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Abstract 

 

Naturally occurring antimicrobial peptides (AMPs) hold promise as future therapeutics against 

multidrug resistant microorganisms. Recently, we have discovered that a derivative of the frog skin 

AMP esculentin-1a, Esc(1-21), is highly potent against both free living and biofilm forms of the 

bacterial pathogen Pseudomonas aeruginosa. However, bringing AMPs into clinics requires to 

overcome their low stability, high toxicity and inefficient delivery to the target site at high 

concentrations. Importantly, peptide conjugation to gold nanoparticles (AuNPs), which are among 

the most applied inorganic nanocarriers in biomedical sciences, represents a valuable strategy to 

solve these problems. Here we report that covalent conjugation of Esc(1-21) to soluble AuNPs 

[AuNPs@Esc(1-21)] via a poly(ethylene glycol) linker increased by ~15-fold the activity of the free 

peptide against the motile and sessile forms of P. aeruginosa without being toxic to human 

keratinocytes. Furthermore, AuNPs@Esc(1-21) resulted to be significantly more resistant to 

proteolytic digestion and to disintegrate the bacterial membrane at very low concentration (5 nM). 

Finally, we demonstrated for the first time the capability of peptide-coated AuNPs to display a 

wound healing activity on a keratinocytes monolayer. Overall, these findings suggest that our 

engineered AuNPs can serve as attractive novel biological-derived material for topical treatment of 

epithelial infections and healing of the injured tissue. 

 

 

Keywords: antimicrobial peptide; gold nanoparticles; Pseudomonas aeruginosa; membrane 

perturbation, anti-biofilm activity, electron microscopy; wound healing; biostability. 
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1. Introduction  

Microbial resistance to the existing antibiotics has developed on a very large scale over time [1]. It 

has now turned into a serious life-threat and a significant burden to healthcare systems due to 

prolonged hospitalization, therapies and care costs [2]. This global problem compelled the World 

Health Organization to express its concerns regarding the beginning of a new pre-antibiotic era in 

the 21st century [2]. Hence, the discovery of new anti-infective agents with a different mode of 

action is in great demand [3], and naturally-occurring antimicrobial peptides (AMPs) would be up-

and-coming substitutes for the generation of a new class of antibiotics [4]. AMPs occur in all 

kingdoms of life where they are produced as part of the innate defense mechanism against 

microorganisms [5, 6]. Despite differences in their sequence and secondary structure, they are 

characterized by a small size (10-50 amino acids) and can be classified into cationic (the majority of 

them) or anionic AMPs (such as maximin H5 or dermcidin [7-11]), on the basis of their net charge 

at neutral pH [12]. Traditionally, these peptides have been described as "antimicrobial" because of 

the ability to kill microorganisms by disrupting their membrane [12]. Lately, however, some of 

them have been found to target different sites in bacteria (i.e. ribosomes) [13, 14] and/or to display 

immunomodulatory features (e.g. anti-endotoxin, chemotaxis, pro-inflammatory, wound healing 

properties), and have been referred to more properly as "host-defense peptides" [15-17]. In 

particular, AMPs with an alpha helical structure exert a bactericidal activity by mainly perturbing 

the anionic microbial membrane, with leakage of cytosolic components [18-20]. This is in contrast 

with the specific mechanism of action of conventional antibiotics. They generally interfere with 

some crucial intracellular functions (e.g. inhibition of DNA, RNA, protein synthesis or enzymatic 

activity) [7], upon interaction with a single target. These targets are mainly proteins, that are highly 

susceptible to mutations [21, 22]. This would prevent the antibiotics from recognizing their altered 

target, thus making it easier for them to select for resistant microorganisms [23]. Differently, to 

acquire resistance to AMPs, microbes should modify the lipid composition of their membrane, but 
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this could not happen without provoking a lethal damage to themselves [24]. It is noteworthy that 

several AMPs have already entered clinical trials mostly for the development of antimicrobials for 

topical treatment of severe infection diseases, including those induced by multi-drug resistant 

Gram-negative bacteria like Pseudomonas aeruginosa [3, 25]. P. aeruginosa is an opportunistic 

pathogen causing a wide range of systemic or local infections, such as otitis, keratitis, pneumonia 

and skin (burn wounds) infections, primarily in immunocompromised patients [26]. This bacterium 

has a high degree of adaptability to hostile environments, a high intrinsic resistance to conventional 

antibiotics and propensity to adhere to both abiotic or biological surfaces forming biofilms that 

available drugs cannot debate [27-30]. Importantly, new efficacious antimicrobial agents (i.e. 

