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Cobalt ferrite and hematite with minor additives have been tested for production and

purification of high purity hydrogen from a synthetic biogas by steam-iron process (SIP) in

a fixed bed reactor. A catalyst based in nickel aluminate has been included in the bed of

solids to enhance the rate of the reaction of methane dry reforming (MDR). The reductants

resulting from MDR are responsible for reducing the oxides based on iron that will, in the

following stage, be oxidized by steam to release hydrogen with less than 50 ppm of CO.

Coke minimization along reduction stages forces to operate such reactors above 700 �C for

reductions, and as low as 500 �C for oxidations to avoid coke gasification. To avoid prob-

lems such as reactor clogging by coke in reductions and/or contamination of hydrogen by

gasification of coke along oxidations, steam in small proportions has been included in the

feed with the aim of minimizing or even avoiding formation of carbonaceous depositions

along the reduction stage of SIP. Since steam is an oxidant, it exerts an inhibiting effect

upon reduction of the oxide, that slows down the efficiency of the process. It has been

proved that co-feeding low proportions of steam with an equimolar mixture of CH4 and

CO2 (simulating a poor heating value desulphurized biogas) is able to avoid coke deposition,

allowing the operation of both, reductions and oxidations, in isothermal regime (700 �C).

Empirical results have been contrasted with data found in literature for similar processes

based in MDR and combined (or mixed) reforming process (CMR), concluding that the

combination of MDR þ SIP proposed in this work, taking apart economic aspects and

complex engineering, shows similar yields towards hydrogen, but with the advantage of

not requiring a subsequent purification process.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

The main environmental problem nowadays, the climate

change, is attributed to the emissions of greenhouse gases

derived from the exploitation of fossil fuels. To mitigate it at

least partially, it is necessary to introduce environmental
.

ons LLC. Published by Els

et al., Production and pu
gen Energy (2018), https:/
friendly alternatives to these raw materials. Mobility is one of

the niches where reducing the use of fossil fuels could make a

greater impact in the release of CO2 to the atmosphere. In this

context, hydrogen is called to be the path leading to the so-

lution through the use of fuel cell powered vehicles (PEMFC)

[1]. However, since this resource cannot be found isolated in

nature, the first step begins with its production from several
evier Ltd. All rights reserved.
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sources. Although serious research efforts have been directed

in the last decades, both from academia and industry, to

enhance the processes based on electrolysis with surplus

electricity, most part of hydrogen produced today still comes

from steam reforming of natural gas and/or coal [2]. A suitable

way to cope with the problem of greenhouse gases emission,

which come from the still significant reserves of fossil fuels

like natural gas or coal, might consist of taking advantage of

big scale production centers where capture and storage

methods of CO2 are efficiently applied. The main problem is

that processing exhaust gases by absorption methods with

chemicals (e.g. monoethanolamine -MEA-), results in a sig-

nificant increment in the process costs [3]. Other promising

processes, like those based on CO2 capture technologies such

as chemical looping combustion (CLC) [4], are still under

development. In this framework, it is proposed the use of

biogas, produced in bio-digesters by anaerobic fermentation

of organic matter as a raw material (municipal solid waste,

sewage sludge, forestry, agricultural, cattle or food industry

wastes to name themost relevant), to produce hydrogen. This

strategy combines the suitable exploitation of enormous

amounts of feedstock today scarcely processed, to produce

bio-hydrogen which connects with the concept of circular

economy [5]: use of wastes to cover energy demands.

In spite of the traditional reforming processes, this work is

devoted to produce and purify hydrogen from biogas by a

combined technique of methane dry reforming (MDR) and steam

iron process (SIP) [6]. Thismethod is closely related to the above

mentioned CLC. It is based, as this last, in the redox properties

of metal oxides: In a first stage, the products resulting from

themethane dry reforming of a biogas (MDR) reduce themetal

oxide to a lower oxidation state (r.1a and r.1b). Later, in a

subsequent stage, the metal can be reoxidized with steam

(r.2), releasing hydrogen easily separable from unreacted

steam by condensation.

Fe2O3 þ 3H2#2Feþ 3H2O (r.1a)

Fe2O3 þ 3CO#2Feþ 3CO2 (r.1b)

3Feþ 4H2O#Fe3O4 þ 4H2 (r.2)

The use of biogas as source of reducing species has been

previously tested in other works of our research group [7e10].

