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Abstract 9 

This paper addresses an experimental investigation concerning oxy-10 

combustion of coal and biomass in a lab-scale fluidized bed reactor. While 11 

co-firing has been widely studied under conventional air conditions, few 12 

experiences are available to date for O2/CO2 atmospheres. The research is 13 

focused on SO2 and NOx emissions, along with the deposition rates and 14 

ashes mineralogy. The influences of the atmosphere (air vs. 30/70% O2/CO2), 15 

the coal-to-biomass energy input ratio (80/20%, 90/10%), the chlorine mass 16 

fraction in the biomass (0.35%, 1%, 2%) and the Ca:S mole ratio (2.5, 4) are 17 

reported and discussed in the paper, for two specific fuels: high sulfur lignite 18 

and high chlorine corn stover. Concerning SO2 emissions a correlation 19 

among the sulfur and the chlorine contents is clearly detected, being 20 

affected by the direct desulfurization mechanism occurring under oxy-firing 21 

conditions. The single effect of the chlorine content is found to be almost 22 

1.5% of the desulfurization efficiency. NOx emissions are otherwise more 23 

dependent on oxygen excess and CO concentration in the reactor, rather 24 

than the fuel share or the chlorine supplied. Thick deposition is only 25 

detected when chlorine content in the corn is 2%. Potassium 26 
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aluminosilication is found to be enhanced in comparison to potassium 27 

sulfation under oxy-firing, especially for the highest Ca:S mole ratio: 28 

observed aluminosilication is five times higher when Ca:S ratio is increased 29 

from 2.5 to 4. A significant enrichment in iron is also detected for the fly ash 30 

composition, with an increase of 30-50% in comparison to air combustion.    31 

 32 
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     36 

1. Introduction 37 

During the last ten years, oxy-fuel combustion has been proven to be a 38 

driving technology towards zero emission power plants [1]. Successful 39 

experiences have been reported in pulverized-fuel facilities, as Schwarze 40 

Pumpe, Ciuden and Callide [2–6]. Application to fluidized bed boilers has 41 

also shown promising results in similar scales [7, 8], with the inherent 42 

advantages of wide fuel flexibility and low pollutant emissions. According to 43 

these developments, oxy-combustion units are ready to get a commercial 44 

scale [9].  45 

More recently, biomass has been proposed to be used as main or 46 

secondary fuel in oxy-fired units, aiming to develop bio-CCS (Carbon 47 

Capture and Storage with biofuels) [10, 11]. While conventional combustion 48 

of biomass has been extensively studied [12–14], few oxy-combustion 49 

experiences are available to date [15]. The permanent disposal of CO2 from 50 

the combustion of residual biomass contributes to remove CO2 from the 51 

atmosphere, leading to the so-called negative emissions. This enhances the 52 

attractiveness of the oxy-combustion technologies.     53 

In comparison to coal, firing biomass shows several challenges mainly 54 

related to its chemical composition, strongly affected by issues like 55 

harvesting, soil residues or use of fertilisers [16]. Main operational problems 56 
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are related to the presence of alkalis and chlorine, which promote deposition 57 

on heat transfer surfaces and can also yield long-term corrosion [17–20].   58 

Co-firing of coal and biomass can be considered as an intermediate way to 59 

mitigate these problems [21], also enabling the feeding of biomass into 60 

larger units [22]. Nevertheless, the synergies between the mineral matters 61 

of the fuels have to be well determined. The presence of the sulfur in the 62 

coal promotes the reactions between sulfur oxides and alkali chlorides, 63 

yielding chlorine-free deposits; the reactions (R.1) and (R.2) show this effect:     64 

 65 

݈ܥܯ	2 ൅ ܱܵଶ ൅ 1
2ൗ ܱଶ ൅ ଶܵܯ→ଶܱܪ ସܱ ൅ 2  R. 1 ݈ܥܪ

2 ݈ܥܯ ൅ ܱܵଷ ൅ ଶܵܯ→ଶܱܪ ସܱ ൅ 2  R. 2 ݈ܥܪ

Following this reduction mechanism, Kassman et al. [23, 24] reported the 66 

effect of injecting ammonium sulfate, resulting in a decrease of the chlorine 67 

detected in the deposits. SO2 oxidation rate (to SO3) was suggested by these 68 

authors as the limiting factor for the alkali sulfation, since reaction R.2 69 

eventually controls the process.  70 

On the other hand, alkalis can also be competitively retained in the coal 71 

ashes by silication or aluminosilication [21], releasing chlorine to the gas-72 

phase as HCl, according to the reactions (R.3) and (R.4): 73 

 74 

݈ܥܯ	2 ൅ ܱ݊ܵ݅ଶ ൅ ଶܱܯ→ଶܱܪ ൉ ݊ ܱܵ݅ଶ ൅ 2  R. 3 ݈ܥܪ

݈ܥܯ	2 ൅ ሺܱ݊ܵ݅ଶ ൅ ଶܱଷሻ݈ܣ ൅ ௡/ଶ݈݅ܵܣܯଶܱ→2ܪ ሺܱ௡ାଶሻ ൅ 2  R. 4 ݈ܥܪ

  

