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Abstract A filling Dehn surface in a 3-manifold M is a generically immersed surface in M
that induces a cellular decomposition of M . Given a tame link L in M , there is a filling Dehn
sphere of M that “trivializes” (diametrically splits) it. This allows to construct filling Dehn
surfaces in the coverings of M branched over L . It is shown that one of the simplest filling
Dehn spheres of S3 (Banchoff’s sphere) diametrically splits the trefoil knot. Filling Dehn
spheres, and their Johansson diagrams, are constructed for the coverings of S3 branched over
the trefoil. The construction is explained in detail. Johansson diagrams for generic cyclic
coverings and for the simplest locally cyclic and irregular ones are constructed explicitly,
providing new proofs of known results about cyclic coverings and the 3-fold irregular covering
over the trefoil.

Keywords 3-Manifold · Immersed surface · Filling Dehn surface · Link · Knot · Branched
covering

Mathematics Subject Classification Primary 57N10 · 57N35

1 Introduction

Filling Dehn surfaces and their Johansson diagrams were introduced in [19], following ideas
of [10], as a new way to represent closed orientable 3-manifolds. After [19] some works have
appeared on the subject [1,13,15,16,25–27].
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In [14], the authors propose a general framework in which filling Dehn surfaces can be
applied to knot theory. Any knot (or link) in any 3-manifold can be nicely intersected (split)
by a filling Dehn sphere. This filling Dehn sphere appears to be an interesting tool for studying
the branched coverings over the knot, because the splitting sphere has “nice lifts” to these
branched coverings, in a similar way as the Heegaard surface of a (g, 1)-decomposition of
the knot [4,6,7]. In [14], this is exemplified with the simplest of all knots: the unknot. The
techniques of [14] are applied here to the next knot in increasing complexity after the unknot:
the trefoil knot.

In Sect. 2 we introduce the basic definitions and notations about filling Dehn surfaces.
Sect. 3 recalls the tools introduced in [14]. For more details on this subject see [14,16] and
references therein.

In Sect. 4 it is shown that one of the simplest filling Dehn spheres of S3 (Banchoff’s
sphere) splits the trefoil knot. This is used in the subsequent sections to study covers of S3

branched over the trefoil. In Sect. 5 we study the cyclic branched covers, obtaining a new
proof of Theorem 2.1 of [5] that asserts that the 3-manifolds introduced in [23] coincide with
the cyclic branched covers of the trefoil knot. Section 6 deals with other type of coverings,
namely locally cyclic (Sect. 6.1) and irregular ones (Sect. 6.2). In particular, in Sect. 6.2 we
give another proof of the well known result that asserts that the irregular 3-fold covering of
S3 branched over the trefoil is S3 [3,9,17].

2 Dehn surfaces and their Johansson’s diagrams

Throughout the paper all 3-manifolds are assumed to be orientable and closed, that is, compact
connected and without boundary. On the contrary, surfaces are assumed to be compact,
orientable and without boundary, but they could be disconnected. All objects are assumed to
be in the smooth category: manifolds have a differentiable structure and all maps are smooth.

Let M be a 3-manifold.
A subset Σ ⊂ M is a Dehn surface in M [20] if there exists a surface S and a general

position immersion f : S → M such that Σ = f (S). If this is the case, the surface S is
the domain of Σ and it is said that f parametrizes Σ . If S is a 2-sphere, then Σ is a Dehn
sphere.

Let Σ be a Dehn surface in M and consider a parametrization f : S → M of Σ . The
singularities of Σ are the points x ∈ Σ such that # f −1(x) > 1, and they are divided into
double points where two sheets of Σ intersect transversely (# f −1(x) = 2), and triple points
where three sheets of Σ intersect transversely (# f −1(x) = 3). The singularities of Σ form
the singularity set S(Σ) of Σ . We denote by T (Σ) the set of triple points of Σ . The connected
components of S(Σ)− T (Σ), Σ − S(Σ) and M −Σ are the edges, faces and regions of Σ ,
respectively.

