions with the same agent. However, this lack of

expressivity, together with the PN model, will yield solutions

whose complexity is independent of the number of robots.

IV. PROBLEM DEFINITION

The problem we solve is formulated as follows:

Problem. Consider a team of N identical mobile robots

evolving in an environment where regions of interest labeled

with elements from set Π are defined. Given a Boolean-based

specification ϕ for the team, as in Sec. III-B, plan the robotic

motion such that the resulting trajectories satisfy ϕ.

Assumptions. As stated in Sec. III-A, the team is abstracted

into a PN system with outputs Q having the form from Def.

3.2. Under the natural assumption of a connected environment,

the PN model Q is strongly connected (i.e. ∀xi, xj ∈ P ∪ T

there exists a path starting in xi and ending in xj). Thus,

the PN has no spurious markings and the set of its reachable

markings can be characterized by the state equation (1).

Let us assume that the requirement ϕ (expressed in CNF)

consists of a conjunction of n terms: ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕn.

Each term ϕi, i = 1, . . . , n is a disjunction of ni variables

(negated or not) from set P from Sec. III-B, having the form

ϕi = [Πj1 | ¬Πj1] ∨ [πj1 | ¬πj1] ∨ [Πj2 | ¬Πj2] ∨ [πj2 | ¬πj2] ∨
. . . ∨ [Πjni

| ¬Πjni
] ∨ [πjni

| ¬πjni
]. In the expression of ϕi,

the square brackets “[. . .]” contain optional appearing terms,

while “|” denotes a choice between two variables.

Solution main steps. Our solution begins by converting

specification ϕ into n linear restrictions over a set of 2 · |Π|
binary variables, as described in [1]. Then, links between these

binary variables and proposition satisfactions are enforced by

using linear inequalities based on the PN model Q. This will

yield a solution for our problem based on an ILP formula-

tion and an algorithmic translation of ILP outcome to robot

trajectories (sequences of firings in the PN model). The ILP

objective function aims to decrease the total distance traveled

by robots and the number of possible congestions, when more

robots can meet in the same partition cell. For simplicity,

we first handle final state requirements, i.e., formulae over

Pf (Sec. V-A), and then we present the general case of

trajectory requirements (Sec. V-B). Sec. V-C further discusses

the presented solutions. Due to the abstract model and the

definition of weighting w from Alg. 1, the optimality from

Sec. V does not refer to minimizing the actual traveled

distance, but to minimizing a cost function that includes the

expected trajectory length.

V. SOLUTION

Vector x = [xΠ1
, xΠ2

, . . . , xΠ|Π|
, xπ1

, xπ2
, . . . , xπ|Π|

]T ∈

{0, 1}2·|Π| includes the above-mentioned binary variables,

with the following interpretation:

• xΠi
= 1 (or x[Πi] = 1) if proposition Πi evaluates to

True (i.e., region labeled with Πi is visited along the team

trajectory), and xΠi
= 0 (or x[Πi] = 0) otherwise;

• xπi
= 1 (or x[πi] = 1) if proposition πi evaluates to True

(i.e., a robot stops inside the region labeled with Πi), and

xπi
= 0 (or x[πi] = 0) otherwise, ∀i = 1, . . . , |Π|.

To construct the mentioned inequalities, for each ϕi, i =
1, . . . , n, we define a function αi : P → {−1, 0, 1} showing

what variables from P appear in disjunction ϕi and which of

them are negated:

αi(γ) =







−1, if ¬γ appears in ϕi

0, if γ does not appear in ϕi

1, if γ appears in ϕi

, ∀γ ∈ P (2)

A. Solution for constraints on the final state

When finding a solution for the proposed problem, one

can consider various performance measures for the resulting

robot movements. In the current formulation, we aim to reduce

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

(a) the total expected distance traveled by agents and (b) the

number of situations in which robots can collide. For intention

(a), we weight the fired transitions with average distances for

moving a robot between two adjacent cells, i.e., we aim to

minimize wT ·σ, with w computed in Alg. 1. For intention (b),

we note that, for a given firing count vector σ, the elements

of vector Post · σ contain the cumulative number of tokens

from each place of PN induced by firings of transitions from

σ. Thus, Post ·σ gives the number of visits (not necessarily

at the same time moment) in partition cells, and by reducing

these values we reduce the possibilities of having more robots

in the same cell. We combine intentions (a) and (b) as the

cost function λ ·wT · σ + µ · ‖Post · σ‖∞, where λ and µ

are design parameters and ‖.‖∞ denotes the maximum norm

of a vector. For obtaining a linear cost function, we minimize

λ · wT · σ + µ · b, where b upper bounds any element of

Post ·σ. The above considerations together with the goal of

obtaining a final marking at which the formula is satisfied are

captured by ILP formulation (3).