According to the results given by Sevonius et al. [25], the extent of 75 

reaction R.3 is very small at fluidized bed conditions and most of alkali 76 

retention is due to aluminosilication.    77 

Few results are available in literature concerning co-firing under O2/CO2 78 

atmospheres, most devoted to pulverized-fuel burners. Fryda et al. [26] 79 

pioneered the research on ash deposition under oxy-fuel conditions, finding 80 

out an increase of deposition ratios in comparison to air conditions, but 81 
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barely affecting the ashes composition. Riaza et al. [27] studied the co-firing 82 

of coal and olive residues in an entrained flow reactor, under a variety of 83 

O2/CO2 atmospheres. They reported an improvement of ignition 84 

temperature when biomass was added, and an opposite trend for NOx 85 

emissions: increasing for semi-anthracite but decreasing for bituminous 86 

coals. Similar results were reported by Ahn et al. [28]. According to the 87 

scheme given by reactions (R.1) and (R.2), Ekvall et al. [29, 30] and Jurado 88 

et al. [31] respectively found an increase of K2SO4 in deposits and a decrease 89 

of SO2 under oxy-firing of coal and biomass.               90 

As concerns the experiences in fluidized bed combustors, most have been 91 

focused on emissions. Tan et al. [32] oxy-fired coal and wood pellets, 92 

showing a NO decrease with the biomass-to-coal ratio, without a conclusive 93 

trend for the SO2. Duan et al. [33] found that NO emissions were strongly 94 

dependent on O2 excess and O2 primary/secondary split, as also happens for 95 

coal air- and oxy-firing.   96 

This paper aims at widening the knowledge about oxy-firing of coal and 97 

biomass in fluidized bed reactors, focusing the analysis on emissions but 98 

also on the behaviour of the solid-phase: deposition ratios and composition, 99 

and ashes characterization. This is done for blends of two risky fuels, high-100 

sulfur lignite and high-chlorine corn stover, leading to novel results not 101 

available up to now.  102 

 103 

2. Experimental setup 104 

2.1 Facility 105 

The tests were conducted in the fluidized bed reactor at CIRCE 106 

Laboratories (Figure 1). The reactor is 2.5 m height and its inner diameter 107 

is 0.203 m. Fuel is fed from two independent hoppers, discharging into two 108 

variable-speed endless screws. Bed temperature is regulated by water-109 

cooled probes, which can be inserted/extracted on-load. Further details of 110 

the facility can be found elsewhere [34–36]. 111 
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The installation is instrumented with temperature, pressure and flow 112 

meters, providing real-time information about the unit performance. Flue 113 

gas composition (CO2, CO, NO, SO2, O2) is also available, by sampling and 114 

analysing at the heat exchanger outlet.    115 

An air-cooled deposition probe can be introduced over the splash zone, in 116 

order to characterize the deposits. Probe temperature is controlled to 117 

maintain a value within 450-500ºC. A removable coupon is inserted in the 118 

tip of the probe, in order to proceed with a subsequent SEM/EDX analysis. 119 

Solid samples can be taken during the experiments from the bed bottom, the 120 

baffle chamber and the cyclone.  121 

 122 

Figure 1.- Oxy-fired fluidized bed facility. 123 

 124 

The presence of chlorine in the gas-phase can be determined by conveying 125 

samples through three Na2CO3 impingers. The sample withdrawal is carried 126 

out at 0.9 m over the distributor plate. After every experiment, the contents 127 

of the impingers are analysed by ion chromatography (IC) in order to 128 

determine the chloride concentration.  129 
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2.2 Fuels 130 

The fuels selected for the experimental campaign were lignite and corn 131 

stover. The former is high-sulfur, high-ash coal with large reserves in Spain. 132 

The latter is an agricultural residue, selected to seek the interactions among 133 

chlorine and sulfur compounds.  134 

 135 

  
Lignite Corn Stover 

Mass fractions (%) as received  

Water  13.57 6.18 

Ash 30.30 5.50 

Chlorine – 0.35 

LHV as received (MJ kg-1) 14.43 15.44 

Proximate analysis  

mass fractions (%) m.a.f.  