AMPs) should be able not only to eradicate both forms of growth of this microorganism but also to 

restore the integrity of the damaged infected tissue, e.g. by displaying wound healing properties [31, 

32]. However, among major drawbacks in developing AMPs as future therapeutics; (i) the poor 

pharmacokinetic profile due to degradation by serum proteases and rapid clearance by renal 

filtration; (ii) the toxicity towards mammalian cells [33]; (iii) the scarce tissue diffusibility and (iv) 

the inefficient delivery to the target site, take hold. In this scenario, the usage of peptide-coated 

nanoparticles (NPs) represents a valuable solution to circumvent these limitations [34, 35]. 

Functionalized NPs, in general, have attracted the attention of the scientific community for the 

manufacturing, imaging, diagnosis and delivery of antibacterial drugs [36-41]. Indeed, packaging 

antibiotic compounds within the same NPs would enable not only to protect the drug from the 

external environment but also to concentrate it at the desired infection site reaching doses much 

higher than those achievable upon administration of free drug molecules [42, 43]. Gold NPs 

(AuNPs) are among the most applied inorganic nanocarriers in the field of biomedical sciences [44-

46]. Among their advantages, AuNPs can be easily synthesized with a wide range of sizes and 

shapes, functionalized with a great variety of molecules and are considered biocompatible. Also, 

AuNPs exhibit an absorption band that occurs when the incident photon frequency is in resonance 

with the collective oscillation of the conductive band electrons, called localized surface plasmon 
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resonance band [47]. This band can be tuned throughout visible to near infrared wavelengths, and 

can be used to calculate the size and concentration of the AuNPs in solution. To date, AuNPs are 

being tested from immunoassay application to in vivo cancer targeting, specific delivery of siRNA 

without undesirable immune response, and/or imaging [48-50]. 

However to date, comprehensive studies of AuNPs on bacteria have rarely been carried out and 

very little is known about the biological effect(s) of AuNPs conjugated to AMPs. Amongst AMPs 

of natural origin, we have recently identified a derivative of the frog skin AMP esculentin-1a, 

Esculentin-1a(1-21)NH2 [Esc(1-21)], GIFSKLAGKKIKNLLISGLKG-NH2, corresponding to the 

first 20 residues of esculentin-1a plus a glycinamide at its C-terminus [51], with a strong activity 

against both free-living and sessile forms of either reference or clinical isolates of P. aeruginosa 

[52, 53]. In addition, it was found to have the capacity to promote re-epithelialization of an injured 

area produced in a monolayer of keratinocytes (i.e. the most abundant cells in the epidermis) [54], 

at a faster rate than the mammalian AMP LL-37 [31]. Here, for the first time, we produced Esc(1-

21)-coated AuNPs and investigated their antipseudomonal and cytotoxic properties along with the 

underlying mode of action, as well as their ability to stimulate migration of human keratinocytes in 

an in vitro pseudo-“wound” healing assay.   

 

2. Materials and Methods  

2.1. Materials  

Dulbecco’s modified Eagle’s medium (DMEM), heat-inactivated fetal bovine serum (FBS), 

glutamine and gentamycin were from Euroclone (Milan, Italy); Sytox Green was obtained from 

Molecular Probes (Leiden, The Netherlands); 3(4,5-dimethylthiazol-2yl)2,5-diphenyltetrazolium 

bromide (MTT) and trypsin from bovine pancreas were from Sigma-Aldrich (St. Luis, MO). All 

other chemicals were reagent grade. 
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2.2. Peptides synthesis  

Synthetic Esc(1-21) was purchased from Selleck Chemicals (Houston, TX, USA). Briefly, the 

peptide was assembled by step-wise solid-phase synthesis by a standard F-moc strategy and purified 

by reverse-phase high-performance liquid chromatography (RP-HPLC) on a semipreparative C18-

bonded silica column (Kromasyl, 5 µm, 100 Å, 25 cm × 4.6 mm) using a gradient of acetonitrile in 

0.1% aqueous trifluoroacetic acid at a flow rate of 1.0 mL/min, according to what reported 

previously [52]. Analytical RP-HPLC indicated a purity >98%. The molecular mass was verified by 

using MALDI-TOF Voyager DE (Applied Biosystems) [51]. 