Same approach has been followed with other renewable raw

materials like bio-oil [11e13] using both, synthetic oxides and

natural metal ores. Given the poor catalytic activity of the

oxygen carriers used in this work [7,9], it has been required

improving the activity of the bed of solids for MDR by adding a

nickel aluminate catalyst.

Perhaps one of the main drawbacks regarding this process

is the loss of reactivity that the oxygen carrier suffers along

redox cycles, partially due to the crystalline structure of the

solid and the high temperatures required for MDR and

reduction of the solid. Keeping this in mind, and in order to

maximize the production of hydrogen, a moderate tempera-

ture (700 �C) has been used for reduction stages based on our

previous experience [7,8,10]. However, under these condi-

tions, the accumulation of carbonaceous deposits on the bed

of solids becomes a serious drawback. If not removed, coke
Please cite this article in press as: Lach�en J, et al., Production and pu
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could cause reactor clogging. On the other hand, coke depo-

sition along reductions exerts a severe restriction in the sub-

sequent oxidation stages, limiting seriously the allowed range

of temperatures to be employed: oxidation temperatures

should be low enough to avoid gasification of carbon residues

by steam, releasing COx that would contaminate the high

purity H2 stream resulting from the joint process.

For that reason, it is proposed the concept of co-feeding

low proportions of steam along with biogas in the reduction

stage, to avoid or at least minimize, the formation of carbon

deposits that would make the purification of hydrogen un-

practical. Basically, it means that a combined reforming pro-

cess (dry þ steam reforming -MDR þ MSR-) along with redox

reactions (SIP) is going to be explored. This solution has been

applied similarly in other dry reforming processes [14e17]. In

these projects, the addition of different percentages of water

allowed to regulate the H2:CO ratio of the synthesis gas, being

interesting for producing long chain hydrocarbons via Fischer-

Tropsch reaction [14]. However, since the objective in SIP is

reducing a metal oxide, co-feeding an oxidant such as steam,

could inhibit or at least slow down the reduction reactions.

Concluding, in this work it will be analyzed the technical

feasibility of this alternative as solution to prevent reactor

clogging. Also, hydrogen yields will be compared with data of

similar processes found in literature.
Experimental

Solids

Two different oxygen carriers have been selected in the pre-

sent work: hematite doped with low proportions of alumina

and ceria, (98 wt% Fe2O3, 1.75 wt% Al2O3 and 0.25 wt% CeO2)

colloquially called “triple” oxide, and cobalt ferrite with added

alumina which acts as stabilizer of the structure, with stoi-

chiometric formula Al0:53Co0:8Fe1:6O4.

The first solid has been synthesized in laboratory by the

citrates method [18]. Essentially, the synthesis method con-

sists of the preparation of a 1 M solution from the corre-

sponding metal nitrate salts under stirring at 70 �C. Once a gel

is formed, after about 3 h, it was dried overnight and calcined

in a double ramp, first up to 350 �C along 2.5 h and later up to

850 �C along 8 h.

Cobalt ferrite was synthesized by co-fusion [19]. Once the

corresponding nitrate salts of each of the metals have been

weighed and mixed, they were calcined for 6 h at 1000 �C.
The catalyst was composed of a nickel aluminate with

10 wt% excess of nickel oxide above its stoichiometric

composition. This composition was synthesized by co-

precipitation at increasing pH [20], and optimized in a previ-

ous work [9]. Firstly, solutions of aluminum nitrate and nickel

nitrate, 1 M and 0.631 M respectively, were prepared and then

mixed. An aqueous solution of NH4OH (30 wt%) was added

with continuous stirring at 45 �C to obtain the solution at pH

7.8e7.9. Then it was filtered, washed and dried overnight at

100 �C. Finally, it was calcined at 900 �C for 3 h.

All solids, both oxygen carriers and catalyst, were ground

and sieved up to obtain a particle size between 100 and

200 mm.
rification of hydrogen by biogas combined reforming and steam-
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Experimental setup

Tests were carried out in a fixed bed reactor made of quartz

(Øi ¼ 0.013 m). The bed was constituted by 2.5 g of solid

composed of 67.5 wt% of oxygen carrier, 7.5 wt% of catalyst

and 25 wt% of silicon carbide (same size as oxygen carriers

and catalyst) as an inert solid.

Each cycle consisted of two steps: First, the reduction of the

bed of solids by feeding a mixture simulating a desulphurized

biogas (reduction step) up to achieving a steady behaviour.