In the following a curve in S,Σ or M is the image of an immersion from S
1 or R into S,

Σ or M , respectively. A double curve of Σ is a curve in M contained in S(Σ).
The preimage under f of the singularity set of Σ , together with the information about

how its points become identified by f in Σ is the Johansson diagram D of Σ , see [12,19].
Two points of S are related by f if they project onto the same point of Σ .

Since S is compact and without boundary, double curves are closed and there is a finite
number of them, and the number of triple points is also finite. Since S and M are orientable,
the preimage under f of a double curve of Σ is the union of two different closed curves in
S. These two curves are sister curves of D . Thus, the Johansson diagram of Σ is composed
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of an even number of different closed curves in S. We identify D with the set of different
curves that compose it. For any curve α ∈ D we denote by τα the sister curve of α in D .
This defines a free involution τ : D → D , the sistering of D , that sends each curve of D to
its sister curve in D .

The curves of D transversely meet others or themselves at the crossings of D . The crossings
of D are the preimage under f of the triple points of Σ . If P is a triple point of Σ , the three
crossings of D in f −1(P) form the triplet of P .

The Dehn surface Σ ⊂ M fills M if it defines a cell-decomposition of M whose 0-, 1-
and 2-dimensional skeletons are T (Σ), S(Σ), and Σ respectively [19]. If Σ fills M and the
domain S of Σ is connected, then it is possible to build M out of the Johansson diagram D
of Σ . Since every 3-manifold has a filling Dehn sphere [19], Johansson diagrams of filling
Dehn spheres represent all closed orientable 3-manifolds.

A special case of filling Dehn surfaces is when the domain S of the filling Dehn surface Σ

is a disjoint union of 2-spheres. In this case, we say that Σ is a filling collection of spheres.

3 Splitting knots with filling Dehn spheres

In the following paragraphs we summarize some definitions and results from [14]. Results
are stated without proof.

Let L be a tame knot or link in a 3-manifold M , and let Σ be a filling Dehn surface of M .

Definition 1 The Dehn surface Σ splits L if:

1. L intersects Σ transversely in a finite set of non-singular points of Σ ;
2. for each region R of Σ , if the intersection R ∩ L is non-empty it consists exactly of one

arc, unknotted in R; and
3. for each face F of Σ , the intersection F ∩ L contains at most one point.

The Dehn surface Σ diametrically splits L if it splits L and it intersects each connected
component of L exactly twice.

Theorem 1 There is a filling Dehn sphere of M that diametrically splits L. ��
In the remainder of this section we assume that Σ splits L .
Our interest in filling Dehn surfaces that (diametrically) split knots relies on the following

result. Let p : M̂ → M be a finite sheeted branched covering with downstairs branching set
L , and take Σ̂ = p−1(Σ).

Theorem 2 The Dehn surface Σ̂ fills M̂. Moreover, if L is a knot and Σ is a filling Dehn
sphere that diametrically splits L then Σ̂ is a filling collection of spheres in M̂, and Σ̂ is a
Dehn sphere if and only if p is locally cyclic. ��

Recall that an n-fold covering p branched over a knot L is locally cyclic if its monodromy
map ρ sends knot meridians onto n-cycles [22, p. 209]. This is equivalent to say that p :
p−1(L) → L is a homeomorphism.

For the study of branched coverings over L it is essential to know its group, i.e. the
fundamental group of M − L . This can be done also using Σ . If R1, . . . , Rm are all the
different regions of Σ disjoint from L and we take a point Qi in each of these regions, Σ − L
is a strong deformation retract of M − (L ∪ {Q1, . . . , Qm}). Hence

Proposition 1 The fundamental groups of M − L and Σ − L are isomorphic. ��
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If f : S → M is a parametrization of Σ , the pair (D, f −1(L)), where D is the Johansson
diagram of Σ , is a Johansson diagram of L .

Proposition 2 The pair (M, L) can be recovered from a Johansson diagram of L. In partic-
ular, if L ′ is a link in a 3-manifold M ′ such that L and L ′ have identical Johansson diagrams,
there is a homeomorphism between M and M ′ that maps L onto L ′. ��
Thus, all the information about L is codified in its Johansson diagram.