 

2.3. Synthesis of AuNPs and their characterization 

AuNPs with an average diameter of ∼14 nm were synthesized by the citrate reduction method as 

previously described [55, 56]. Briefly, hydrogen tetrachloroaureate (III) (0.08 g; 0.235 mmol) was 

dissolved in 200 mL of Milli-Q water and magnetically stirred under reflux. Sodium citrate 

dihydrate (0.240 g; 0.81 mmol) was added, and the solution was kept under ebullition and protected 

from light for 30 min. The synthesized AuNPs were characterized by Ultraviolet-visible 

spectroscopy (UV-Vis) (Cary 100, Agilent) due to their surface plasmon resonance (λmax, 519 nm) 

and by transmission electron microscopy (TEM, FEI Tecnai T20). To determine the particle 

concentration, a molar extinction coefficient (λ = 450) of 1.76 x 108 was used [57]. To further 

stabilize the AuNPs, a bifunctional poly(ethylene glycol) (PEG) was used [50]. Briefly, 0.5 nmol of 

citrate AuNPs, 2.6 µmol SH-EG(8)-(CH2)2-COOH and 0.028% sodium dodecyl sulfate were mixed 

in a final volume of 50 mL of water. Sodium hydroxide was further added to a final concentration 

of 25 mM. The mixture was incubated for 16 h at room temperature, and the excess of PEG chains 

removed by centrifugation at 14,000 x g for 30 min at 4 °C, thrice. Twenty pmol of AuNPs 

conjugated to PEG (AuNPs@PEG) were incubated with different amounts and ratios of 1-Ethyl-3-

(3-dimethylaminopropyl)-carbodiimide) (EDC) and N-hydroxysulfosuccinimide (Sulfo-NHS) in 1 

mL of 10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 6.1. Following 30 min of 
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incubation, the excess of reagents was removed by centrifugation at 16,000 x g and the 

AuNPs@PEG resuspended in 1 mL of MES. The aggregation of the AuNPs@PEG was assessed by 

UV-Vis and the best condition to maintain AuNPs@PEG stability and to avoid their aggregation 

was selected for further experiments (2.5 µmols of EDC and 4.6 µmols of Sulfo-NHS) (Refer to 

Fig. S1 and Table S1). Once the AuNPs@PEG were activated using EDC and sulfo-NHS, a 

different amount of the cationic Esc(1-21) peptide (from 1.5 µg to 4 µg)  was added to the mixture 

and incubated in 10 mM MES pH 6.5 at room temperature for 2 h. After coupling, AuNPs@Esc(1-

21) were centrifuged at 16,000 x g for 30 min at 4 °C to wash the excess of peptide. The 

AuNPs@Esc(1-21) were resuspended in 1 mL of water. The stability of AuNPs@Esc(1-21) was 

assessed again by UV-Vis and the amount of 2 µg of peptide was chosen for all the experiments. 

The supernatant was recovered and analyzed for the amount of Esc(1-21) by the colorimetric 

microBCA protein assay reagent kit (Pierce, Rockford IL), according to the manufacture 

instructions, using a standard curve of Esc(1-21). The range of linearity of the assay was from 0 

µg/mL to 10 µg/mL peptide concentration. The collected supernatant was centrifuged at 14,000 x g 

for 30 min in order to remove any AuNP that could interfere in the assay. A reference solution was 

prepared with the initial peptide concentration at the same reaction conditions.  

The amount of peptide in the supernatant (not attached to the AuNPs@PEG) was measured. 

Therefore, by knowing the added peptide (reference solution) it was possible to correlate by 

difference the amount of peptide bound to the AuNPs@PEG. All measurements were carried out in 

triplicate. Knowing the amount of AuNPs@PEG that were used for each immobilization (20 pmols) 

and the amount of peptide that was conjugated (0.7 µg of peptide), it was possible to calculate the 

number of peptides per AuNP@PEG using the Avogadro constant. To evaluate the charge of the 

functionalized AuNPs@Esc(1-21) compared to AuNPs@PEG, ζ-potential was performed on a 

Malvern Zetasizer instrument at 25 °C. 
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2.4. Microorganisms and cell line  

The microorganism used in our experiments as a reference strain of P. aeruginosa was the standard 

non mucoid ATCC 27853 [58]. The well-established human immortalized keratinocytes cell line 

(HaCaT [59]) were used throughout the study.  