The length of reduction steps, once determined, was kept for

all cycles at given operating conditions. This was followed by

an inertization period with argon. Finally, the previously

reducedmetal was reoxidizedwith steam for 60min to release

high purity hydrogen (oxidation step). After a new inertization

period followed a new cycle of alternating reductions, inerti-

zations and oxidations.

Reduction stages were performed at 700 �C supplying

250 mL (STP)/min as total flow, composed of 25 v% of an

equimolar CH4:CO2 mixture (simulating a previously desul-

phurized biogas with lowmethane content), between 0 and 20

v% of steam, 5 v% of N2 as internal standard and Ar to balance.

Oxidation stages were performed in a temperature range

between 500 and 700 �C, feeding total flows equivalent to

those used in the reduction stage. In these cases, though, they

were composed of 25 v% steam, 5 v% of N2 as internal standard

and Ar to balance.

Water supply was performed using an HPLC pump (Shi-

madzu LC-20AT), that was vaporized up to the reaction tem-

perature before feeding the reactor. Exhaust gases were

continuously analyzed by a m-GC (Agilent 490) with Molisieve

5 �A and PoraPlot Q columns. Water at the exit of the reactor

was always forced to condensewith the aid of a Peltiermodule

(cold trap) to preserve the integrity of the m-GC.

Detailed topology of the conceptual process described in

the paragraphs above, as well as a comparison of the eco-

nomics in different scenarios, can be consulted in a recent

work of the same research group [21].
Results and discussion

Standard experiment: reduction and oxidation stages

When steam is fed jointly with biogas, themain reactions that

take place along the reduction stage in the gas phase are

Methane Dry Reforming -MDR- (r.3) andMethane Steam Reforming

-MSR- (r.4), as well as parallel and/or series reactions resulting

from the interaction between reactants and gaseous products

such as Water Gas Shift -WGS- reaction (r.5), and Boudouard

equilibrium (r.6).

CH4 þ CO2/2H2 þ 2CO (r.3)

CH4 þH2O/3H2 þ CO (r.4)

COþH2O#CO2 þH2 (r.5)

2CO#CO2 þ C (r.6)
Please cite this article in press as: Lach�en J, et al., Production and pu
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Moreover, also gas-solid reactions take place along the

reduction stage: the in-situ activation of the catalyst by con-

sumption of lattice oxygen of nickel oxide by methane (r.7),

and in case of cobalt ferrites as oxygen carrier, its reduction by

consumption of methane present in the biogas supplied (r.8)

and/or hydrogen (r.9) or carbon monoxide (r.10) produced by

the reactions (r.3) and (r.4).

4NiOþ CH4/4Niþ CO2 þ 2H2O (r.7)

CoFe2O4 þ CH4#Coþ 2Feþ CO2 þ 2H2O (r.8)

CoFe2O4 þH2#Coþ 2FeþH2O (r.9)

CoFe2O4 þ CO#Coþ 2Feþ CO2 (r.10)

In case of triple oxide, the reaction mechanism is slightly

different, because it is influenced by the different oxidation

stages of the iron oxide up to metallic iron (hematite /

magnetite/wustite/ iron). Methane supplied in the feed, and

hydrogen and carbonmonoxide formed from (r.3) and (r.4) will

allow the reduction of hematite to magnetite (r.11), (r.12),

(r.13). Finally, and unlike with cobalt ferrites, only hydrogen

and carbonmonoxide will allow the reduction of magnetite to

metallic iron as described by (r.14) and (r.15).

12Fe2O3 þ CH4/8Fe3O4 þ CO2 þ 2H2O (r.11)

3Fe2O3 þH2/2Fe3O4 þ H2O (r.12)

3Fe2O3 þ CO/2Fe3O4 þ CO2 (r.13)

Fe3O4 þ 4H2#3Feþ 4H2O (r.14)

Fe3O4 þ 4CO#3Feþ 4CO2 (r.15)

Fig. 1 shows the experiment considered as reference for

triple oxide (Fig. 1a) and cobalt ferrite (Fig. 1b). It was carried

out, regardless of the oxygen carrier tested, at 700 �C and with

a CH4:CO2 ratio of 1 accounting for 25 v% of the total mixture,

and including 5 v% of steam, 5 v% of nitrogen as internal

standard and argon to complete the balance. As can be

observed for both solids, the reduction stage has been divided,

for the sake of explanation in two steps (A and B), according to

its behaviour. The first one (A), describes the reduction of the

oxide. Along step B the oxygen from the former oxide has been

completely depleted leaving only the reduced metal. The

distribution of molar flows is determined by the thermody-

namic equilibrium among gaseous species, that can be pre-

dicted by minimization of the Gibbs free energy.