Volatiles 45.82 80.03 

Fixed carbon 54.18 19.97 

Ultimate analysis  

mass fractions (%) m.a.f. 

C 72.21 49.03 

H 5.67 6.59 

N 0.50 0.65 

S 11.85 0.12 

Ash oxide mass fractions (%)

determined by ICP  

  

Al2O3  26.01 1.36 

CaO  3.27 8.72 

Fe2O3  22.23 6.08 

K2O  0.92 27.90 

MgO  0.96 3.27 

Na2O 0.12 0.22 

SiO2  41.06 29.81 

TiO2  0.76 0.80 

P2O5 – 3.81 

MnO2 – 0.14 

Table 1.- Fuel analysis, heating value and ash composition. 136 

 137 
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The coal was supplied by a Spanish mining company. The coalfield is 138 

located close to Ariño (Teruel, Spain). The coal was sent to an Italian 139 

company in order to mill and sieve it to the required size. Round-trip 140 

transportation was done by truck. Once received back, chemical analysis 141 

was conducted to random samples of the coal, yielding proximate and 142 

ultimate analyses as well as heating values and ash composition (shown in 143 

Table 1). According to the classification given by the standard ASTM D388, 144 

the coal type is lignite. Its size was in the range 0.3–1 mm, with a mean 145 

diameter of 0.7 mm.    146 

The corn stover was supplied by a local farmer from Villamayor 147 

(Zaragoza, Spain). Geo-coordinates of the field are 41º 41' 17" N, 0º 45' 45" W. 148 

Soil type is silty clay. The specific variety of Zea mays is unknown. Sowing 149 

was done during the early spring and harvesting during the early fall (year 150 

2013). Corn stover bales were stored indoors by the farmer. We directly 151 

picked up and transported the bales from the field to the lab building. Since 152 

Zea mays cultivars cannot be completely specified, there is a reasonable 153 

concern that there may be factors that influence the results obtained, and 154 

for this reason the work cannot be independently reproduced. But the 155 

authors believe that the research exemplifies the effect of the inorganic 156 

constituents of both the coal and corn.  157 

Corn stover was milled and sieved between 1 mm and 2 mm. Roughly, 158 

half of the initial mass was retained for the experiments. Chemical analysis 159 

was conducted to random samples of the sieved stover (results shown in 160 

Table 1). Fuels were separately stored in closed containers inside the lab 161 

building, at room temperature. The same was done with the limestone and 162 

the silica sand used in the tests.   163 

The chlorine content in the corn stock (0.35%) was relatively low in 164 

comparison to the values reported in other works [37–39]. For this reason, 165 

original corn stover was doped with KCl, increasing the chlorine mass 166 

fraction to 1% and 2%. This consequently increased the content of mineral 167 

matter in the corn stover (to 6.80% and 8.80% respectively), while the rest of 168 

the proximate and ultimate fractions were reduced in proportion. To exclude 169 
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the effect of the moisture and the ash contents in the fuels, compositions in 170 

Table 1 are expressed in dry and ash-free basis.	 171 

In order to control SO2 emissions, Granicarb limestone was added during 172 

the tests in different Ca:S mole ratios. This limestone is commercialized by a 173 

gravel plant located at Belchite (Zaragoza, Spain). Granicarb limestone is 174 

characterized by its high purity and reactivity (CaCO3 > 97%). Limestone 175 

mean size was 0.6 mm. Silica sand (SiO2 > 99 %) was used as inert material 176 

in the bed, with mean particle size similar to limestone. Bed height was 177 

maintained around 400 mm for all the tests.     178 

        179 

2.3 Experimental matrix 180 

Six experiments were conducted, according to the conditions given in 181 

Table 2. The matrix was defined to make possible the discussion of every 182 

independent influence. Air and oxy-fired (30/70% volume fractions O2/CO2) 183 

tests were completed, for a similar thermal input (about 22 kW). The fuels 184 

were blended in 80/20% and 90/10% coal-to-stover (LHV) ratios, firing three 185 

different corn stover samples. Two different Ca:S mole ratios were also 186 

tested, 2.5 and 4.  187 

The facility is preheated by a propane burner up to Tbed ~ 500ºC, and then 188 

an air-combustion stage quickly raises the temperature to Tbed ~ 850ºC. 189 

Then, the firing is switched to O2/CO2 atmosphere. Once the operation is 190 

stable, deposition probe is inserted and chlorine-capture device is turned on. 191 