min λ ·wT · σ + µ · b
s.t. m = m0 +C · σ

∑

γ∈Pf
(αi(γ) · xγ) ≥ 1 +

∑

γ∈Pf
min (αi(γ), 0) , ∀ϕi

N · xγ ≥ vγ ·m, ∀γ ∈ Pf

xγ ≤ vγ ·m, ∀γ ∈ Pf

Post · σ ≤ b · 1T

m ∈ N
|P |
≥0

,σ ∈ N
|T |
≥0

,x ∈ {0}|Π| × {0, 1}|Π|, b ≥ 0
(3)

In (3), vγ is the characteristic vector of γ ∈ Pf , and the

first |Π| binary variables from x (for trajectory requirements)

are set to zero, since specifications from this subsection do not

include such constraints. ILP (3) has (2× |Π|+ n+ 2× |P |)
constraints and (|P |+ |T |+ |Π|+ 1) unknowns, from which

|Π| variables are binary.

The second set of constraints from (3) links formula’s

conjunctions to binary variables for final regions. If the final

region γ is not captured in ϕi, then its corresponding binary

variable is unconstrained (coefficient αi(γ) is zero). Regions

that appear non-negated or negated in disjunction ϕi yield

(through (2)) coefficients “+1” or “-1”, respectively, in the left-

hand term, and the negated regions also decrease the value of

the right-hand term. E.g., if ϕi = π1 ∨ π2, at least one of the

two regions should be visited such that xπ1
+ xπ2

≥ 1. If

ϕi = ¬γ, then xγ should be 0, i.e. 1− xγ = 1, and since xγ

is binary we can write 1− xγ ≥ 1; the first “1” from here is

placed in the right-hand term via function min (αi(γ), 0).
The third and fourth constraints from (3) enforce the correct

values of binary variables xπi
corresponding to observations in

final positions. Recall that N is the number of robots (tokens

of Q), and here it can be replaced with any bigger number.

As an alternative cost function for ILP (3), it is possible to

minimize the number of transitions (robot movements) along

the team trajectory, by choosing the objective function 1
T ·σ.

Based on the optimal solution σ of (3), the robot (token)

trajectories are obtained by firing the enabled transitions and

by storing the sequence of places visited by each token. The

strategy is given in Alg. 2.

Lemma 5.1: If the optimal solution σ of (3) satisfies

‖Post · σ‖∞ = 1 (that is equivalent to b = 1), then there

are no collisions possible during robot movements.

Proof: Since Post · σ counts the number of tokens in each

place corresponding to the firing vector σ, the hypothesis

basically says that each partition cell is visited at most once

during team movement. �

Note that a path planning problem can be divided into two

steps: (a) the first one (tackled by current work) is to compute

mission-fulfilling trajectories for the robots (while trying to

avoid the congestion); (b) second, having the trajectories,

one can try to avoid collisions and deadlocks by adding an

additional controller. If ‖Post · σ‖∞ > 1, congestion can

occur in places p ∈ P for which (Post · σ)[p] > 1, and

further steps have to be taken for collision avoidance and

deadlock prevention. To this goal, one can try to use specific

Petri net models with capacity constraints on some places

[29] and supervisory control theory of discrete event systems

[27], [24], [26], [40], [41]. However, there are no guarantees

that a deadlock free movement is possible for any obtained

trajectories, and in such cases the procedure for generating

trajectories should be altered. The additional strategies for

solving the above step (b) go outside the current scope of

this paper.

Algorithm 2: Iterative construction of agent strategies

Input: 〈P, T,C〉, m0, σ

Output: Robot movement strategies

1 Let m = m0;

2 while 1
T · σ > 0 do

3 Let t ∈ T s.t. σ[t] > 0 ∧ m[•t] > 0;

4 Pick any robot i in •t;

5 Assign movement according to t to robot i;

6 Let m := m+C[·, t];
7 Let σ[t] := σ[t]− 1;

Two properties of the PN model for the system considered

here are used to guarantee the correctness of the Alg. 2:

• The PN is a live state machine, hence all solutions of the

state equation (1) are reachable markings. This ensures

that the marking m solution of (3) is a reachable marking,

i.e., not a spurious one;

• Since w ≥ 0 (that is a natural assumption being related

to distances or energy), the paths of the robots have no

cycles. This property also ensures that σ solution of (3)

is not a ’spurious’ vector, i.e., there exists a fireable firing

sequence σ with the firing count vector σ.