Singularities arise for each one of the solids tested: In case

of triple oxide (Fig. 1a), period A can be divided into two sub-

steps (A1 and A2). In A1, the appearance of metallic nickel

(r.7) favours the MDR reaction (r.3) because of its catalytic ef-

fect. At the beginning, it can be observed an almost complete

absence of H2 and CO, (products of MDR) which are being

consumed in-situ by the solid, while other gaseous species

coming from the reduction of the oxide (CO2 and H2O -not

shown for the sake of clarity-), present higher flows than

those fed. Also in this sub-step A1, it can be confirmed the

reduction of hematite to magnetite ((r.11), (r.12) and (r.13)).
rification of hydrogen by biogas combined reforming and steam-
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Along sub-step A2, magnetite is reduced tometallic iron ((r.14)

and (r.15)). In this period, molar flows of products are practi-

cally constant due to the strong influence of the equilibrium

betweenmagnetite andmetallic iron. This behaviour has been

described yet previously in more depth [10].

On the other hand, when cobalt ferrite is employed as ox-

ygen carrier (Fig. 1b), the reduction of the solid occurs along a

single step A, where it is taking place the reduction of nickel

oxide and cobalt ferrite (r.7 through r.10). As consequence of

this reduction, emerging nickel and cobalt, this last in a minor

extent, catalyze reactions (r.3) and (r.4), contributing to the

formation of H2 and CO, which in turn are consumed by the

ferrite up to its complete reduction. Finally, as was described

for triple oxide, step B shows the equilibrium between gaseous

species once the cobalt ferrite has been completely depleted.

Oxidation stages were performed following the previous

reduction in the conditions described in the experimental

chapter of this work. Reactions involved in these stages are

well described by the reverse (r.14) reaction. Hematite (Fe2O3)

is not favoured by thermodynamics at the operating condi-

tions in which experiments were carried out.

Effect of co-feeding biogas and steam in the reduction stage

Cobalt ferrite
Fig. 2a and b shows the evolution along the reduction stage of

the molar flows of H2, CH4 and the CO ratio (eq. (1)) at the exit

of reactor.

CO ratio ¼ molar flow of CO
molar flow of COþmolar flow of CO2

(eq. 1)

CO ratio (eq. (1)) reflects the relation between reducing

carbonaceous compound (CO) and oxidizing one (CO2). As it

can be seen in Fig. 2a, the greater is the percentage of steam
Please cite this article in press as: Lach�en J, et al., Production and pu
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co-fed, the lower is the methane conversion (i.e. higher CH4

flow) at the exit of reactor along the first minutes. This fact

might be attributed to the significant inhibiting behaviour of

steam towards reduction of nickel oxide present in the cata-

lyst: a low proportion of metallic nickel implies that a signif-

icant proportion of reactants (CH4 and CO2) present in the feed

will not be transformed in reducing species (H2 and CO).

Reduction of NiO will progress along time increasing the

amount of metallic nickel, catalyzing MDR and consuming

CH4 and CO2 (not shown). On the other hand, in Fig. 2b it is

possible to observe, as predicted by thermodynamics, that CO

ratio (eq. (1)) decreases as higher is the percentage of steam

co-fed.

Triple oxide
Like Fig. 2, Fig. 3 shows the behaviour along the reduction

stage for triple oxide. As in the previous case, there is an

increment in the amount of methane present in the first mi-

nutes as the proportion of steam in the feed is increased.

Unlike cobalt ferrites, the higher amount of unreacted

methane does not result in a pronounced delay of the reduc-

tion of hematite to magnetite since the mixture supplied

(synthetic biogas þ steam) has sufficient reducing capacity to

allow such reduction (Fig. 3a). However, the loss of reducing

capacity of the feed as the percentage of steam increases

(Fig. 3b) inhibits at some extent the reduction of magnetite to

iron, increasing the period required to completely reduce the

solid.

