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HIGHLIGHTS 

 Thermal decomposition by successive additions allows obtaining magnetite 
 particles of 11 - 23 nm. 
 Preparation of water souble Nps by recovering with PMAO, DMSA and 
 TESPMA ligands. 
 Fe3O4@PMAO nanoparticles display high values of SAR, increasing with the 
 size of the NP. 
 RGD peptides have been targeted to Fe3O4@PMAO NPs by “click” chemistry. 
 Fe3O4@PMAO@PEG/RGD NPs exhibit nontoxicity in “in vitro” assays. 

 

ABSTRACT: 

To improve the selectivity of magnetic nanoparticles for tumor treatment by hyperthermia, 

Fe3O4 nanoparticles have been functionalized with a peptide of the type arginine-glycine-

aspartate (RGD) following a “click” chemistry approach. The RGD peptide was linked onto 

the previously coated nanoparticles in order to target αvβ3 integrin receptors over-expressed in 

angiogenic cancer cells. Different coatings have been analyzed to enhance the 
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biocompatibility of magnetic nanoparticles. Monodispersed and homogeneous magnetite 

nanoparticles have been synthesized by the seed growth method and have been characterized 

using X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, transmission 

electron microscopy and magnetic measurements. The magnetic hyperthermia efficiency of 

the nanoparticles has also been investigated and cytotoxicity assays have been perfomed for 

functionalized nanoparticles. 

 

Keywords: Magnetite• RGD •EMR • Citotoxicity • Hyperthermia 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In recent years, the study of magnetic nanoparticles (MNPs) targeting specific 

biological tissues to elicit predetermined responses has become an important platform 

in the diagnosis and treatment of certain diseases [1]. Indeed, the combination of such 

selectivity with the application of an alternating magnetic field represents a novel 

therapeutic approach to treat cancer by means of magnetic hyperthermia [2]. The 
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energy dissipated in such process can be represented by the specific power adsorption 

rate (SAR) which, apart from the characteristics of the external alternating 

electromagnetic current (AC) applied, depends on a number of critical properties of 

MNPs, such as saturation magnetization, magnetic anisotropy, size, or colloidal 

stability [3-4]. From the experimental point of view, the way to find the best 

compromise of all these factors is constrained by the ability to produce custom 

designed MNPs displaying strong magnetic response, together with high tumor tissue-

affinity and lack of toxicity [5,6]. The reliable production of such properly tuned 

MNPs represents a major challenge nowadays. 

Among the magnetic materials, magnetite is usually employed because of its high 

saturation magnetization, high remanence and moderate anisotropy constant, good 

biocompatibility and low citotoxicity [7]. In order to synthesize magnetite nuclei under 

reproducible conditions, nonaqueous approaches are usually followed as nucleation 

and growth processes are well separated, providing control over the size, crystallinity 

and shape of nanoparticles [8]. These approaches provide magnetite nanoparticles 

surrounded by a shell of hydrophobic ligand molecules, which can be replaced with 

hydrophilic molecules or coated with amphiphilic polymers to render the nanoparticles 

water soluble. Dextran [9,10], chitosan [11,12], PEG [13,14] or aminoalkylsilanes 

[15,16] have been employed with this purpose, but poor stability is often attained. The 

polymeric amphiphilic ligand poly(maleic anhydride-alt-1-octadecene) (PMAO) 

presents a proper option as interacts with the hydrophobic surface of the nanoparticle 

by intercalating its 16-carbon-long alkyl chains, leaving the hydrophilic portion of the 

polymer exposed to the solution [17]. 

To enhance the selective binding of nanoparticles to bioreceptors, an additional 

functionalization of their surface is often required [18,19]. Targeting can be 

accomplished by coupling onto the NP a homing element, such as an antibody or 

peptide that specifically binds to the target tissue [20]. One of the most widely studied 

adhesive peptide in the biomaterials field is the tri-amino acid sequence arginine-

glycine-aspartate (RGD) [21]. This sequence can bind to multiple integrin species such 

as αβv3 and αβv5, which are usually overexpressed in tumor endothelia [22]. RGD can 

be further modified to incorporate anchoring groups, such as azides or amines, and also 

tagging groups like fluorophores [23]. This approach aims to combine two major 
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advantages for the hyperthermia treatment: high local nanoparticle concentration at the 

site of the disease process and low systemic exposure. 

Among the chemical strategies to bind peptides to the surface of nanoparticles, 

“click chemistry” [24,25] displays unique features such as full aqueous compatibility, 

high chemical orthogonality and wide substrate tolerance. More particularly, the 

copper-catalyzed [3+2]-dipolar cycloaddition of azides with terminal alkynes [26], in 

combination with conventional bioconjugation [27] strategies, provides a general 

access to multifunctional nanobiomaterials. Within this context, the copper-free 

version of the reaction conducted with strain-activated cyclooctynes, constitutes the 

strategy of choice for “in vivo” applications [28,29]. 