B. Solution for general constraints on trajectory and final

state

For allowing constraints on final team deployment (set Pf)

and on team trajectory (set Pt), the first idea was to include

constraints on the firing count vector σ in (3). However, due

to general constraints, some robot trajectories may necessitate

cycles. When solving (3), these cycles would not be included

in the obtained solutions, i.e., spurious firing vectors would

appear. This can be observed by considering the state equation

corresponding to a reachable marking m = m0+C ·σ. Let us

assume that σ corresponds to a firing sequence σ that contains

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

a cycle, i.e., σ = σ
′ + σ

′′, with σ
′′ the cycle’s firing count

vector. Since in a state machine PN a T-semiflow is a cycle,

this implies that C ·σ′′ = 0 [34]. Obviously, the cost function

of (3) would yield vector σ
′ rather than σ as the optimal

solution, so the firing sequence σ would not be obtained.

To avoid spurious firing count vectors, we consider a

sequence of k markings m1,m2, . . . ,mk such that: m1 =
m0 + C · σ1, m0 − Pre · σ1 ≥ 0; m2 = m1 + C · σ2,

m1 −Pre ·σ2 ≥ 0; . . . Informally, these constraints enforce

that between PN states mi−1 and mi each token moves at

most through one transition, i.e., each robot advances maxi-

mum one cell. This artifice also simplifies the construction of

agents’ strategies.

Putting together the cost function concept from ILP (3), the

PN state equations for the sequence of k markings, and the

restrictions concerning the binary variables xπi
and xΠi

, the

following optimization problem is obtained:

min λ ·wT ·
∑k

i=1
σi + µ · b

s.t. mi = mi−1 +C · σi, i = 1, . . . , k
mi−1 − Pre · σi ≥ 0, i = 1, . . . , k
∑

γ∈P (αi(γ) · xγ) ≥ 1 +
∑

γ∈P min (αi(γ), 0) , ∀ϕi

N · xγ ≥ vγ ·mk, ∀γ ∈ Pf

xγ ≤ vγ ·mk, ∀γ ∈ Pf

N · (k + 1) · xγ ≥ vγ ·
(

∑k

i=0
mi

)

, ∀γ ∈ Pt

xγ ≤ vγ ·
(

∑k

i=0
mi

)

, ∀γ ∈ Pt
(

Post ·
∑k

i=1
σi

)

≤ b · 1T

mi ∈ N
|P |
≥0

,σi ∈ N
|T |
≥0

, i = 1, . . . , k

x ∈ {0, 1}|P|, b ≥ 0
(4)

The optimization problem (4) is a standard ILP problem

[42], for which there exist complete algorithms for obtaining

the optimal solution, e.g., [43]. Its solution (σ1,σ2, . . . ,σk)
constitutes a sequence of firing count vectors for PN model Q
and it is converted to robot trajectories as follows. For each σi,

i = 1, . . . , k, any token moves at most through one transition,

and lines 3-5 of Alg. 2 indicate the moving robots.

Summing up the above details, (4) gives a solution for

the problem formulated in Sec. IV, while the cost function

accounts for the total expected distance traveled by robots

and the possible congestions in cells from the partitioned

environment. The constraints of (4) ensure the following:

• the correct functioning of model Q (first two lines with

constraints); in total ((2× k)× |P |) constraints;

• the satisfaction of formula ϕ through its disjunctive

terms and binary variables (third constraint); in total n

constraints;

• the link between binary variables corresponding to the

formula and PN markings for the final requirements

(constraints 4 and 5; in total (2× |Π|) constraints) and

for the trajectory requirements (constraints 6 and 7; in

total (2× |Π|) constraints),

• upper bound b for elements of vector Post ·
∑k

i=1
σi,

for capturing its maximum norm (constraints 8; in total

|P | constraints),

• positivity restrictions for unknown variables mi, σi and

b; (k × (|P |+ |T |) + 1) constraints.