Effect of repeated redox cycles on the reduction stage

Fig. 4 shows the evolution of H2, CH4, and CO ratio (eq. (1))

throughout the first three reduction stages, co-feeding 10 v%

of steam jointly with biogas for both oxygen carriers: triple
rification of hydrogen by biogas combined reforming and steam-
//doi.org/10.1016/j.ijhydene.2018.04.151
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oxide (Fig. 4a) and cobalt ferrite (Fig. 4b). It is observed that the

presence of unreacted methane in the first moments of

reduction, pointed out in Figs. 2a and 3a, only occurs in the

first cycle regardless of the solid used.

In sight of this phenomenon, it is suggested as hypothesis

that at the beginning of the first cycle, and only along this one,

the catalytically active species for reforming reactions (i.e.
Please cite this article in press as: Lach�en J, et al., Production and pu
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metallic Ni) is not present “as is” but in its oxidized state (NiO)

(note that catalyst particles consist of nickel aluminate with

10 wt% of NiO excess above the stoichiometric proportion).

Along the first cycle, NiO is reduced by the feed (i.e. CH4 pre-

sent on it), which retains a significant reducing capacity,

allowing that CH4 remains unreacted along time, due to the

lack of metallic nickel in a significant amount. This fact has
rification of hydrogen by biogas combined reforming and steam-
/doi.org/10.1016/j.ijhydene.2018.04.151
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been observed only along the first cycle (i.e. first reduction);

since at the beginning of the subsequent reductions most

nickel is already in its metallic form, the bed has sufficient

catalytic capacity to allow the almost complete conversion of

methane present in the feed. Moreover, the time required to

reduce the solid decreases significantly from the first to the

second and third cycles, being the difference between the last

two cycles practically negligible regardless of the oxygen

carrier used. This behaviour has already been described in

previous works [8,10], being attributed to the loss of reducible

mass of solid resulting from the partial reoxidation on the

solid in previous cycles. The difference in behaviour between

first and following cycles can be explained by the greater

amount of H2 and CO produced from the very beginning when

nickel is present along the first minutes of reduction in the

second and third cycles (i.e. reductions) versus the inducting

period needed to reduce NiO to metallic nickel characteristic

of the first cycle.

Analysis of coke deposition in the reduction stage

Once the effect of co-feeding steam to the reduction stage has

been analyzed, in this section, it is going to be estimated the

amount of coke deposited on the bed along reduction stages. It

must be noted that in all cases, where a percentage of steam

greater than 3 v%was fed, the overpressure of the systemalong

cycles kept constant, allowing thus the correct alternation of

reduction and oxidations stages in an uninterrupted way.

The estimation of coke deposition has been performed by

calculating the elemental carbon balance: all carbonaceous

species apart from coke, which is presumably deposited on

the bed, can be quantified by gas chromatography. Fig. 5a

shows the evolution of the carbon balance along the first stage

of reduction of triple oxide for feeds with different proportions
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of steam. Results for cobalt ferrite are not plotted due to its

analogous behaviour. As can be appreciated, increasing the

proportion of steam, the carbon unbalance and consequently

the deposition of carbon, is considerably minimized. From 5 v

% on of steam co-feeding, the carbon unbalance takes values

around 0.5 mg/min regardless of the amount of steam fed.

This value represents roughly 1% of carbon unbalance, and

can be mainly attributed to the systemic error of the experi-

mental system used (including sampling and analysis by gas

chromatography). On the other side, Fig. 5b shows the amount

of coke deposited per 100 g of biogas fed, being lower in case of

using cobalt ferrites. This difference can be attributed to the

greater proportion of iron present in triple oxide which would

favour a higher deposition of carbonaceous species [22].

Influence of steam co-feeding with biogas: Oxidation stage

Fig. 6 shows the hydrogen produced throughout the oxidation

stages carried out at 500 �C after the reduction stages previ-

ously described. As it can be seen, as lower is the proportion of

steam supplied in the previous reduction stage, higher is the

amount of hydrogen obtained in the subsequent oxidation.

That occurs because the higher the proportion of steam sup-

plied, the more restricted is the reduction of the solid, and

consequently the metal oxide is reduced in a lower extent (i.e.

only partially).