In this paper a seed growth method has been employed for a fine-tuning of particle 

sizes and good mono-dispersity [30,31]. A fine adjustment of the synthetic conditions 

allows for obtaining oleic acid and oleylamine capped magnetite nanoparticles with 

defined shapes and sizes [32]. These iron oxide nanoparticles dispersed in organic 

medium have been transferred into aqueous phase by ligand interchange using 

dimercaptosuccinic acid (DMSA) [33], N-(triethoxysilylpropyl)-maleamic acid 

(TESPMA) [34] and by adding poly(maleic anhydride-alt-1-octadecene) (PMAO) [35]. 

The free carboxylic groups in the coated polymer have been activated for “click” 

reactivity via amide coupling with the hydrophilic w-aminoalkylcyclooctine 10-(2-

cyclooctyn-1-oxy)-3-aza-5,8-dioxa-4-oxodecyl-1-amine. Finally, the resulting 

nanoparticles have been clicked to the azide-modified RGD derivative H-Arg-Gly-

Asp-NH(CH2CH2O)3CH2CH2N3 under copper-free conditions [36]. Since the ultimate 

application of these nanoparticles was the treatment of liver cancer tumors by magnetic 

hyperthermia, SAR measurements were accomplished in order to spot the nanoparticles 

with a better response, lower cytotoxicity and better biocompatibility. These results are 

presented together with an exhaustive study of the magnetic properties of the samples 

by means of magnetization measurements and Electron Magnetic Resonance (EMR). 

This last powerful microscopic tool can provide useful information on particle size 

evaluation, shape and surface effects or inter-particle interactions [37,38]. 

2. Materials and methods 

2.1. Materials 
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All reagents and solvents were obtained from commercial sources and were used without 

further purification unless stated otherwise. 1,2-Hexadecanediol (90%), dibenzyl ether (98%), 

toluene (99,5%), dimethyl sulfoxide (DMSO, 99.9%), poly-(maleic anhydride-alt-1-

octadecene) (PMAO, 30.000-50.000 g/mol), HOBt and trifluoroacetic acid, 

dimercaptosuccinic acid (DMSA, 98%), tetrahydrofuran (THF, 99%), acetic acid (AcOH, 

99%), (N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC, 99%), 

polyethyleneglycol methyl ether amine (PEG-NH2 -

disuccinimidyl carbonate (DSC) were purchased from Sigma-Aldrich. Iron (0) pentacarbonyl 

(99%) and oleylamine (80-90%) were from Acros, oleic acid (100%) from Fluka and ethanol 

(96%), sodium hydroxide (98%) and trichloromethane stabilized with ethanol PA (CHCl3, 

99,6%) from Panreac. Triethoxysilylpropylmaleamic acid (TESPMA, 98%) was from 

Fluorochem. Triton® was provided from Supelco. Dulbecco's modified Eagle's medium 

(DMEM) was purchased from Lonza. 3-[4,5-Dimethylthiazolyl-2]-2,5-diphenyltetra-zolium 

bromide (MTT), penicillin G, streptomycin and glutamine solutions were purchased from 

Invitrogen.  

Tetrahydrofuran (THF) and diethyl ether (Et2O) were dried through PS-MD-2columns. 

Moisture sensitive reactions were carried out with magnetic stirring under an atmosphere of 

nitrogen in oven -or flame- dried glassware. Purification of reaction products was carried out 

by flash chromatography using silica gel 60 (230-400 mesh). Analytical thin layer 

chromatography was performed on 0.25 mm silica gel 60-F plates. Visualization was 

accomplished with UV light and phosphomolybdic acid-ammonium cerium (IV) nitric-

sulfuric acid-water reagent, followed by heating.  

2.2. Synthesis of cycloalkyne linker (1) 

The 10-(2-cyclooctyn-1-oxy)-3-aza-5,8-dioxa-4-oxodecyl-1- amine linker 1 was prepared 

from 8,8-dibromobicyclo-[5.1.0]-octane [39]. Opening this bicyclic compound with 

diethyleneglycol in the presence of AgBF4 afforeded the intermediate 2-[2-(cyclooct-2-yn-1-

yloxy)ethoxy]ethanol, which was activated with DSC to 2-[2-(cyclooct-2-yn-1-

yloxy)ethoxy]ethyl succini-midyl carbonate following the method of Riguera [40]. Finally, 

the product was reacted with ethylenediamine to provide the linker 1. Experimental details are 

disclosed in the Supporting Information (S1). 
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2.2. Synthesis of RGD azide ligand (2):  

The H-Arg-Gly-Asp-NH-(CH2CH2O)3CH2CH2N3 RGD ligand 2 was prepared by the peptide 

coupling of Boc-Arg(Pbf)-GlyOH and H-Asp(OtBu)-NH-(CH2CH2O)3CH2CH2N3 fragments, 

followed by trifloroacetic-promoted removal of the protecting groups. The second fragment 

was, in its turn, synthesized from 1-amino-10-azido-3,6,9-trioxaundecane [41]. For 

experimental details, see Supporting Information (S2).  