Remark 5.2: Instead of considering the second term of cost

function from ILP (4), one could completely avoid collisions

(rather than reducing congestions) by adding constraints of

form σk[ti,j] + σk[tj,i] ≤ 1, ∀i, j, k. Such constraints would

forbid two robots from adjacent cells to switch positions.

However, such a team movement strategy would require

synchronizations when robots change cells, in order to exactly

follow the order of firings from successive firing count vectors

σk.

Remark 5.3: The constant k in ILP (4) is a design parameter

giving the maximum number of intermediate discrete states

(markings) of each robot. The theoretical upper-bound of k is

|T |, because in the worst case scenario, a robot has to once

follow each transition from PN (e.g., imagine a string-like PN

where the “first” and “last” places have different outputs, a

robot starts from the “first” place, and the formula requires to

satisfy along trajectory the output of the “last” place and to

satisfy in the final state the output of the “first” one). However,

in practice, much lower values of k suffice. When k is chosen

too small, the problem (4) becomes unfeasible. If k is larger

than needed, some intermediate firing vectors σi will become

zero in solution of (4).

C. Discussion on the above solutions

Solution to use. When the Boolean-based specification ϕ

contains only symbols from Pf , one should use the solution

from Sec. V-A, consisting in ILP (3) and Alg. 2. In this case,

the ILP (3) has far less constraints and unknowns than ILP

(4).

For a general specification that also includes symbols from

Pt, the solution from Sec. V-B (ILP (4)) is to be used. One can

start with a fairly low value for k, solve ILP (4) and increase

k if the optimization fails to return a solution. The moving

strategy for each robot results by concatenating the transitions

given by the obtained sequence of firing count vectors.

Robot synchronization. For both above solutions, the

obtained trajectory of each robot basically satisfies a part of

formula ϕ, such that the whole team accomplishes task ϕ.

Because ϕ is a Boolean-based formula as in Sec. III-B, it

cannot impose specific orderings or simultaneous visits of

regions in Π. Therefore, each robot can individually follow its

trajectory, without synchronizing with other team members.

Recalling the limitations of our approach - lack of expres-

sivity for imposing orders when visiting regions, and reducing

the possible congestions rather than ensuring a collision-free

movement with no deadlocks - we mention that robot syn-

chronization would become necessary for specifications or for

movement procedures that try to reduce such conservativeness.

Solution complexity. An ILP problem belongs to the

NP-hard complexity class [44]. Usually, the computa-

tional burden is characterized by the number of un-

knowns and constraints. The ILP (4) (for the case

of a general specification on trajectory and final state)

has a number of (k × (|P |+ |T |) + 2× |Π|+ 1) inte-

ger unknowns (mi, σi, x, b) and a total number of

(k × (3× |P |+ |T |) + 4× |Π|+ |P |+ 1) constraints. The

number of constraints and unknowns of ILPs (3) and (4)

does not depend on the team size N . Some data for the

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

Fig. 1. Environment with five regions of interest, labeled with elements
of set Π = {Π1,Π2, . . . ,Π5}, and three robots initially deployed in
positions marked by the red, blue and green circles. Triangular partition of
the environment has 48 cells. Solution (optimal with respect to the overall
number of transitions) comprises a total number of 10 movements between
cells. Each robot follows its trajectory and stops in the point marked with
“x”, and thus the team fulfills mission ϕ.

computational complexity is mentioned in the examples from

Sec. VI.

VI. SIMULATION EXAMPLES

This section illustrates the usage of our method for planning

a team of mobile robots. The described approach was imple-

mented in Matlab, as an addition to the Robot Motion Toolbox

RMTool [45]. Our implementation includes the external ILP

and LPP solvers from [43]. For exemplification purposes, we

simply consider unitary weights w = 1 and λ = µ = 1 in cost

functions of ILPs (3) and (4). Thus, in this section we refer

to the total number of firing transitions as minimized cost.

We consider the environment depicted in Fig. 1, where five

polygonal regions are defined and represented with differently

colored borders, for easier observing their overlapping. For

simplicity of constructing the team model, we consider N =
3 point and fully-actuated agents, whose initial positions are

marked with circles in Fig. 1. Alg. 1 from Sec. III-A yields

the PN system Q as follows. The environment is partitioned

by using a constrained triangular decomposition [45], based

on polygonal regions Π. The resulting partition has 48 cells

(labeled with elements of set P = {p1, p2, . . . , p48}) and it

is shown in Fig. 1. There result 140 transitions in T , given

by adjacency between cells (two triangles are adjacent if they

share an entire facet). The observation map h is easily created

based on the inclusion of each cell in some regions of interest,

e.g., h(p3) = ∅, h(p10) = Π4, h(p48) = {Π1,Π2}. System Q
has three tokens and the initial marking is given by initial

team deployment: m0[p14] = 1, m0[p35] = 2, and m0[pi] =
0, ∀i ∈ {1, . . . , 48}, i 6= 14, 35.