A presentation of the fundamental group of a Dehn surface in terms of its Johansson
diagram was introduced in [15] (cf. [16]). Although the presentation given there is stated for
Dehn surfaces of genus g, it is not difficult to prove that it is valid in a more general context,
including the case of Σ − L where the domain surface is a punctured sphere. The generators
of this presentation are of two kinds: surfacewise generators and D-dual generators.

Set ML := M − L and SL := S − f −1(L). Take a non-singular point x of Σ as the base
point of the fundamental group πL := π1(ML , x) of ML . We also denote by x the preimage
of x under f , and we choose it as the base point of the fundamental group πSL := π1(SL , x)

of SL .
The surfacewise generators of πL are obtained by pushing forward a generating set of

πSL to M through f : if γ1, . . . , γk are representatives of a set of generators of πSL , then
f ◦ γ1, . . . , f ◦ γk are representatives of a set of surfacewise generators of πL .

Let α and β be sister curves of D . Consider two paths a and b in SL starting at x and
ending at points on α and β respectively. Assume that the endpoints of a and b are related
by f and that they are not crossings of D . Then, α# = ( f ◦ a) ( f ◦ b)−1 is a loop in Σ − L
which is said to be dual to α. Different choices of a and b provide different dual loops of α,
but all of them are conjugated by products of surfacewise generators [15]. The inverse loop
β# = (α#)−1 = ( f ◦ b) ( f ◦ a)−1 is dual to β.

After repeating this construction for each pair of sister curves of D we obtain the set D#

of D-dual generators of πL .

Proposition 3 [15] Surfacewise generators and D-dual generators generate πL . ��
Thus, surfacewise and D-dual generators lead to a presentation of πL . The relators asso-

ciated to this presentation are detailed in [15].
If p : M̂ → M is an n-fold (n < ∞) covering of M branched over L , according to

Theorem 2, Σ lifts to a filling Dehn surface Σ̂ of M̂ . We want to construct the Johansson
diagram D̂ of Σ̂ . This construction is specified in Algorithm 3.4 of [14]. The presentation
of πL in terms of surfacewise and D-dual generators fits quite well to this purpose. In short
form:

– surfacewise generators of πL allow to construct the domain surface Ŝ of Σ̂ ; and
– D-dual generators allow to decide the sistering between the curves of D̂ .

By [15], there is a commutative diagram

Ŝ M̂

S M

f̂

pS p

f

where f̂ is a parametrization of Σ̂ , and pS is an n-fold branched covering with branching
set f −1(L).
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Take p−1(x) = {x1, . . . , xn}, and also denote by {x1, . . . , xn} the corresponding points
in Ŝ. If ρ : πL → Ωn is the monodromy homomorphism associated with p, where Ωn is the
group of permutations of the set {x1, . . . , xn}, the monodromy homomorphism ρS : πSL →
Ωn associated with pS verifies ρS = ρ ◦ f∗, where f∗ : πSL → πL is the homomorphism
induced by f .

Since f∗ sends a set of generators of πSL onto the surfacewise generators of πL , ρS is
essentially the same as ρ restricted to the surfacewise generators of πL . Hence, the knowledge
of ρ allows to construct Ŝ.

Once Ŝ is constructed, the curves of D̂ are the lifts to Ŝ of the curves of D . Consider the
pair of sister curves α and β of D and their associated paths a and b as before. Let ai and bi

be the lifts of a and b respectively to Ŝ based at xi , and let αi and βi be the lifts of α and β

passing through the endpoint of ai and bi respectively, with i = 1, . . . , n. The monodromy
map ρ assigns to α# the permutation ρ(α#) of {x1, . . . , xn} given by

ρ(α#)(xi ) = x j ⇐⇒ the lift of α# starting at xi ends at x j .