 

2.5.  Antimicrobial activity 

Bacteria were grown in Luria-Bertani (LB) broth at 37 °C till a mid-log phase which was 

aseptically monitored by absorbance at 590 nm (A590nm= 0.8) with an UV-1700 Pharma Spec 

spectrophotometer (Shimadzu, Tokyo, Japan). Afterwards, bacterial cells were centrifuged at 1,400 

x g for 10 min, washed and resuspended in 5 mL of 100 mM sodium phosphate buffer, pH 7.4 

(NaPB). About 4 x 107 bacterial cells in a total volume of 100 µL were incubated at 37 °C with 

serial two-fold dilution of Esc(1-21), AuNPs@Esc(1-21) or AuNPs@PEG [final cell density of 4 x 

108 colony forming units (CFU)/mL]. Aliquots of 5 µL were withdrawn after 20 min and diluted 

1:10,000 into LB. Afterwards, 20 µL of the diluted bacterial suspension were spread onto LB-agar 

plates for counting after overnight incubation at 37 °C. Controls were given by buffer-treated 

bacterial cells. Minimal bactericidal concentration (MBC50) was defined as the minimal drug 

concentration sufficient to cause at least 50% reduction in the number of viable bacteria within 20 

min. The experiments were performed three times in triplicates. In another set of experiments, a 

concentration corresponding to 2 x MBC50 of free peptide (2 µM) or AuNPs@Esc(1-21) (10 nM) in 

NaPB was pre-incubated with trypsin (0.02 µg/mL) for 100 min at 37 °C under mild agitation in a 

volume of 50 µl. Afterwards, 50 µl of bacteria in NaPB were added to reach a final mixture volume 

of 100 µL and a cell density of about 4 x 108 CFU/mL in the presence of Esc(1-21) or 

AuNPs@Esc(1-21) at their MBC50 (1 µM and 5 nM, respectively). After 20 min treatment, aliquots 

were withdrawn and plated for counting. Bacteria incubated with trypsin or NaPB were also 

included for comparison. Note that in order to have a valid indication of the resistance of 
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AuNPs@Esc(1-21) to proteolytic degradation, we chose an enzyme (i.e. trypsin) that, according to 

the prediction of cleavage sites in Esc(1-21), is expected to cleave the peptide at multiple sites in 

contrast with other enzymes, such as bacterial proteases. 

 

2.6. Antibiofilm activity  

Biofilm formation was performed using the Calgary Biofilm Device (Innovotech, Innovotech Inc. 

Edmonton, Canada) provided with microtiter 96-well plates sealed with 96 pegs-lid. Each well 

contained 150 µL of the bacterial inoculum (1 x 107 cells/mL) in LB medium. After 20 h incubation 

in a humidified orbital incubator at 35 °C under mild agitation, the pegs where biofilm was formed, 

were rinsed twice with phosphate buffered saline (PBS) and transferred into another 96-wells plate, 

each well containing 200 µL of PBS supplemented or not with the free peptide, AuNPs@Esc(1-21) 

or AuNPs@PEG. The plate was then incubated at 37 °C for 2 h. Afterwards, pegs were washed 

again with PBS; each peg was broken from the lid and transferred into an eppendorf tube containing 

200 µL of PBS. Samples were then sonicated three times for 10 min in an ultrasonic water bath to 

detach bacterial cells from the pegs. Aliquots were plated on LB-agar plates for the CFU counting. 

The number of viable bacteria was expressed as a percentage with respect to the control (buffer-

treated biofilm). The minimal biofilm eradication concentration (MBEC50) was defined as the 

lowest drug concentration sufficient to cause at least 50% killing of biofilm cells within 2 h. The 

experiments were performed three times in triplicates. 

 

2.7. Membrane permeabilization  

The ability of AuNPs@Esc(1-21) to affect the membrane permeability of P. aeruginosa cells, as 

previously found for the free peptide [52] was assessed by the Sytox Green assay in microtiter 

plates. Briefly, about 2 x 107 bacterial cells in 50 µL of NaPB supplemented with 1 µM Sytox Green 

were added to each well. Then, 5 µL of AuNPs@Esc(1-21), AuNPs@PEG or free Esc(1-21) were 
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added. For the control sample, 5 µL of peptide solvent (water) were used. The increase in 

fluorescence, owing to the binding of the dye to intracellular DNA, was measured every min for 30 

min at 37 °C with a microplate reader (Infinite M200; Tecan, Salzburg, Austria) at excitation and 

emission wavelengths equal to 485 and 535 nm, respectively. Considering the absorbance of 

AuNPs@PEG as a background, we properly subtracted the measurements of these samples from 

those containing AuNPs@Esc(1-21). Final values were reported as ratio of each value (measured 

within 30 min) to the initial one measured after 1 min.  