If the production of hydrogen is analyzed along three

consecutive cycles, it can also be observed a drop between

cycles in case of using triple oxide as oxygen carrier. Cobalt

ferrite, instead, despite its low oxidation rate [7], produces less

hydrogen, but without an appreciable deactivation along the

redox cycles. It is important to highlight that in all cycles

performed, the high purity of the hydrogen produced is

guaranteed (� 50 ppm CO).
rification of hydrogen by biogas combined reforming and steam-
//doi.org/10.1016/j.ijhydene.2018.04.151
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Fig. 6 e g H2 produced/100 g of solid along 3 consecutive oxidation stages for triple oxide and cobalt ferrite, co-feeding

different percentages of steam (5e12.5 v%) along the previous reduction stages.
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Based on the results obtained, the optimal composition of

steam to co-feed in reductions should be around 5 v%, because

under these conditions it is possible to minimize or even

completely avoid the coke deposited on the bed as well as

maximizing the hydrogen produced along the subsequent

oxidations.

Stability tests of oxygen carriers

In redox cycles without steam co-feeding, the oxidation

temperature was limited to 500 �C to avoid the eventual

gasification by steam of the coke deposited along previous

reduction stages [7]. After applying the solution proposed in

this study, the carbon deposition has been minimized, open-

ing the possibility of increasing the oxidation temperature.

This would allow, a priori, the use of the same temperature as

in the previous stage of reduction (700 �C) eliminating cooling

and/or heating periods between stages and therefore reducing

the number of reactors necessary to carry out the process in a

continuous manner. To check the stability of each of the ox-

ygen carriers studied, up to 13 consecutive redox cycles were

performed co-feeding 5 v% of steam along reductions, using

temperatures of 500 �C and 700 �C in the subsequent oxidation

stages.

Fig. 7 shows the mass of hydrogen produced along the

oxidation step per 100 g of hydrogen present in biogas fed

during the previous reduction (Fig. 7a) and the mass of

hydrogen produced per 100 g of oxygen carrier (Fig. 7b). No COx

was detected in any of the cycles, despite of using up to 700 �C
as oxidation temperature. This fact supports the hypothesis

that the carbon unbalance associated with the production of

coke (Fig. 5a) is related to experimental error instead of a real

deposition of carbonaceous residue.
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On the other side, a remarkable increase of the hydrogen

production is observed with cobalt ferrite in case of oxidations

at 700 �C respecting its counterpart at 500 �C. This shift can be

attributed to the higher oxidation rate in accordance with the

higher process temperature, increasing therefore the amount

of reducible oxide along cycles. Moreover, there are no

appreciable signs of activity loss in the solid due to sintering

phenomena [23e25], concluding that the results obtainedwith

this material are very promising.

Triple oxide instead, exhibits a progressive fall in the pro-

duction of hydrogen along redox cycles due to sinterization of

the oxide (Fig. 7b). This reduction in the amount of H2 produced

along oxidations is especially intense in cycles performedwith

an oxidation temperature of 500 �C evidencing a progressive

loss of activity in the bed. In case of using 700 �C, it is possible to
obtain despite deactivation, hydrogen yields higher than those

obtained with cobalt ferrite. The reason is that employing

higher temperature along oxidation stages, the time necessary

to reoxidize the tripleoxide is shortenedbecause the increase in

kinetics prevails over the sintering process. This last is also

responsible of the progressive increase of time needed to

reduce the solid (not shown) and a gradual increment in the

reactor overpressure. Since there is no evidence of coke depo-

sition, the conclusion is that an eventual clogging of reactor

would be caused by partial melting and collapse of solid parti-

cles making the process unpracticable at these temperatures

for a sustained number of cycles.

Comparison of empirical results with literature

The hydrogen yields (i.e. g H2 produced per 100 g of H2 present

in biogas -as molecular constituent of CH4e) obtained using

both solids tested in this work have been compared with data
7 8 9 10 11 12 13

    Toxid. (ºC)     500    700 
triple oxide
cobalt ferrite

of cycle

biogas and (b) g H2 produced/100 g of solid along up to 13

700 �C, supplying 5 v% of steam in the reduction stage

rification of hydrogen by biogas combined reforming and steam-
//doi.org/10.1016/j.ijhydene.2018.04.151

https://doi.org/10.1016/j.ijhydene.2018.04.151
https://doi.org/10.1016/j.ijhydene.2018.04.151


1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

50

60

90

100

[26]

[26]

[27]

[31]
[31]

[31]

[28]

(this work)

[26]

(Toxid. 500ºC)

(Toxid. 500ºC)

[30]

[31]

[30] [27]

[26]

[29]

ferrite
#13

#1

#13

 H
2

yi
el

d 
(g

 H
2/1

00
 g

 H
2 i

n 
bi

og
as

)

 [(CO2+H2O)/CH4] ratio

MDR
MSR 
CMR
MDR+SIP

#1

triple

cycles

[26] Khani et al.
[27] Jang et al.
[28] Kambolis et al.
[29] Steinhauer et al.
[30] Soria et al.
[31] Ayodele et al.