By the construction of α#, the right-hand side of the previous equivalence is indeed equivalent
to say that the endpoints of ai and b j are related by f̂ . Therefore, αi and β j are sister curves
in D̂ and they must be identified in such a way that the endpoints of ai and b j are related
by f̂ . Hence, ρ(α#) tells us how the lifts of α to Ŝ must be identified with the lifts of β

to Ŝ. Repeating the same argument for the rest of D-dual generators, all the identifications
between the curves of D̂ are established.

4 Banchoff’s sphere and the trefoil knot

Let K be the trefoil knot lying in S3 with a 2π/3 rotational symmetry as in Fig. 1a. A filling
Dehn sphere in S3 that diametrically splits K can be constructed as follows. Look at the
embedded 2-sphere of Fig. 1a, whose interior intersects K in an unknotted arc, and take
another two copies of it, each one located at each “petal” of the trefoil knot. These three
embedded 2-spheres in S3 intersect themselves and K as in Fig. 1b, and they form a filling
collection of spheres Θ0 in S3. Two Banchoff type 1 surgeries [2] between the 2-spheres
transform this filling collection of spheres into a filling Dehn sphere Θ of S3 (see [24])
which is called Banchoff’s sphere in [16,27]. According to [16,27], it is one of the three
unique filling Dehn spheres of S3 with only two triple points. Moreover, if the two surgeries
are taken following the knot K , as indicated in Fig. 1c, then Θ diametrically splits K . Figure 2
shows how its Johansson diagram D is obtained from the singular set of Θ0. The dots in the

1

2

3

A

B

(a) (b) (c)

Fig. 1 Banchoff’s sphere splitting the trefoil
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(a)

(b)

(c)

Fig. 2 Constructing Banchoff’s sphere: a starting from a bunch of three 2-spheres, b, c we add tubes to build
a Dehn sphere. In the right column we can see how the corresponding diagram changes

right-hand side of the picture represent the intersection of the surface with the trefoil knot.
Figure 3a shows the usual representation of D where one point of the sphere has been sent
to infinity.

Let f : S2 → S3 be a parametrization of Θ . The two curves α, β of the diagram D verify
β = τα, and they must be identified following the arrows in the obvious way. The preimages
by f of the two intersection points A, B of Θ with K are the points also denoted by A, B in
S2, see Fig. 3a. When the notation does not lead to confusion, we will use the same names
for the objects in Θ and their preimages in S2.

The fundamental group π1(Θ −{A, B}, x) � πK based at the point x is generated by the
loops m and c, where:

– m is the generator of π1(S2 − {A, B}) depicted in Fig. 3a; and
– the loop c = a b−1 = α# dual to the curve α of D , where a and b are the paths depicted

in Fig. 3a joining x with two related points on α and β respectively.

Note that the loop m in Θ is homotopic to a meridian of K .
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(a) (b)

Fig. 3 a Banchoff’s sphere diagram with the loops selected to generate the fundamental group of the trefoil
knot complement. b The fan Δ obtained by cutting the previous diagram along the thin horizontal line between
point A and B

After computing for Θ − {A, B} the presentation of its fundamental group given in [15],
we obtain

πK � 〈 m, c |mcm = cm−1c 〉. (1)

It is straightforward to see that this group is isomorphic to the trefoil knot group.

5 Cyclic branched covers over the trefoil knot

5.1 Johansson diagrams and fundamental group

Let p : M̂n → S3 be the n-fold (n < ∞) cyclic covering of S3 branched over K . By
Theorem 2, Banchoff’s sphere Θ ⊂ S3 lifts to a filling Dehn sphere Θ̂ of M̂n .

We use the same notation as in Sect. 3. Take p−1(x) = {x1, . . . , xn}, and denote also
by {x1, . . . , xn} the corresponding points in Ŝ. Let ρ : πK → Ωn be the monodromy
homomorphism associated with p. Since p is cyclic, ρ sends πK onto a cyclic subgroup Cn

of Ωn . The fact that Cn is abelian and the relation in (1) imply that ρ(c) = ρ(m)3. Therefore
Cn = 〈ρ(m)〉. Since Cn must act transitively on {x1, . . . , xn}, ρ(m) must be a cycle of order
n. If we identify Ωn with the permutation group of the subscripts {1, . . . , n} in the natural
way, renaming {x1, . . . , xn} if necessary, we can assume that ρ(m) = (1, 2, . . . , n). In the
following paragraphs all the subscripts are considered modulo n.