Operating data were gathered every two seconds during at least one hour 192 

and a half of steady-state conditions.        193 

 194 

2.4 Analytical techniques 195 

Hitachi S-3400N microscope equipped with a SDD-EDX detector Rontec 196 

XFlash was used to determine the composition and morphology of the 197 

particles taken from different sections of the facility (bed bottom, deposition 198 

probe, baffle chamber, cyclone). For that, a portion of each sample was 199 

disposed onto the holder carbon tape, micrographs were taken with the 200 

microscope and areas of interest were chosen for EDX analysis. For solid 201 
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mixtures as those found in the bed bottom, a number of particles were 202 

selected (five from each type: sand, sorbent and ash), and composition of a 203 

rectangular area of image was recorded. For finer powders as fly ash or 204 

deposits, areas of interest were selected from SEM images to perform the 205 

EDX analysis ensuring complete characterization.  206 

The composition of the crystalline species was given by X-ray diffraction 207 

(XRD) in a Siemens Bruker D8 Advance Series 2 diffractometer, set to select 208 

Cu Kα radiation. The diffraction angle scanned was 20–70° 2 θ using a step 209 

size of 0.05° 2 θ. Ion Chromatography (IC) was used to detect the presence of 210 

soluble chlorides in the traps.   211 

   212 

 213 

 A1 OXY1 OXY2 OXY3 OXY4 OXY5 

Fluidizing gas, volume 

fractions 

Air 30/70 30/70 30/70 30/70 30/70 

Coal-to-biomass energy 

input ratio 

80/20 80/20 80/20 90/10 80/20 80/20 

Ca:S mole ratio 2.5 2.5 2.5 2.5 4 4 

Chlorine mass fraction (%) 1 1 2 1 0.35 1 

Tbed (ºC) 876 856 859 852 851 862 

Tfb (ºC) 638 637 621 563 589 605 

uf (m s-1) 1.18 0.82 0.80 0.74 0.70 0.72 

O2 (%) 5.66 5.85 5.34 3.42 1.61 2.31 

CO (mg m-3) 1139 746 863 473 417 908 

NO (mg m-3) 240 343 348 514 504 289 

NO (mg MJ-1) 46 37 40 59 54 33 

SO2 (mg m-3) 2207 12155 11078 13493 9790 8671 

SO2 (mg MJ-1) 455 1413 1382 1684 1111 1073 

Desulfurization eff. (%) 87.7 61.7 62.9 59.5 70.2 71.4 

Cl– (mg m-3) 66.06 62.78 149.67 61.28 7.91 89.06 

Table 2.- Operating conditions during the tests. CO, NO and SO2 corrected to 214 

6%O2 and Normal conditions (273 K and 101.3 kPa) 215 

 216 

 217 
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3. Results and discussion 218 

3.1 Gas-phase  219 

Table 2 shows the mean values of the flue gas composition (O2, CO, NO, 220 

SO2), the operating temperatures and the fluidization velocities during 221 

every test, and as well as chlorine concentrations in the gas-phase and 222 

desulfurization efficiencies. Bed temperature was maintained within  223 

850–880ºC, while O2 concentration in flue gases mostly depended on the 224 

air/gas flowrate supplied to the reactor, which is proportional to the 225 

fluidization velocity. Under oxy-firing conditions, fluidization velocities were 226 

in the range 0.70–0.82 m s-1. Velocity was higher under air-firing conditions 227 

(1.18 m/s), since the lower O2 concentration (21% vs. 30%) requires an 228 

increase the air flowrate supplied for the same fuel load.  229 

3.1.1 SO2 and NO emissions  230 

Taking into account the fuel rate supplied and the SO2 concentration in 231 

flue gases, desulfurization efficiency was calculated after the tests. A value 232 

of 87.7% was obtained for the air-fired test, which is in good agreement with 233 

previous experience [35, 40]. It is clearly seen in the Table 2 that 234 

desulfurization efficiency drops during oxy-fired tests (16-28% efficiency 235 

points). This can be explained by the different sulfation processes taking 236 

place in the reactor. Under air-firing conditions, desulfurization takes place 237 

by means of an indirect capture mechanism. Firstly, limestone is calcined 238 

and then, the resulting CaO is sulfated (R.5 and R.6): 239 

ଷܱܥܽܥ ↔ ܱܽܥ ൅  ଶ R. 5ܱܥ

ܱܽܥ ൅ ܱܵଶ ൅ 1
2ൗ ܱଶ → ܵܽܥ ସܱ R. 6 

However, the conditions tested during oxy-fired tests (70% CO2, Tb ~ 240 

850ºC) imply a shift of the desulfurization mechanism. Limestone is not 241 

calcined, taking place the so-called direct desulfurization:   242 

ଷܱܥܽܥ ൅ ܱܵଶ ൅ 1
2ൗ ܱଶ → ܵܽܥ ସܱ ൅  ଶ R. 7ܱܥ
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The direct mechanism has been reported to result in lower 243 