Considering the syntax and semantics explained in Sec.

III-B, the team mission is given by the specification:

ϕ = ¬Π2 ∧ Π1 ∧ ¬π1 ∧ π3 ∧ π4 ∧ π5. (5)

In words, the second region should be avoided, the first

region should be visited along run, but no robot should finally

remain inside it, and the last three regions should be occupied

when the robots stop.

Formula ϕ is converted into a system of 6 linear inequalities

with 6 binary variables. By adopting the optimal solution

described in Sec. V with a maximum number of steps k = 10,

the firing sequences translate to the following runs for the

robots, that can be followed without any synchronization

among agents (Sec. V-C):

red robot: p14, p37, p14, p8, p12, p10
blue robot: p35, p36, p34

green robot: p35, p33, p22, p24

(6)

The ILP problem from Sec. V includes 1891 variables (from

which 1400 are integer and 10 binary), 480 equality constraints

and 554 inequality constraints. The solution was obtained in

around 0.01 seconds on an i7-6700 CPU. Under the same

conditions, if k were set to 20, the running time increases to

1 second.

The actual robotic trajectories are presented in Fig. 1, and

they were constructed by connecting the middle points of the

common edges shared by successive cells from each robot’s

path, this being a fast method for constructing continuous

trajectories for fully-actuated robots evolving in partitioned

environment with convex cells [2]. Finally, each robot con-

verges to the centroid of the last visited cell.

As mentioned, the solution complexity is not influenced by

the team size. For example, if N = 10 robots were considered

for the above case, the solution is obtained in the same

amount of time. Some robots simply do not move, and the

resulted number of transitions from the PN model decreased

to 7. A scenario with 10 robots, 10 regions of interest and

66 PN places was solved in 0.42 seconds, thus supporting

the computational feasibility of the method. More simulation

results and comparisons are given in [46].

VII. CONCLUSIONS

We presented an approach that automatically plans a team

of mobile robots based on a Boolean-based task given over

a set of regions in the environment. The solution relies

on solving an ILP optimization problem that is formulated

over a discrete event system. Based on a partition of the

environment, the robotic team is abstracted to a PN with

outputs, which has the advantage that the topology remains

fixed and only the number of tokens varies with the team

size. The Boolean formula is represented through a set of

linear inequalities in some binary variables, the evaluations

of these variables are linked with a finite sequence of PN

markings, and the PN’s fundamental equation is used for

making sure that any obtained marking is reachable through

a firing sequence. Thus, we obtain an ILP formulation for

the proposed problem, and its solution provides a set of

firing PN transitions which are algorithmically converted to

individual robotic trajectories. The solution is optimal with

respect to a weighting of expected traveled distances and

possible congestion situations. A simpler ILP is obtained for

the particular case of a Boolean requirement only on the final

0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2760249, IEEE
Transactions on Automatic Control

team state, while the complexity increases for the general

case of including trajectory restrictions. Due to the considered

specifications, the robots can follow their trajectories without

synchronizing with other team members. We implemented our

procedure as a freely-downloadable Matlab software package

whose usefulness is illustrated through included simulation

results.

REFERENCES

[1] C. Mahulea and M. Kloetzer, “Planning mobile robots with boolean-
based specifications,” in 53rd IEEE Conf. on Decision and Control, Los
Angeles, USA, December 2014, pp. 5137–5142.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,
and Implementations. Boston: MIT Press, 2005.

[3] X. C. Ding, M. Kloetzer, Y. Chen, and C. Belta, “Automatic deployment
of robotic teams,” IEEE Robotics and Automation Magazine, vol. 18,
no. 3, pp. 75–86, 2011.

[4] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pap-
pas, “Symbolic planning and control of robot motion,” IEEE Robotics
and Automation Magazine, vol. 14, no. 1, pp. 61–71, 2007.