The loop m generates the fundamental group of S − {A, B}, which is infinite cyclic.
Therefore, the monodromy homomorphism ρS is given by m �→ (1, 2, . . . , n). If mi is the
lift of m to Ŝ based at xi , by the choice of ρ(m), the lifted path mi starting at xi must have
its endpoint at xi+1.

After: (i) cutting the diagram of Fig. 3a along the line that connects A and B in the same
figure; and (ii) sending B to infinity; the fan Δ of Fig.3b is obtained. The domain Ŝ of Θ̂

is obtained by cyclically gluing n copies of Δ. If Δi is the copy of Δ that contains xi , i =
1, . . . , n, the diagram D̂ of Θ̂ is built up with Δ1, . . . , Δn glued together counterclockwise
(the direction does not matter, but we choose it according to the direction of m in the diagram
to visualize it better, see Fig. 4).

As explained in Sect. 3, the lifts of c to Θ̂ describe how the curves of the diagram D̂
become identified in Θ̂ . Let ai , bi and ci be the lifts of a, b and c respectively based at xi .
Let αi be the lift of α to Ŝ where ai has its endpoint. In the same way, let βi be the lift of β to
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Fig. 4 Building the diagram of a cyclic branched covering. The lifts of m are the thick paths marked with
triangle arrows. Those of a are the thick paths marked with triangle empty arrows. The lifts of b are unlabelled,
but the path b−1

i is the one ending at xi also marked with an empty triangle arrow

Ŝ where bi has its endpoint. With this notation, the situation in Ŝ is as depicted in Fig. 4. The
path ci connects xi with xρ(c)(i) = xi+3, crossing a double curve of Θ̂ . Hence, the curve at
which ai ends must be identified with the one at which b−1

i+3 starts and therefore ταi = βi+2

(see Fig. 4). This allows us to proof:

Lemma 1 The fundamental group of M̂n is isomorphic to the Sieradski group

S (n) = 〈 g1, . . . , gn |gi = gi−1 gi+1 for i = 1, . . . , n 〉,
where the indices are taken modulo n.

Proof The fundamental group of M̂n coincides with that of Θ̂ . Since Ŝ is a 2-sphere, we
can use the presentation given in [16, Chp. 4]. In this presentation the fundamental group
is generated by the dual loops of αi and βi , i = 1, . . . , n, and the relators are given by the
triplets of D̂ . By construction, dual loops of sister curves are inverse to each other, and so
π1(M̂n) is generated just by the dual loops β#

1 , . . . , β#
n .
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(a) (b) (c)

Fig. 5 Diagrams for the first cyclic coverings branched over the trefoil: a the lens space L(3, 1) as the cyclic
2-fold covering of S3 branched over K ; b the 3-fold covering; and c the 4-fold covering

Let us determine the triplets of D̂ . Take the point P1 in the i-th fan Δi of Fig. 4. The
curves βi−1 and βi intersect at P1. Since P1 is the third crossing after the arrow in βi , it must
be identified with the third crossing after the arrow in τβi = αi−2, which is the point P2

in Δi−2. In the same way, since P2 is the fifth crossing after the arrow in βi−2, it must be
identified with the fifth crossing after the arrow in τβi−2 = αi−4, which is the point P3 in
Δi−3. Finally, since P3 is the second crossing after the arrow in αi−3, it must be identified
with the second crossing after the arrow in ταi−3 = βi−1, which is, as expected, P1.

For each j = 1, 2, 3 take a small path δ j near Pj such that the endpoint of δ j is related by
f̂ with the starting point of δ j+1, where the subscripts are taken modulo 3 (as the dotted arcs
in Fig. 4). Then the loop ( f̂ ◦ δ1) ( f̂ ◦ δ2) ( f̂ ◦ δ3) is contractible in Θ̂ . Hence, the product of

D̂-dual loops β#
i β#

i−2 α#
i−3 = β#

i β#
i−2

(
β#

i−1

)−1
is also contractible (full details in [16, Chp.