desulfurization efficiencies by other researchers [41, 42], which is consistent 244 

with the numbers shown in Table 2. Therefore, operation of oxy-fired 245 

fluidized bed would require an increase of the Ca:S ratio in comparison to 246 

the experiences available for air-fired units. This is confirmed by the values 247 

in Table 2: if OXY1 is compared to OXY5, an efficiency increase of almost 248 

10% efficiency points is observed when increasing Ca:S ratio from 2.5 to 4 249 

(the rest of conditions remaining the same).      250 

SO2 emissions are also affected by the chlorine content supplied with the 251 

biomass. The higher the chlorine, the lower the SO2 emitted, as can be seen 252 

if test OXY1 (1%) is compared to OXY2 (2%), or OXY4 (0.35%) to OXY5 (1%). 253 

This can be a consequence of alkali sulfation (R.1 and R.2), as discussed 254 

hereinafter.        255 

As concerns actual NO emissions (mg m-3, in Normal conditions), the 256 

lowest value is detected during the air-fired tests, provided that the flue gas 257 

flowrate (m3 s-1) is higher [43, 44]. Furthermore, air operation results in the 258 

top value for CO emissions, which is known to contribute to NO depletion 259 

(by direct reduction or by catalysing the heterogeneous reaction char + NO) 260 

[45–47]:  261 

ܱܰ ൅ ܱܥ → ଶܱܥ ൅ 1
2ൗ ଶܰ 

R. 8 

௖௛௔௥ܥ 	൅ ܱܰ → ܱܥ ൅ 1
2ൗ ଶܰ 

R. 9 

  

The highest value of CO concentration observed for the air-fired test can 262 

be explained by the fluidization velocity, yielding a lower residence time of 263 

the particles in the dense zone. In general, a good correlation can be 264 

observed between CO concentration and fluidization velocity, except for the 265 

test OXY5. This is not due to either the chlorine content in the corn or the 266 

Ca:S mole ratio, but to some uncontrolled instabilities in the fuel supply 267 

during the last test.   268 

To avoid the effect of the different flue gas flowrates, emissions are 269 

usually compared in normalized units (mg MJ-1). The reason relies on the 270 
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different %O2 contents that can be supplied with the gas mixture O2/CO2 as 271 

explained before. On the contrary to air combustion (fixed 21% O2), oxy-272 

combustion can be conducted with enriched O2 concentrations. The rising of 273 

the O2 concentration means a decrease of the supplied O2/CO2 total flowrate 274 

—for the same stoichiometric ratio, i.e. oxygen excess— and consequently a 275 

decrease of the flue gases flowrate.  276 

If comparison is therefore done in normalized units (mg MJ-1), then oxy-277 

fired test OXY1 results in lower NO emissions than air-fired test A1 despite 278 

the higher %O2 supplied (the rest of conditions remaining the same). This 279 

trend is commonly found in open literature and it is explained by the high 280 

CO2 concentration in the dense phase, contributing to an increase of char 281 

gasification, release of CO and subsequent NO reduction [40, 48, 49]. 282 

Guedea et al. [50] estimated the effect of gasification as an increase of  283 

5-15% of the initial solid conversion in comparison to air conditions, for 284 

typical particle sizes in fluidized beds. Czackiert et al. [51] reported that CO 285 

represented 20% of the carbon conversion in the dense zone, for similar 286 

operating conditions (O2/CO2 atmosphere, temperature).                   287 

On the other hand, it is well known that free CaO catalyses NO 288 

formation [52], but this effect was very limited during our oxy-fired tests. 289 

According to the experimental values (%CO2 and bed temperatures), the 290 

tests were conducted under non-calcining conditions and then the presence 291 

of CaO can be considered negligible in comparison to CaCO3/CaSO4. This is 292 

not the case of the air-fired test, in which calcining conditions occurred, 293 

being another cause of the higher NO emission in (normalized) comparison 294 

to the test OXY1.       295 

No significant influence of corn chlorine content on NO emissions can be 296 

observed if test OXY1 is compared to test OXY2: doubling the chlorine 297 

supplied, the NO emissions remain almost the same (for similar CO values). 298 

The same can be said for the Ca:S ratio: test OXY5 shows a very small 299 

reduction of NO emissions in comparison to the test OXY1 (Ca:S = 4 vs. 300 

Ca:S = 2.5).   301 
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3.1.2 Chlorine concentration  302 