2.3. Synthesis of nanoparticles (Fe3O4 NPs) 

The nanoparticles were synthesized by succesive additions of iron(0) pentacarbonyl in benzyl 

ether.  A mixture of Fe(CO)5 (3 mmol), 1,2-hexadecanediol (5 mmol), oleic acid (4 mmol), 

oleylamine (6 mmol) and benzyl ether (25 mL) were added to a three-necked flask. The 

reaction mixture was heated under mechanical stirring and a flow of argon gas until a 

temperature of 140 ºC was reached. This temperature was kept for 30 min and then the 

solution was heated to reflux (280 ºC) for 120 min. Successive additions to this solution of the 

iron pentacarbonyl precursor, oleic acid and oleylamine were performed in order to obtain 

different samples. In each step, the amount of iron precursor and ligands was calculated 

taking into account the desired size of the nanoparticles (Table S1). Subsequently, the 

solutions were cooled to room temperature. To remove the side products, ethanol was added 

to the reaction mixture and the resulting solution was centrifuged at 3500 rpm for 90 min. The 

formed nanoparticles were separated from the supernatant by centrifugation and the resultant 

solid was redispersed in a mixture of toluene and ethanol (5/10, v/v) to subsequently be 

separated by magnetic decantation. The cleaning process was repeated several times and the 

nanoparticles were finally suspended in toluene to obtain the solutions labeled as Fe3O4_A, 

Fe3O4_B, Fe3O4_C and Fe3O4_D. 

Fe3O4_B_DMSA and Fe3O4_B_TESPMA nanoparticles.  

The transfer of hydrophobic nanoparticles into aqueous media was performed replacing oleic 

acid ligands by hydrosoluble ones, such as dimercaptosuccinic acid (DMSA) and 

triethoxylsilylpropylmaleamic acid (TESPMA). In order to replace the superficial oleic acid 

with DMSA, a mixture of 20 mL toluene and a solution of 0,5 mmol DMSA in 5 mL DMSO 

was added to the particles, which were stirred mechanically (72 h). Solvent was then 

discarded, and precipitated particles were washed and centrifuged with ethanol. Finally, 
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nanoparticles were dispersed in alkaline H2O and dialyzed before redispersion at pH 7. In the 

case of TESPMA functionalized nanoparticles, a solution of TESPMA in 10 mL AcOH/H2O 

(0.1/10 v/v) and a solution of 8 mg Fe3O4 nanoparticles in 10 mL tetrahydrofuran was mixed 

during 24h. The resulting sample was washed and centrifuged three times with ethanol and 

redispersed in distilled H2O. The hydrosoluble nanoparticles so obtained were labeled as 

Fe3O4_B_DMSA and Fe3O4_B_TESPMA. 

Fe3O4_B_PMAO nanoparticles: The covering of nanoparticles with PMAO was performed 

using a modified protocol [42]. Accordingly, 28 mg of Fe3O4_B nanoparticles and the 

copolymer poly (maleic anhydride-alt-1-octadecene) were dissolved in chloroform (200 mL) 

at a mass ratio of 1:8. After vigorously stirring the solution for 1h, the solvent was slowly 

evaporated in a rotary evaporator, preventing the complete dryness of the sample. To get 

water-soluble nanoparticles, the hydrophilic anhydride groups present in the polymer were 

hydrolized by adding aqueous 0.1M NaOH (20 mL) and gently stirring the dispersion at 60 

ºC. To remove the polymer excess, the particles were washed with distilled water on an 

ultracentrifuge at 24000rpm. The hydrosoluble nanoparticles so obtained were labeled as 

Fe3O4_B_PMAO. 

Fe3O4_B_PMAO_PEG/RGD nanoparticles: The incorporation of RGD peptides to 

nanoparticles was conducted in two steps (Figure 1): first, the linker was anchored to the 

Fe3O4_B_PMAO carboxylic groups following a water-soluble carbodiimide protocol [43] and 

then the RGD ligand was clicked [44] to the intermediate Fe3O4_B_PMAO_cyOct 

nanoparticles. Thus, 10 L of EDC (0.1 mg/mL) were added to 8 mg of nanoparticles 

dispersed in aqueous sodium tetraborate buffer (50 mM, pH = 9) to activate the carboxylic 

groups surface. Then, 0,001 mg of 10-(2-cyclooctyn-1-oxy)-3-aza-5,8-dioxa-4-oxodecyl-1-

amine were added and the mixture was stirred at room temperature for 2 h. Surface charges 

were cancelled by adding 10 L of NH2PEG (0.1 mg/mL) to the suspension and the excess 

reagents were eliminated by centrifugal filtrations at 14000 r.p.m. The resulting 