[5] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from temporal logic specifications,” IEEE Trans. on
Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[6] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[7] F. Imeson and S. L. Smith, “A Language For Robot Path Planning in Dis-
crete Environments: The TSP with Boolean Satisfiability Constraints,”
in IEEE Conf. on Robotics and Automation, May 2014, pp. 5772 – 5777.

[8] F. Imeson and S.-L. Smith, “Multi-robot task planning and sequencing
using the SAT-TSP language,” in IEEE Conf. on Robotics and Automa-
tion, May 2015, pp. 5397 – 5402.

[9] M. Kloetzer and C. Mahulea, “A Petri net based approach for multi-
robot path planning,” Discrete Event Dynamic Systems: Theory and
Applications, vol. 24, no. 4, pp. 417–445, 2014.

[10] ——, “LTL-based Planning in Environments with Probabilistic Obser-
vations,” IEEE Trans. on Automation Science and Engineering, vol. 12,
no. 4, pp. 1407 – 1420, 2015.

[11] H. Costelha and P. Lima, “Robot task plan representation by Petri
nets: modelling, identification, analysis and execution,” Journal of
Autonomous Robots, pp. 1–24, 2012.

[12] T. Wongpiromsarn, U. Topcu, and R.-M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. on Automatic Control, vol. 57,
no. 11, pp. 2817–2830, 2012.

[13] M. Guo, J. Tumova, and D. Dimarogonas, “Cooperative decentralized
multi-agent control under local ltl tasks and connectivity constraints,” in
53rd IEEE Conf. on Decision and Control, 2014, pp. 75–80.

[14] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under
local ltl specifications,” The International Journal of Robotics Research,
vol. 34, no. 2, pp. 218–235, 2015.

[15] S. Tanaka and M. Araki, “An exact algorithm for the single-machine
total weighted tardiness problem with sequence-dependent setup times,”
Computers & Operations Research, vol. 40, no. 1, pp. 344 – 352, 2013.

[16] M. Franceschelli, D. Rosa, C. Seatzu, and F. Bullo, “Gossip algorithms
for heterogeneous multi-vehicle routing problems,” Nonlinear Analysis:
Hybrid Systems, vol. 10, no. 1, pp. 156–174, 2013.

[17] M. Franceschelli, A. Giua, and C. Seatzu, “Distributed task assign-
ment based on gossip with guaranteed performance on heterogeneous
networks,” in IFAC Conf. on Analysis and Design of Hybrid Systems,
Atlanta, USA, October 2015.

[18] T. Cao and A. Sanderson, “Task decomposition and analysis of robotic
assembly task plans using petri nets,” IEEE Trans. on Industrial Elec-
tronics, vol. 41, no. 6, pp. 620–630, 1994.

[19] F.-Y. Wang, “A Petri-net coordination model for an intelligent mobile
robot,” IEEE Trans. on Systems, Man and Cybernetics, vol. 21, no. 4,
pp. 777–789, 1991.

[20] C. Rust and M. Gruenewald, “Petri net based design of a multi-
robot scenario - a case study,” in IEEE Conf. on Systems, Man and
Cybernetics, 2004.

[21] N. Wu and M. Zhou, “Modeling and deadlock avoidance of automated
manufacturing systems with multiple automated guided vehicles,” IEEE
Trans. Systems, Man and Cybernetics, vol. 35, no. 6, pp. 1193–1201,
2005.

[22] B. Lacerda and P.-U. Lima, “LTL-based decentralized supervisory
control of multi-robot tasks modelled as Petri nets,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, 2011, pp. 3081–3086.

[23] G. Yasuda, Distributed Coordination of Multiple Robot Systems Based
on Hierarchical Petri Net Models. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 602–613.

[24] S. Reveliotis and E. Roszkowska, “Conflict Resolution in Free-Ranging
Multivehicle Systems: A Resource Allocation Paradigm,” IEEE Trans.
on Robotics, vol. 27, no. 2, pp. 283–296, 2011.

[25] J. Goryca and R. Hill, “Formal synthesis of supervisory control software
for multiple robot systems,” in American Control Conference, June 2013,
pp. 125–131.

[26] E. Roszkowska and S. Reveliotis, “A distributed protocol for motion
coordination in free-range vehicular systems,” Automatica, vol. 49, pp.
1639–1653, 2013.

[27] E. Dallal, A. Colombo, D. Del-Vecchio, and S. Lafortune, “Supervisory
control for collision avoidance in vehicular networks using discrete event
abstractions,” Discrete Event Dynamic Systems, pp. 1–44, 2016.