4]). Therefore β#
i−1 = β#

i β#
i−2 in π1(M̂n, x).

It is straightforward to see that all the relations are of this form. In [16, Chp. 4] it is proved
that these are all the nontrivial relations. Taking gi = β#

n−i , i = 1, . . . , n, the presentation
of S (n) of the statement is obtained. ��
Remark 1 Lemma 1 is included in [5] as part of the proof of Theorem 2.1 (Theorem 3 below).

Example 1 Consider p : M̂2 → S3 given by the presentation m �→ (1, 2), c �→ (1, 2), see
Fig. 5a. The previous description allows us to conclude that π1(M̂2) = Z3, in fact M̂2 is
L(3, 1). Figure 5b shows the diagram constructed for M̂3 given by the presentation m �→
(1, 2, 3), c �→ 1Ω3 . The fundamental group is isomorphic to the group of the quaternions
Q8. Hence, M̂3 is one of the prism manifolds, which are characterized by their fundamental
group. According to the notation of [11] this is M(2, 1), also called the Quaternionic Space
[18]. Consider now the presentation m �→ (1, 2, 3, 4), c �→ (1, 4, 3, 2), the fundamental
group of M̂4 is SL2(Z3) ∼= Z3 � Q8. This is one of the tetrahedral manifolds, which are also
characterized by their fundamental group. In this case the manifold is the Octahedral space
[18].

5.2 The Sieradski complex

The family of polyhedra with identified faces depicted in Fig. 6 was introduced in [23].
The quotient spaces of these polyhedra is a family of 3-manifolds Mn , with n ≥ 2, whose
fundamental groups are the Sieradski groups S (n). In [5] it is proved that Mn is the n-fold
cyclic branched cover over the trefoil knot, M̂n in our notation. As shown above, Sieradski
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(a) (b)

Fig. 6 The Sieradski complex on the sphere S2 = ∂ D3

(a)

x1

x1
x1

x1 x1

L

(b) (c)

a
a

b

b
c

cd

d

e

ef

f A

B

(d)

e

c

B

A

e

a
f

d

d
b

(e)

B

A

Fig. 7 Banchoff’s sphere splitting the trefoil in Sieradski complex for n = 1

groups naturally appear in our construction, so it is natural to expect that the lifts of Banchoff’s
sphere have some relation with Sieradski polyhedra (see Fig. 6). In fact, Banchoff’s sphere
allows us to give an alternative proof of Theorem 2.1 of [5].

Fix an integer n ≥ 2. For the Sieradski polyhedron Pn of Fig. 6b, consider the 2π/n
rotation r around the vertical central axis J connecting the “north and south poles” N and S of
Pn . By the symmetry of the identification of points on ∂Pn , r preserves these identifications
(r sends identified points to identified points on ∂Pn), and therefore r defines a homeomor-
phism of Mn . Moreover, the group generated by r is cyclic of order n. The quotient space
of the pair (Mn, J ) under the action of 〈r〉 is the pair (M1, L), where M1 is the manifold
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obtained after identifying the faces of the tetrahedron P1 of Fig. 7a in the following way: the
two vertical faces must be identified by a rotation around the vertical edge; and the other two
faces must be identified in the unique way in which the boundary edges become identified as
indicated by the arrows. Let L denote the image of the vertical edge of the tetrahedron after
the identification.

Lemma 2 The pair (M1, L) is homeomorphic to (S3, K ).

Proof Take the immersed surface Σ in M1 which is the projection of the surface depicted
inside the tetrahedron in Fig. 7b, c. The four pieces of this surface become glued by the
identification as it is indicated in Fig. 7d, e, and the intersection of L with Σ corresponds to
the points A and B of the same figure. After some ambient isotopies, the diagram of (Σ, L)

becomes the one of Fig. 3a. It is not difficult to check that Σ fills M1. Therefore, M1 is S3

and Σ is Banchoff’s sphere. Since the intersection of L and Σ coincides with the intersection
of the trefoil and Θ , by Proposition 2 we conclude also that L is the trefoil knot. ��
Theorem 3 [5, Thm. 2.1] For each n = 2, 3, . . . the 3-manifold Mn is the n-fold cyclic cover
of S3 branched over the trefoil.