Fe3O4_B_PMAO_PEGcyOct nanoparticles were treated with 0.1 mL of an aqueous 4.4 10–4 

M solution of H-Arg-Gly-Asp-NH-(CH2CH2O)3CH2CH2N3  at 35°C for 2 h, after the mixture 

was sonicated for 1min. The “clicked” MNPs were thoroughly washed with distilled water to 

completely free the nanoparticles from reagents excess. The anchored NPs were labeled as 

Fe3O4_B_PMAO_PEG/RGD. 
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Figure 1. Schematic illustration of the synthesis of Fe3O4_B_PMAO_PEG/RGD nanoparticles. 

2.4. Characterization 

X-Ray Diffraction (XRD) of powder samples was recorded using using a PANalytical X'Pert 

PRO diffractometer equipped with copper anode (operated at 40 kV and 40 mA), diffracted 

beam monochromator and PIXcel detector. Scans were collected in the 5-70º 2θ range, with 

step size of 0,026º 2θ and 60 s per step. Thermogravimetric measurements were performed in 

a NETZSCH STA 449 C thermogravimetric analyser, by heating ≈ 10 mg of sample at 

10°C/min under dry Ar atmosphere. The particle size and morphology was determined from 

TEM micrographs in a Philips CM200 microscope at an acceleration voltage of 200 KV. For 

preparing the samples, MNPs dispersed in toluene or water were dropped-cast onto copper 

grids.  

Dynamic Light Scattering (DLS) measurements were carried out at 25°C with a Nano ZS 

(Malvern Instruments) equipped with a solid-state He-Ne laser (

the hydrodynamic diameter of the hydrosoluble NPs. FTIR spectra of the nanoparticles and 

ligands were collected on a FTIR-8400S Shimadzu spectrometer in a 4000-400 cm-1 range 

and on a Bruker Alpha P. The measurements of magnetization versus temperature at 10 Oe 

were carried out in the temperature range of 5 and 300 K using a Quantum Design MPMS-7 

SQUID magnetometer. Hysteresis loops at room temperature were done in a homemade VSM 

magnetometer up to a maximum field of 18 kOe with high low field resolution. Hysteresis 

loops at 5 K were performed in a VSM magnetometer from Cryogenic Ltd up to a maximum 

field of 100 kOe. EMR spectra were recorded on a Bruker ELESYS spectrometer, equipped 
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with a standard Oxford low-temperature device operating at X band; all measurements were 

carried out in toluene dispersions. Hyperthermia measurements were performed by a water-

cooled induction coil machine designed in the Department of Electrical and Electronic of 

UPV/EHU, with varying field amplitude (0–30 kA/m) and at constant frequency of 532 and 

676 KHz. 

NMR spectra were recorded on a Bruker Avance-500 spectrometer at 500 MHz and 125 MHz 

frequencies for 1H and 13C nuclei, respectively. The chemical shifts are reported as δ values 

(ppm) relative to residual deuterated solvent as internal standards: for CDCl3 δH (7.26 ppm) 

and δC (77.16 ppm), respectively.  

Mass spectra were acquired on a time of flight (TOF) mass spectrometer (SYNAPT G2 

HDMS from Waters, Milford, MA, USA) equipped with an electrospray source in positive 

mode (ESI+). Melting points were measured with a Büchi SMP-20 melting point apparatus 

and are uncorrected. Optical rotations were measured on a Jasco P-200 polarimeter using a 

sodium lamp (589 nm, D line) at 25 ±0.2 °C. The IR, 1H NMR and 13C NMR 

characterizations of organic materials and intermediate compounds synthesized are described 

in the Electronic Supporting Information of this article (S3). 

2.5. Cytotoxicity assays 

The cell viability was evaluated by a MTT assay, which measures the levels of the 

metabolically active mitochondrial dehydrogenase enzymes [45]. 5000 cells were seeded 

using a standard 96-well plate (TPP). After 24 hours of incubation in a humidified atmosphere 

containing 5% CO2, the medium was replaced with new medium containing 6 different 

concentrations of Fe3O4_B_PMAO_PEG/RGD nanoparticles (0.01 – 0.5 mg mL–1), a 

negative (without MNPs) and positive (cells treated with Triton X100) control. After 24 

hours, the medium was replaced with fresh medium containing MTT dye solution to a final 

concentration of 0.5 mg mL–1 in DMEM. After 2 hours of incubation at 37 °C and 5% CO2, 

the medium was eliminated and water-insoluble formazan was dissolved in 200 µL of DMSO. 

The absorbance was read on a microplate reader (Thermo Scientific Multiskan GO UV/Vis 

Microplate) at 570 nm. The relative cell viability (%) related to negative control wells 

containing cell without nanoparticles was calculated by [A]test/[A]controlx100. 