[28] J. King, R. Pretty, and R. Gosine, “Coordinated execution of tasks in a
multiagent environment,” IEEE Trans. Systems, Man and Cybernetics,
vol. 33, no. 5, pp. 615–619, 2003.

[29] M. Kloetzer, C. Mahulea, and J.-M. Colom, “Petri net approach for
deadlock prevention in robot planning,” in IEEE Conf. on Emerging
Technologies Factory Automation, Cagliari, Italy, 2013.

[30] T. Nishi and R. Maeno, “Petri net decomposition approach to opti-
mization of route planning problems for agv systems,” IEEE Trans. on
Automation Science and Engineering, vol. 7, no. 3, pp. 523–537, 2010.

[31] K. Klai, S. Haddad, and J.-M. Ilie, “Modular Verification of Petri Nets
Properties: A Structure-Based Approach,” in Formal Techniques for
Networked and Distributed Systems - FORTE 2005, ser. Lecture Notes
in Computer Science, F. Wang, Ed. Springer Berlin Heidelberg, 2005,
vol. 3731, pp. 189–203.

[32] J. Esparza and C. Schrter, “Net reductions for ltl model-checking,” in
Correct Hardware Design and Verification Methods, ser. Lecture Notes
in Computer Science, T. Margaria and T. Melham, Eds. Springer Berlin
Heidelberg, 2001, vol. 2144, pp. 310–324.

[33] M. Rahim, M. Boukala-Ioualalen, and A. Hammad, “Petri Nets Based
Approach for Modular Verification of SysML Requirements on Activity
Diagrams,” in PNSE’14: Int. Workshop on Petri Nets and Software
Engineering, 2014, a satellite event of Petri Nets 2014.

[34] M. Silva, E. Teruel, and J.-M. Colom, “Linear algebraic and linear
programming techniques for the analysis of P/T net systems.” Lecture
on Petri Nets I: Basic Models, vol. 1491, pp. 309–373, 1998.

[35] M. D. Berg, O. Cheong, and M. van Kreveld, Computational Geometry:
Algorithms and Applications, 3rd ed. Springer, 2008.

[36] L. C. G. J. M. Habets, P. J. Collins, and J. H. van Schuppen, “Reach-
ability and control synthesis for piecewise-affine hybrid systems on
simplices,” IEEE Trans. Automatic Control, vol. 51, pp. 938–948, 2006.

[37] C. Belta and L. Habets, “Controlling a class of nonlinear systems on
rectangles,” IEEE Trans. on Automatic Control, vol. 51, no. 11, pp.
1749–1759, 2006.

[38] F. Brown, Boolean Reasoning: The Logic of Boolean Equations, 2nd ed.
Dover Publications, 2012.

[39] M. N. Velev, “Efficient Translation of Boolean Formulas to CNF in
Formal Verification of Microprocessors,” in Asia and South Pacific
Design Automation Conference, ser. ASP-DAC ’04. Piscataway, NJ,
USA: IEEE Press, 2004, pp. 310–315.

[40] K. Seow, C. Ma, and M. Yokoo, “Multiagent planning as control syn-
thesis,” in Third Int. Joint Conf. on Autonomous Agents and Multiagent
Systems, 2004, pp. 972–979.

[41] M. T. Pham and K. T. Seow, “Discrete-event coordination design for dis-
tributed agents,” IEEE Trans. on Automation Science and Engineering,
vol. 9, no. 1, pp. 70–82, 2012.

[42] J. Chinneck, Practical Optimization: A Gentle Introduction.
http://www.sce.carleton.ca/faculty/chinneck/po.html, 2004.

[43] IBM. (2016) IBM ILOG CPLEX Opti-
mization Studio. Software. [Online]. Available:
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/

[44] M. Earl and R. D’Andrea, “Iterative MILP methods for vehicle-control
problems,” IEEE Trans. Robotics, vol. 21, no. 6, pp. 1158–1167, 2005.

[45] R. Gonzalez, C. Mahulea, and M. Kloetzer, “A matlab-based interactive
simulator for mobile robotics,” in IEEE Int. Conf. on Automation Science
and Engineering, Gothenburg, Sweden, 2015.

[46] L. Parrilla, C. Mahulea, and M. Kloetzer, “Rmtool: recent enhance-
ments,” in IFAC World Congress, Toulouse, France, July 2017.