As explained before, gas samples were conveyed through three 303 

impingers in order to detect the chlorine concentration in the gas-phase. 304 

This is a useful indicator of the combined extent of sulfation and 305 

aluminosilication processes taking place in the reactor, since it is 306 

proportional to the HCl concentration in the gas-phase —also KCl aerosols 307 

and Cl2 can be present in the trapped samples—. Chlorine concentration in 308 

the gas-phase (see Table 2) can be qualitatively correlated to the analysis 309 

carried out to the solid samples (ashes and deposits).    310 

Chlorine was trapped in all tests, showing almost the same value if only 311 

the atmosphere is changed (air vs. O2/CO2). Under oxy-firing, the observed 312 

trend is the expected according to the chlorine content in the corn stover: 313 

test OXY2 shows the highest value, test OXY4 shows the lowest value. The 314 

reduction of the biomass in the fuel blend (10% OXY3 vs. 20% OXY1, both 315 

with 1% Cl) barely diminishes the chlorine detected in the gas-phase. A 316 

significant influence is nevertheless observed if OXY1 and OXY5 are 317 

compared, when only Ca:S ratio was modified. Cl– concentration raises 318 

almost 50%, related to an increase of aluminosilication ratios as discussed in 319 

the next section. 320 

3.2. Solid-phase 321 

3.2.1. Bottom bed 322 

Bottom bed solids collected after the tests are comprised by a mixture of 323 

particles rich in calcium (sorbent), particles rich in silica (sand) and 324 

particles rich in aluminosilicates (ashes). Surface composition of the three 325 

types of solid particles was studied by SEM-EDX, and elemental 326 

composition normalized to main elements is shown in Figure 2. 327 

 328 
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 329 

 Figure 2.- Normalized composition of bottom bed solids (% mass fraction) by EDX. 330 

An example of silica sand particles is shown in Figure 3.a, where it is 331 

possible to see that they are covered by fine ash from extraneous and 332 

inherent fuel mineral matter (Al, Fe), and fine matter from sorbent (S and 333 

Ca). Small presence of potassium can be detected in some of the tests.  334 

Coal ash particles are composed by Al-Si material and Ca and Fe fines, 335 

Figure 3.b. No chlorine was detected in the bottom bed ashes during the 336 

whole campaign. This was expectable, due to the high volatility of KCl. 337 

Some sulfur was self-retained by the ashes, linked to Ca and Fe.  338 

Particles rich in calcium and sulfur are considered partially sulfated 339 

sorbent, see Figure 3.c. Surface composition in Figure 2 is not an accurate 340 

indication of sulfation degree since only the external layer is analysed; 341 

nevertheless, the information obtained by means of EDX indicates that fine 342 

dust is covering the particles composed of aluminosilicate ash from 343 

extraneous fuel mineral matter, and iron from inherent lignite mineral 344 

matter as pyrite.  345 

 346 

Figure 3.- Bed particles from test A1: (a) silica sand, (b) coal ash, (c) partially 347 

sulfated sorbent.  348 

a) b) c)

500µm 500µm 500µm 
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The most important finding from EDX ash composition is the extent of 349 

potassium presence on ash surfaces. To further study the interactions 350 

between potassium and bed materials, some XRD analysis were performed 351 

to bed solids collected during tests A1 and OXY1. The diffractograms are 352 

shown in Figure 4.a. The most intense peak for both samples is quartz, 353 

while the presence of sulphated sorbent as CaSO4 is clear. On the other 354 

hand, CaO is present in A1 solids whereas uncalcined CaCO3 is present for 355 

test OXY1 (as expected, due to the different desulfurization mechanism). 356 

The diagrams do not identify any specie based on Fe, Al–Si nor species 357 

where K would be chemically bound to aluminosilicates or silica. In fact, 358 

calcination of lignite ashes in lab-scale furnace indicates that the original 359 

crystalline aluminosilicate mineral matter develops into an amorphous 360 

phase, since it is not detected in 850ºC ashes (Figure 4.b). In consequence, 361 

EDX composition of surfaces is considered more representative than XRD to 362 

the purpose of analysing interactions of different elements in coal and 363 

biomass mineral matters.  364 

Table 3 shows K/Si and K/Al mole ratios, in order to analyse the 365 

interactions among the mineral matter. The ratios K/Si and K/Al of test A1 366 

show a clear increase from those values in original coal ash, which points 367 

out the incorporation of potassium in amorphous aluminosilicates. Test 368 

OXY1 and OXY2 show a slight increase, whereas the increase is 369 

outstanding for the cases OXY4 and OXY5 (Ca:S = 4). These results indicate 370 

that for those test with high desulfurization efficiency, the reduction of SO2 371 

yields a decrease of alkali sulfation that may involve an increase of 372 

potassium aluminosilication in the dense zone, according to reaction R.4.  373 

 374 
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 375 

 376 

Figure 4.- XRD analysis of: (a) bed solids from tests A1 and OXY1, (b) mineral 377 

residue after lignite ashing at 450º and 850ºC.  378 

 379 

 380 

   381 
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Test # Particles K/Si K/Al 