3. Results and Discussion  
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3.1. Nanoparticles Preparation and Characterization  

Succesive additions of iron pentacarbonyl in benzyl ether yield Fe3O4 NPs of different sizes, 

A, B, C and D, recovered by oleic acid. These hydrophobic nanoparticles were transferred to 

water by replacing oleic acid ligands by hydrosoluble ones, such as dimercaptosuccinic acid 

(DMSA) and triethoxylsilylpropylmaleamic acid (TESPMA) and Fe3O4_B_DMSA and 

Fe3O4_B_TESPMA samples were obtained. In other cases, the covering of nanoparticles with 

PMAO was performed and Fe3O4_B_PMAO samples were synthesized. These last ones were 

functionalized with RGD peptides and Polyethylene glycol (PEG). The incorporation of RGD 

peptides to nanoparticles was conducted in two steps: first, an hydrophilic w-

aminoalkylcyclooctine linker and NH2PEG were anchored to the carboxylic groups in 

Fe3O4_B_PMAO and then the RGD ligand was clicked to the intermediate 

Fe3O4_B_PMAO_cyOct nanoparticles to form Fe3O4_B_PMAO_PEG/RGD. The samples 

were characterized by means of X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), 

Thermogravimetric analysis, Transmission Electron Microscopy (TEM) and Dynamic Light 

Scattering (DLS). 

The XRD profiles of the firstly synthesized Fe3O4 NPs (A, B, C and D) confirmed the 

presence of nanocrystalline structures with quite broad diffraction peaks which positions and 

relative intensities match well with the standard profile of the characteristic spinel structure 

(LCPDS Nº 19-629) (Figure S1). From the full width at half maximum (FWHM) of the (3 1 

1) diffraction peak average particle sizes were calculated by Scherrer’s formula (Table 1, 

Table S2). Deconvolution of experimental (3 1 1) maxima for the different samples appear in 

Figure S2. The crystallite sizes varied in the 14–21 nm range and were related to the 

successive additions of metal precursors performed for increasing the sizes. 

Particle size and crystallinity were also evaluated from TEM analysis. TEM micrographs 

exhibited monodisperse and faceted nanoparticles, except in the case of C sample (Figure 2). 

It could also be observed a tendency to a kind of self-assembling in A and B samples and a 

slight tendency to agglomeration in C and D samples, as morphology changed from cube-

octahedral in A-B samples to more prismatic crystals in C-D samples. Also, it is worth 

emphasizing the anomalous wide size-dispersion found in C sample. The size analysis of 

these images fits to Gaussian profiles, and they are in the 10-23 nm range with dispersion 
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indices, defined as the ratio of standard deviation to mean diameter, between 1 and 4. The 

calculated d-spacings from electron diffraction patterns match well with those corresponding 

to magnetite (Fe3O4) (S.G.: F d3m).  As shown in Table 1 mean sizes derived from TEM were 

in good accord with those calculated from XRD corroborating the conclusion that these 

nanoparticles are single crystals and discarding the appearance of twinning effects, as can be 

observed in Figure 2. 

 

Although nanoparticles appear always well dispersed in toluene, when they are transferred to 

water different degrees of agglomeration can be observed, depending on the employed ligand. 

Fe3O4_B_TESPMA and Fe3O4_B_DMSA seem to agglomerate because of the low organic 

matter content on nanoparticles surface (Figure 2 (H, I)). TEM images of Fe3O4_B_PMAO 

show that they are still monodisperse with a narrow size distribution (Figure 2 (G)). In order 

to better define the degree of agglomeration of the water-soluble particles, DLS 

measurements were performed. The mean hydrodynamic diameter for toluene-dispersed 

Fe3O4_B NPs was 57.4 nm, a larger value than the 20 nm of NPs surrounded by oleic acid, 

which likely experienced some kind of aggregation. When replacing oleic acid by DMSA the 

hydrodynamic diameter maintains around 51.9 nm. Nevertheless, silane derived ligand, 

TESPMA, does not allow a complete dispersion of nanoparticles as hydrodynamic sizes over 

700 nm are obtained, as can also be visualized by TEM measurements. In this case, additional 

interactions between TESPMA and other NPs and the lack of superficial charges could be the 

reasons for such kind of agglomeration. In the case of PMAO polymer coating, the 

hydrodynamic diameter for Fe3O4_B_PMAO and Fe3O4_B_PMAO_PEG/RGD are 78.0 and 

111.1 nm, respectively. These values reflect the effect of the coating polymer layer on the 18 

nm magnetic cores, together with a small degree of aggregation in the water-based colloid. 

The MNPs surface charges were assessed through measurements of the zeta potential of their 

aqueous suspensions. The values obtained are negative, being the most stable solutions 

Fe3O4_B_PMAO and Fe3O4_B_DMSA with –35.9 mV and -35.1 mV, respectively. 