Proof The unique points of Mn that become fixed by r are those on J . Therefore, the covering
of Mn over M1 defined by 〈r〉 is a n-fold covering of S3 branched over K . Since the group 〈r〉
of deck transformations is cyclic of order n, it turns out that Mn is the n-fold cyclic covering
of S3 branched over the trefoil knot. ��

The lift of Banchoff’s sphere to Mn can be built inside Pn by cyclically gluing n copies
of the pieces of the surface of Fig. 7b around the axis J (Fig. 6b).

6 Other examples

6.1 Locally cyclic branched covers

Since all locally cyclic coverings of 2 and 3 sheets of S3 branched over K are in fact cyclic,
the first non-cyclic example p : M → S3 is the one given by the representation of πK into
Ω4 defined by m �→ (1, 2, 3, 4) and c �→ (1, 2). The construction of the diagram is as in the
cyclic case. Since the image of m is a cycle of maximal length the lift of Θ has S2 as domain,
and ρ(c) describes how to identify the curves of the diagram. The final diagram is the one
of Fig. 8, which gives

π1(M) ∼= 〈 α1, α2, α3, α4 | α1α
−2
2 , α1α3α

−1
4 , α1α

−1
3 α4, α4α

−1
2 α3 〉 ∼= Z3 � Z8.

Therefore M is the prism manifold M(3, 2) in the notation of [11]. Compare it with the 4-fold
cyclic covering depicted in Fig. 5c.

6.2 The 3-fold irregular cover

Let p : M̂ → S3 be an n-fold branched covering over the trefoil K with n < ∞. In the
previous sections we have seen how to construct the Johansson diagram of a filling Dehn
sphere of M̂ when ρ(m) is a cycle of order n, where ρ is the monodromy of p. It is also
possible to construct the Johansson diagram of a filling Dehn sphere of M̂ in the general
case, even if ρ(m) is not a cycle of maximal length. We illustrate this case with the simplest
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Fig. 8 The diagram for the
locally cyclic covering given by
the presentation
m �→ (1, 2, 3, 4), c �→ (1, 2)

example: the 3-fold irregular covering over the trefoil. We use the same notation as in previous
sections.

Assume that n = 3 and that ρ(m) = (12). The lifts m1, m2 and m3 of m to the domain
surface Ŝ of Σ̂ = p−1(Θ) verify

– m1 connects x1 with x2;
– m2 connects x2 with x1; and
– m3 connects x3 with itself.

Therefore, Ŝ is a disjoint union of two 2-spheres. One of them, S12, contains x1 and x2 and
can be obtained by gluing two copies Δ1 and Δ2 of the fan Δ. The other one, S3, containing
x3 must be a copy of the domain surface of Θ . The restriction of pS to S12 is a 2-fold branched
covering with branching set {A, B}, and pS |S3 is a 1-fold branched covering with branching
set {A, B}, hence a homeomorphism. The diagram D̂ of Σ̂ is the lift to Ŝ = S12 � S3 of the
diagram D through pS . By the same arguments of previous sections, D̂ in S12 looks like the
left-hand side of Fig. 9a. The diagram D̂ in S3 looks exactly like the diagram D in S, except
for the identification of the curves, that will be determined by the element ρ(c) given by the
monodromy homomorphism. Set Σ12 = f̂ (S12) and Σ3 = f̂ (S3).