– Original coal ash 0.027 0.038 

A1 Bed ashes 0.149 0.175 

OXY1 Bed ashes 0.031 0.056 

OXY2 Bed ashes 0.049 0.051 

OXY3 Bed ashes 0.093 0.087 

OXY4 Bed ashes 0.131 0.136 

OXY5 Bed ashes 0.293 0.272 

Table 3.- Mole ratios in ashes collected from the bed bottom. 382 

On the other hand, the decrease of biomass in the fuel share in test 383 

OXY3 also resulted in an enhancement of potassium aluminosilication, 384 

despite the larger SO2 concentration from the coal. This could seem a 385 

contradiction, but there is another variable also playing a role: O2 386 

concentration. Several researchers [24, 53] have discussed that alkali 387 

sulfation is limited by an intermediate reaction, the oxidation of SO2 to SO3. 388 

This is a slow reaction at typical fluidized bed temperatures and highly 389 

dependent on O2 concentration [54]. Therefore, if O2 concentration 390 

diminishes, retention of potassium by aluminosilicates is enhanced in 391 

comparison to retention by sulfate.  392 

No agglomeration issues were found during the entire experimental 393 

campaign. Formation of agglomerates has been described in literature [55, 394 

56] due to interactions with silica sand, but mostly when full-load is given 395 

by firing biomass (or residues). Combination of SiO2 from bed material and 396 

low melting point of biomass ash can promote agglomeration of the solids. 397 

But this effect has not been observed in our experiments, due to the low feed 398 

ratio of biomass (20% on energy basis) and the high ash content of the 399 

lignite (over 30%). The solids inventory in the bed is then involving a 400 

different chemistry. First, there is less apportioning of biomass ashes to the 401 

bed and, secondly, reactivity is modified by the significant presence of 402 

aluminosilicates from the coal ashes. 403 
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3.2.2 Fly ash  404 

EDX composition of a representative sample of fine solids gathered from 405 

the cyclone is shown in Table 4 for tests A1, OXY1, OXY2 and OXY5 (on-406 

load extraction was not possible during tests OXY3 and OXY4 due to 407 

operational constrain). They are a mixture of Al-Si fly ashes, CaSO4 sorbent 408 

particles elutriated form the reactor, and an important presence of iron.   409 

    410 

Test# Mg Al Si S K Ca Fe 

A1 1.50 17.08 21.58 5.50 4.53 21.77 27.43 

OXY1 1.90 14.84 20.18 6.04 3.22 18.07 35.76 

OXY2 1.65 14.17 18.82 5.24 3.99 15.64 40.49 

OXY5 0.46 23.15 25.07 1.28 2.57 8.26 39.21 

Table 4.- Elemental mass fractions (%) by EDX.    411 

 412 

SEM images of fly ashes from OXY1 and OXY5 tests are shown in 413 

Figure 5.a. and 5.b. It is possible to see the mixture of different types of 414 

solids, where the presence of 20 to 30 m spheres is clearly seen. EDX 415 

composition of the spheres determined their composition as iron oxide; their 416 

spherical shape indicates that the iron particles from inherent pyrite 417 

originally had a molten state, which corresponds to FeO–FeS eutectic 418 

identified in oxy-combustion of coal [57]. Similar iron morphology is found in 419 

OXY1 bottom bed ashes, as shown in Figure 5.c.  420 

 421 

 422 

Figure 5.- SEM images of: (a) test OXY1 fly ash, (b) test OXY5 fly ash,                              423 

(c) test OXY1 bottom bed ash. 424 

 425 

a) b) c)
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Table 5 shows the calculation of K/Si and K/Al indexes according to the 426 

ash composition. For test A1 fly ash, the indexes show similar values than 427 

those found in bed particles. For the fly ash in oxy-combustion experiments, 428 

the trend is opposite to the bottom bed solids, since lower aluminosilication 429 

ratios are detected for the test OXY5 in comparison to OXY1. This is 430 

meaningful, since the potassium retained in the bed zone is not available 431 

beyond the splash zone. The amount of potassium found in fly ash in tests 432 

OXY1 and OXY2 can be related to the presence of condensed K2SO4 onto the 433 

elutriated particles.  434 

 435 

Test # Particles K/Si K/Al 

– Original coal ash 0.027 0.038 

A1 Fly ash 0.151 0.183 

OXY1 Fly ash 0.114 0.149 

OXY2 Fly ash 0.152 0.194 

OXY5 Fly ash 0.074 0.076 

 436 

Table 5.- Element ratios in fly ashes collected from the cyclone. 437 

 438 

3.3. Deposits 439 

Some fuel-related indexes, based on empirical experiences, are widely 440 

used to predict the risk of deposition of alkali chlorides onto the heat 441 

transfer surfaces in combustion systems. The first index relates the sulfur 442 

and chlorine contents, S/Cl. Values over 4 are considered adequate, since 443 

alkalis can be sulfated and then chlorine is released to the gas-phase as HCl 444 