Fig. 8 e g H2 produced/100 g of H2 contained in biogas using cobalt ferrite (solid stars) and triple oxide (hollow stars),

depending on the composition of the feed along reductions, compared with literature data [26e31]. The colour code is the

same as in Figs. 2, 3, 5 and 6. (For interpretation of the references to color/colour in this figure legend, the reader is referred

to the Web version of this article.)

i n t e r n a t i o n a l j o u r n a l o f h yd r o g e n e n e r g y x x x ( 2 0 1 8 ) 1e1 1 9
published in literature. All processes considered for compar-

ison (MDR, MSR or Combined Methane Reforming -CMR-) were

carried out at temperatures around 700 �C, but using different

catalysts based on Ni, NiePd, NieMgO, Ru, Co and NieRuePt

[26e31]. Fig. 8 shows, for the sake of comparison, the results

cited in literature or measured in our laboratory vs.

[(CO2 þH2O)/CH4] flow ratio in the feed supplied. Star symbols

represent different yields obtained in this work in case of,

from left to right, 0 v%, 5 v%, 7.5 v%, 10 v% and 12.5 v% of steam

co-feeding for triple oxide (hollow stars) and cobalt ferrite

(solid stars). In case of 5 v% ([(CO2 þ H2O)/CH4] ratio ¼ 1.4), a

succession of stars shows the H2 yield evolution along cycles

(from the first one labelled as #1 through the last one #13)

carried out with triple oxide using 700 �C for reductions and

500 �C for oxidations. Opposite trend exhibits the results ob-

tained with cobalt ferrites which increase their yields along

cycles (see Fig. 7a).

In general, the yields obtained in this work are in the same

order of those reported for MDR when cobalt ferrite is the

oxygen carrier. Actually, the hydrogen yields are similar to

those reported by Ayodele et al. [31]. Higher yields were ob-

tained when triple oxide was used as oxygen carrier for all

proportions of steam co-feeding tested. However, as it can be

seen in Fig. 8, the evolution of these results along several cy-

cles leads to a similar performance thanwhen ferrite has been

used. On the other side, for processes involving MSR [26] or

CMR [27,30], results published in literature are clearly better.

However, it is important to highlight that hydrogen obtained

in this work by MDR þ SIP has high purity (� 50 ppm CO),
Please cite this article in press as: Lach�en J, et al., Production and pu
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unlike that obtained by MSR or CMR described in literature

that should be purified in a subsequent stage.
Conclusions

In present work it has been analyzed the effect of co-feeding

small proportions of steam jointly with a simulated desul-

phurized biogas (equimolar mixture of CH4 and CO2 ac-

counting for 25 v% of the total feed) supplied as reductant for

SIP. Regardless of the oxygen carrier employed, supplying 5 v%

of steam is enough to avoid deposition of coke along re-

ductions at 700 �C, without affecting significantly the behav-

iour in reduction of the oxygen carrier tested, as well as the

purity of the hydrogen obtained along subsequent oxidations

([CO]�50 ppm). The use of a higher percentage of steam in the

feed provokes a partial inhibition of the in-situ activation of

the nickel oxide employed as catalyst precursor (NiAl2O4 with

10 wt% NiO in excess above the stoichiometric), increasing

thus the time requited for reduction of the bed of solids. This

problem though, is negligible since it only occurs along the

first reduction. Elimination of coke deposition in reductions

has allowed the isothermal operation of SIP at 700 �C using

cobalt ferrite as oxygen carrier, and making possible elimi-

nating the need of heating and/or cooling steps between re-

ductions and oxidations. Finally, results obtained with

MDR þ SIP are comparable to those found in literature for

MDR, but not for SMR or CMR; needless to say, that hydrogen

obtained by MDR þ SIP is a high purity product and that a
rification of hydrogen by biogas combined reforming and steam-
/doi.org/10.1016/j.ijhydene.2018.04.151
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subsequent purification stage (e.g. membranes, PSA,…) would

be required for hydrogen produced by SMR or CMR.
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