Replacement by TESPMA or the incorporation of additional linkers decreased the stability to 

–20.3 mV and –15.5 mV, for Fe3O4_B_TESPMA and Fe3O4_B_PMAO_PEG/RGD, 

respectively. The lower values of the surface charge together with the increasing 
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hydrodynamic diameter for RGD covered NPs corroborate the addition of the peptide to the 

nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. TEM images and size distributions of samples (A) Fe3O4_A, (B) Fe3O4_B, (C) Fe3O4_C and (D) 

Fe3O4_D. Image of interplanar distances of sample Fe3O4_A (E) and indexed Electron Diffraction Pattern from 

selected area of sample Fe3O4_B (F). TEM images of (G) Fe3O4_B_PMAO, (H) Fe3O4_B_DMSA and (I) 

Fe3O4_B_TESPMA. 
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Infrared Spectroscopy measurements have been performed both on the ligands (oleic acid, 

DMSA, PMAO and TESPMA) and on functionalized magnetite nanoparticles in order to 

determine the prevailing capping agent and its absorption mechanisms on the particles surface 

(Figure S3). In the case of oleic acid recovered Fe3O4_B, the –CH2 symmetric and 

asymmetric stretching vibrations at 2852 and 2920cm–1
 reveal the presence of the oleyl group 

on the surface. This bonding pattern can be explained assuming a combination of molecules 

bonded symmetrically and forming an angle with the surface of nanoparticles [46]. 

Considering also that the absorption at 1053 cm–1 arises from C-O single bond stretching, it is 

clear that oleic acid is chemisorbed onto the Fe3O4 nanoparticles as a carboxylate. On the 

other hand, the band at 615 cm–1 is characteristic of Fe-O bonds in Fe3O4 [47].  In addition, the 

peaks at 1378 and 1601 cm–1 are assigned to the bidentate (–COO–Fe) mode of binding for 

oleic acid. Thus, these results are in good accord with the adsorption of carboxylate groups on 

nanoparticles surface. After coating with PMAO, stretching modes corresponding to C-O and 

C=O vibrations also appear at 1220 cm–1 and 1722 cm–1, respectively. The band at 1722 cm–1 

is attributed to the carboxyl groups in PMAO resulting from the opening of anhydride rings in 

PMAO. The silanization of the Fe3O4 nanoparticles surface with TESPMA was also identified 

by FTIR. The spectrum of Fe3O4_B_TESPMA shows absorption peaks at 2913 and 1415 cm–

1, which can be assigned to the stretching and bending modes in the alkyl chain. The peak at 

1080 cm–1 corresponds to the Si-O bond on the Fe3O4 nanoparticle surface [48].41 Finally, in 

the Fe3O4_B_DMSA spectrum, the low intensity band observed at 2504 cm–1 could be related 

to the S-H stretching vibrations [49]. 

The organic coating recovering magnetic nuclei has been calculated from TGA measurements 

performed in Ar atmosphere (Figure S4). The weight loss below 200°C is attributed to the 

evaporation of solvent remainders and adsorbed humidity. Between 200 °C and 700°C it may 

account for the mass loss of oleic acid and/or other organic ligands on the sample surface. 

Comparing the different nanoparticles covered by oleic acid, the ligand proportion greatly 

differs for the sample with the smallest size (Fe3O4_A), which presents a 31% of organic 

amount, mainly related with the greater superficial area. It can also be observed the increasing 

weight loss for PMAO covered sample comparing with TESPMA and DMSA covered ones, 

in good accord with a more effective recovering when employing the PMAO amphiphilic 

ligand. 

ACCEPTED M
ANUSCRIP

T



3.2. Magnetic Properties 

The characteristics detailed so far have a critical influence on the magnetic response of these 

nanoparticles, which were analyzed by DC Magnetometry and by EMR. The field dependence 

of Fe3O4_A, B, C and D were recorded at low (5 K) and room temperature (Figure 3) as 

diluted dispersions in order to minimize dipolar interactions. The absence of hysteresis at 

room temperature for Fe3O4 NPs points to a superparamagnetic-like behavior. However, the 

fine features of M(H) curves in Figure 3 reveal the existence of some significant deviations 

from the superparamagnetic state as the slope at low fields differs from SPM systems, leading 

to near-saturated curves at high fields. This deviation observed in large particles can be 

attributed to dipolar interaction effects, which are strongly sensitive to the total magnetic 

moment of the particles. Macroscopically such effects can be ascribed to a demagnetizing 

field which tends to tilt the curve M(H), so hindering the real susceptibility at low fields [50]. 

 

Figure 3. Experimental M vs H measurements at RT and 5K for Fe3O4_A, Fe3O4_B, Fe3O4_C, Fe3O4_D 

samples. 