[21]. In the case of a fluidized bed reactor, this index has to be calculated 445 

taking into account that sorbent is usually added, and then sulfur 446 

availability is reduced. In our case, a modified S*/Cl index has been 447 

calculated, taking into account the desulfurization efficiencies reported in 448 

Table 2. The second index relates the silicon and aluminium contents to the 449 
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sodium and potassium contents, (Si + Al) / (Na + K). Values over 10 are 450 

considered promoting potassium aluminosilication, thus avoiding the alkali 451 

chloride deposition [58, 59]. Table 6 summarizes the values of these indexes 452 

for the combination of fuels and compositions used during the tests, as well 453 

as the deposition rate observed in the probe inserted in the reactor. 454 

According to the numbers in Table 6, no chlorine should be expected in the 455 

deposits, even for the test OXY2 with the highest chlorine content.  456 

 457 

        458 

Test# S/Cl S*/Cl (Al + Si) /(Na + K) Deposit on probe 

A1 31.57 10.78 19.39 No deposits 

OXY1 31.57 12.10 19.39 Thin fouling 

OXY2 15.78 5.85 14.64 Fouling 

OXY3 74.71 30.25 30.07 Thin fouling 

OXY4 90.21 26.92 24.79 Thin fouling 

OXY5 31.57 9.01 19.39 Thin fouling 

Table 6.- Fuel-related indexes and deposition rates observed.    459 

 460 

No deposit was found on the coupon in test A1. Deposits on the probe 461 

after the tests OXY1, OXY2 and OXY4 were analysed by SEM-EDX as 462 

representative of the three different initial corn compositions (Table 7). The 463 

surface analysis confirmed the absence of chlorine. Provided that Fe from 464 

coupon surface could overlap Fe content in deposits, elemental composition 465 

values were normalized to Al, Si, S, K and Ca.  466 

 467 

Test# Al Si S K Ca 

OXY1 9.05 12.59 35.10 33.11 10.15 

OXY2 4.39 3.96 33.03 50.51 8.11 

OXY4 21.37 28.39 14.37 19.35 16.51 

Table 7.- EDX normalized composition (% mass fraction) of deposits from                                     468 

tests OXY1, OXY2 and OXY4. 469 
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Deposits in test OXY1 are comprised by a mixture of K2SO4 and CaSO4 470 

along with some aluminosilicate fines. Morphology of deposit is shown in 471 

Figure 6.a, where it is also possible to identify small spheres of iron. For test 472 

OXY2 (2% chlorine in the corn, the most fouled case), the presence of K2SO4 473 

is clearly detected. Crystals of potassium sulfate can be easily seen in 474 

Figure 6.b. No molten deposits were detected. For test OXY4 (0.35% chlorine 475 

in the corn), potassium sulfate is less relevant and aluminosilicates are the 476 

major constituent. These results are fully consistent with the chlorine 477 

contents in the fuel and the Ca:S ratios supplied during the experiments.        478 

 479 

 480 

Figure 6.- SEM images of deposits: a) test OXY1, b) test OXY2. 481 

 482 

4. Conclusions 483 

SO2 capture efficiency is affected not only by the O2/CO2 atmosphere, 484 

but also by the chlorine content supplied with the biomass. As concerns NO 485 

emissions, no relevant biomass-related influences are detected for the 486 

conditions tested.  487 

Significant potassium contents in the bottom bed ashes have been found 488 

linked to amorphous aluminosilicates, especially for the oxy-fired tests with 489 

higher desulfurization efficiencies. As concerns fly ash composition, the 490 

presence of potassium is related to condensation of alkali sulfates on the 491 

solid surfaces. Oxy-firing largely increases the iron found in ash.  492 

a) b)
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In relation to the deposits on the probe, no chlorine was detected even 493 

for the test with the largest deposition rates. The presence of K2SO4 in 494 

deposits has shown a consistent relation to the KCl content supplied with 495 

the fuel.    496 

The observed results can be representative for large-scale fluidized bed 497 

boilers. Despite the differences in fluid dynamics, most of the phenomena 498 

addressed in our lab-scale research are related to the chemical conversions 499 

in the dense zone, and then comparative trends are meaningful.     500 

 501 
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