Since ρ(m) and ρ(c) verify the identity

ρ(m) ρ(c) ρ(m) = ρ(c) ρ(m)−1 ρ(c)

and the subgroup of Ω3 generated by ρ(m) and ρ(c) acts transitively on the set {1, 2, 3},
then ρ(c) = (1, 3) or ρ(c) = (2, 3). Assume that ρ(c) = (2, 3) (the case ρ(c) = (1, 3) is
equivalent). The endpoint of a1 is related by f̂ with the endpoint of b1, the endpoint of a2

is related by f̂ with with the endpoint of b3, and the endpoint of a2 is related by f̂ with the
endpoint of b3. The resulting sistering of D̂ is indicated in Fig. 9a (in this figure we depict
S3 as the fan Δ3 glued with itself, compare it with Fig. 3).

Now, we modify Σ̂ by a surgery operation near a triple point where a sheet of Σ12 and a
sheet of Σ3 intersect. We perform a Banchoff type 1 surgery between Σ12 and Σ3 around the
triple point P as indicated in the top part of Fig. 10. The local effect of this operation on the
diagram is depicted in the bottom part of the same picture. Figure 9a shows how the piping
between Σ12 and Σ3 is performed: we remove the shaded disks and attach a tube along the
dashed arc. The resulting Dehn surface Σ̃ has as domain the connected sum of S12 and S3,
hence it is a Dehn sphere. Its Johansson diagram appears in Fig. 9b.
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(a)

(b) (c)

(d)
(e)

Fig. 9 The first non-locally cyclic cover of S3 branched over K is S3

Proposition 4 The Dehn sphere Σ̃ fills M̂.

Proof In order to check that Σ̃ fills M̂ it must be proved that all its edges, faces and regions
are open 1-, 2- and 3-dimensional disks, respectively. The diagram of Σ̃ implies that the
edges and faces of Σ̃ verify this requirement.
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(a)

13

2

P

1 12 2 3 3

P1 P2 P3

Σ12

Σ3

(b)

1

3

2

P

1 12 2 3 3

P1 P2 P3

Fig. 10 Surgery around a triple point

The embedded 2-sphere Σ̂3 is nullhomotopic because Θ is nullhomotopic, and therefore
Σ̂3 is separating in M̂ . This implies that the surgery that transforms Σ̂ into Σ̃ connects two
regions R1 and R2 of Σ̂ on one connected component of M̂ − Σ̂3 with other two regions
R3 and R4 of Σ̂ on the other connected component of M̂ − Σ̂3, creating two regions of
Σ̃ . If R1 = R2, there would be a loop λ in M̂ that intersects Σ̂ transversely only at one
non-singular point of Σ̂ , and in this case p ◦ λ would intersect Θ transversely only at one
non-singular point of Θ , but this cannot happen because Θ is nullhomotopic (as any Dehn
sphere in S3). Hence, R1 �= R2, and the same argument gives R3 �= R4. Therefore, the four
regions of Σ̂ that become connected in pairs by the surgery are all different, and this implies
that all the regions of Σ̃ are open 3-balls. ��

The Johansson diagrams of two filling Dehn spheres of the same 3-manifold are related by a
sequence of f -moves [16,26,27], provided that both filling Dehn spheres are nullhomotopic
(an equivalent set of moves is proposed in [1]). These f -moves give another proof of the
following well-known result about the 3-manifold M̂ .

Theorem 4 [3,8,9,17]1 The 3-fold irregular branched covering of the trefoil is the 3-sphere.

Proof Starting from the diagram D̃ of Fig 9b, after a saddle move the diagram D1 of Fig. 9c
is obtained. After a finger move −1 (and ambient isotopies) we get the diagram D2 of Fig 9d,
and another finger move −1 finally gives the diagram D3 of Fig. 9e, which coincides with
the diagram of Johansson’s sphere, a well-known filling Dehn sphere of S3 (see [14,16]).
Since D3 is filling, D2 is also filling because it is obtained by applying a finger move +1
to D3 (see [16, Lem. 5.6 and Thm. 5.20]). The same argument applies to conclude that D1

is also filling. Since D̃ and D1 are filling diagrams, the saddle move that relate them is an
f -move. By [16, Thm. 5.20], M̂ is S3. ��

1 Of course, these and other similar questions became automatically solved after Perelman’s proof of the
Poincaré Conjecture [21].
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