The saturation magnetization values (Table 1) obtained from the hysteresis loops at 300K 

(Figure 3), vary from 69.1 to 87.2 emu/gFe3O4, which slightly deviate from the bulk 

saturation value of magnetite (92 emu/g) [51]. This deviation could be ascribed to different 

effects as purity and crystallinity of the samples, the impact of surface spin disorder, which 

increases at high temperatures or to deviations from stoichiometric magnetite due to different 

occupancies of Fe(II), Fe(III) cations in Td and Oh sites [52, 53].  At 5 K saturation 

magnetization are in good accord to the bulk value for magnetite.  Coercive Field (Hc) values 

observed at 5 K (Figure 3) follow basically the expected trend for single magnetic domains: 
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the decrease of Hc with decreasing size, basically due to the progressive reduction of the 

anisotropy constant with size. However, in the case of Fe3O4_D nanoparticles (23 nm) Hc is 

shifted to the small value of 343 Oe, fact that could be related with inter-particle interactions 

appearing in the sample with nanoparticles above 25 nm and with less quantity of organic 

matter. 

Measurements of magnetization versus temperature after Cooling at Zero Field (ZFC) and 

Field (FC) for colloidal samples dispersed in polystyrene are represented in Figure 4. Two 

different behaviours can be observed; Fe3O4_A and B NPs show the usual characteristics of a 

superparamagnetic behaviour, whose most distinctive feature is the increase of the blocking 

temperature (TB) with the particle size, from 75 K in sample A to 92 K in sample B (table 1), 

and a progressive decrease of magnetization above TB. It is to note in the case of Fe3O4_B the 

broadening of the maximum because of the strong dependence of TB on diameter and on the 

dispersion of sizes. In the case of the larger samples (Fe3O4_D and C), a sharp feature at 107 

K due to the Verwey transition is observed. Although this Verwey transition occurs at 120K 

in bulk magnetite, lower values (between 102 and 117K) are found in NPs, attributed to size 

effects [54,55]. 

 

 

 

 

 

 

 

Figure 4. ZFC/FC curves for colloidal samples with an applied field of 10 Oe. 

EMR measurements are not only crucial to complete microscopic magnetic characterization 

but has also been demonstrated its versatility for monitoring the degree of dispersion in the 

samples [56,57]. Spectra of the samples are represented in Figure 5 and they exhibit unique 

and well-resolved lines that become dependent on the degree of dilution due to the critical 

increase of interparticle dipolar interactions and/or the onset of strong aggregation effects. 
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These lines have been fitted to gaussian functions to determine the corresponding g-factors 

(Table 1). As can be observed, both the broadness of the line and the value of the resonant 

line, Hr, that is the geff, vary from one sample to another and are strongly correlated with 

nanoparticle size. Firstly, the geff shifts appreciably from 2 for all the samples, as only geff = 

2.0 is observed for very small and homogeneous particles. Secondly, the g-factor increases 

sharply with diameter. In order to corroborate the previously observed exponential relation 

between sizes and g values, these data have been represented together with those from 

samples previously synthesized in the range of sizes 4.3 - 14.9 nm (Figure 5) [58,59]. 

Although some of the samples deviate slightly from the exponential curve, that is the case of 

samples with a broad size dispersion as Fe3O4_C, the dependence can be roughly observed.  

So, this exponential like correlation has proved to be quite useful and accurate in order to 

estimate sizes. In some cases, the existence of other magnetic contributions has also been 

observed, a fact related with the existence of multimodal distribution of sizes. It can also be 

noted that as nanoparticles’ sizes increase, a greater distribution of sizes can be noticed and 

broader signals are observed. The appearance of this broadness is also related with the 

presence of dipolar interactions, which will be more intense for larger nanoparticles. In 

general, the bandwidth varies from 290 Gauss for Fe3O4_B, 420 Gauss (Fe3O4_A) and 730 

Gauss (Fe3O4_D) to 2100 Gauss for Fe3O4_C, proving the higher degree of the size 

dispersions. 

 

 

 

 

 

 

Figure 5. EMR measurements of Fe3O4_A, B, C and D (left) and g factor variation with nanoparticles sizes 

(right). 

SAR values were measured by a lab-made AC magnetometer [60].  This device consists of an 

electromagnetic applicator based on an air-core inductor that generates the excitation AC 
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magnetic field. The inductor is part of a resonant LCC circuit feed by a power amplifier. The 

dynamic magnetization, M (t), is recorded thanks to two pick-up coils wound oppositely 

(Figure S5). Afterwards, the SAR values were obtained from the AC hysteresis loops area 

from 1 equation [61]: 

 

             (1)  

where M (t) is the instantaneous magnetization (A∙m–1) at time t, Happ the field intensity (A∙m–

1) at time t, f (Hz) the applied magnetic field frequency and c (mg Fe∙mL–1) the iron weight 

concentration. Note that in this case, the absorbed power was normalized to the iron 

concentration. 

The SAR values were measured at different magnetic field frequencies (in the range of 149 - 

1030 kHz) and at different magnetic field intensities (up to 21 kA∙m–1). Figure 6 shows the so 

measured values for sample Fe3O4_A, Fe3O4_B, Fe3O4_C and Fe3O4_D. Clearly, sample 

Fe3O4_B presents the larger SAR values. However, the absorption rate of sample Fe3O4_C, 

the one with larger size nanoparticles, starts to rise rapidly above 10 kA∙m–1. Regarding to 

sample Fe3O4_A, it presents the lower heating capabilities, in good agreement with its lower 

size (11 nm).  

The so measured SAR values of sample Fe3O4_B dispersed in toluene and in water are alsso 

represented in Figure 6 at the same AC magnetic field frequency. Although similar values 

have been obtained, the water dispersed nanoparticles present higher SAR values at high 

fields intensities (above 5 kA∙m–1). This fact can be ascribed to the higher viscosity of water 

comparing with toluene. 
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Figure 6. SAR values of toluene dispersed nanoparticle samples measured by AC magnetometry at different 

magnetic field intensities (Happ) and frequencies. Comparasion of toluene dispersed Fe3O4_B sample and water 

dispersed sample Fe3O4_B_PMAO at different magnetic field intensities (field frequency was 676 kHz). 

3.3. Cytotoxicity assays 

Since the novel nanoparticles prepared would eventually be applied as MRI contrast or 

magnetic hyperthermia agents in vivo assays, it was important to evaluate their 

biocompatibility. The cytotoxicity of Fe3O4_B_PMAO_PEG/RGD surface modified 

nanoparticles was tested in African green monkey kidney epithelial Vero cells, after 24 h 

incubation at different concentrations between 0.1 and 0.5 mg mL-1 of Fe (Figure 7). The cell 

viability was evaluated by a MTT assay, which measures the levels of the metabolically 

active mitochondrial dehydrogenase enzymes [45]. 

 

 

Figure 7. Cytotoxicity experiment for Fe3O4_B_PMAO_PEG/RGD sample, at different nanoparticle 

concentrations in Vero cells. 
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This preliminary in vitro cytotoxicity assay shows that Fe3O4_B_PMAO_PEG/RGD 

magnetite nanoparticles do not show significant cytotoxicity, even at 0.5 mg.mL–1 

concentration, as no meaningful changes are observed in the cell metabolic activity when 

compared with control cells. It is also remarkable that distilled water does not cause any 

decline in cell viability. Thus, this preliminary study reveals nontoxicity and biocompatibility 

of the synthesized nanoparticles. 

4. Conclusions 

The synthesis method of thermal decomposition by successive additions allowed obtaining 

samples of very high crystallinity without impurities with particle sizes between 11 and 27 

nm. Water soluble nanoparticles have been obtained by ligand interexchange by means of 

DMSA and TESPMA and by adding the amphiphilic polymer PMAO. Moreover, a novel 

intelligent targeting system of magnetite NPs, Fe3O4_B_PMAO_PEG/RGD, was constructed 

by “click” anchoring of the RGD containing peptide on the surface of NPs via amide 

coupling. With the aid of the RGD moiety, these magnetic systems exhibited enhanced 

biocompatibility. The as-prepared nanoparticles showed biocompatibility and nontoxicity 

together with enhanced magnetic properties. In this sense, high values of SAR have been 

obtained for the nanoparticles, increasing with the mean size of the NPs and when 

nanoparticles are dispersed in water. So, these magnetite nanoparticles could be excellent 

candidates for biomedical applications such as hyperthermia treatments, being demonstrated 

that the Fe3O4_B_PMAO_PEG/RGD phase may present a great potential for cancer 

treatment. Actually, these nanoparticles are being applied in ‘in vivo’ experiments of 

magnetic hyperthermia in animals with induced colorectal tumours. 
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Table 1. Particle average diameter measured by TEM (DTEM) and XRD (DXRD), organic content, saturation 
magnetization at 300K (MS and blocking temperature (TB) determined by FC-ZFC curve, g effective value 
measured by EMR and SAR values of the NP samples. 

 

Sample 

 

D(nm) 

XRD 

D(nm) / 

TEM 

% 

organic 
matter 

MS(emu/g)* 

300 K 

TB(K) 

 

geff SAR 

(532kHz, 
15kA/m) 

Fe3O4_A 11 11±1 31.1 87.2 80.1 2.1 113 

Fe3O4_B 18 19±2 18.7 75.2 90.8 2.2 695 

Fe3O4_C 27 10-40 19.1 85.9 105.1 2.6 200 

Fe3O4_D 23 23±4 17.0 69.1 111.7 3.8 213 
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