 

2.8. Scanning electron microscopy (SEM) 

P. aeruginosa was grown overnight at 37 °C in LB. After 10 min centrifugation at 1,400 x g, the 

bacterial pellet was resuspended in NaPB to an optical density of 0.8 at 590 nm. The bacterial 

culture was passed through a syringe to avoid possible clumps. Approximately 4 x 107 bacterial 

cells in a total volume of 100 µL were incubated with AuNPs@Esc(1-21) or AuNPs@PEG at 37 °C 

in a thermomixer under agitation for different times (1 min, 8 min and 15 min). Controls were 

buffer-treated bacterial cells. At the indicated time intervals, samples were centrifuged at 6,000 x g 

for 10 min and washed three times with NaPB. Afterwards, they were fixed with 2.5% 

glutaraldehyde (100 µL) in NaPB for 2 h at room temperature. The samples were then centrifuged 

at 12,000 x g for 10 min and washed three times as above. Samples were analyzed using an 

Environmental scanning electron microscope (ESEM, Quanta FEG 250) with a wet scanning-

transmission electron microscopy (wet-STEM) detector at high vacuum mode. Specimens were 

mounted in a Quantifoil® holey carbon film copper grids and examined with a working distance 

between 7-10 mm and an accelerating voltage of 20 kV. 

 

2.9. Transmission Electron Microscopy (TEM)  

Bacterial samples were similarly prepared as described in the above paragraph for SEM analysis, 

and treated with AuNPs@Esc(1-21) for 15 min. Approximately 4 x 108 bacterial cells in a total 
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volume of 1 mL NaPB were incubated with AuNPs@Esc(1-21) for 15 min in the thermomixer with 

agitation. Controls were buffer-treated bacteria. After incubation, the samples were centrifuged at 

6,000 x g for 10 min and washed three times with NaPB, fixed with 2.5% glutaraldehyde (1 mL) in 

NaPB for 2 h at room temperature. Finally, the samples were centrifuged at 12,000 x g for 10 min 

and washed three times as above. The pellets were subsequently embedded in 1.5 % agar (Panreac); 

post fixed in 2% osmium tetroxide for 1 h at room temperature and stained in 1% uranyl acetate in 

the dark for 2 h at 4 °C. Then, they were rinsed in distilled water, dehydrated in ethanol and 

infiltrated overnight in Durcupan resin (Fluka). Following polymerization, embedded cultures were 

detached from the wells and glued to araldite blocks. Finally, ultra-thin sections (0.08 µm) were cut 

with a diamond knife (Leica), stained with lead citrate (Reynolds solution) and examined under a 

200 keV transmission electron microscope FEI Tecnai T20 (FEI Europe) operating at 60 keV. 

 

2.10. Cytotoxicity 

The effect of non-conjugated or functionalized AuNPs@Esc(1-21) on the viability of mammalian 

keratinocytes was determined by the MTT assay [51, 60]. Keratinocytes were cultured in DMEM 

supplemented with 10% FBS, glutamine (4 mM) and 0.05 mg/mL gentamicin, at 37 °C and 5% 

CO2, in 25-cm2 flasks. 

Keratinocytes were plated in triplicate wells of a microtiter plate, at 4 x 104 cells/well in DMEM 

supplemented with 4 mM glutamine (DMEMg) and 2% FBS without antibiotic. After overnight 

incubation at 37 °C and 5% CO2 atmosphere, the medium was replaced with 100 µl fresh DMEMg 

containing the NPs at different concentrations. Controls were cells incubated with DMEMg in the 

presence of peptide solvent (water). The plate was incubated for 2 h or 24 h at 37 °C and 5% CO2 

atmosphere. Afterwards, DMEMg was removed and each well was washed three times with Hank’s 

buffer and 100 µL of Hank’s buffer containing 0.5 mg/mL MTT were added to each one. After 4 h 

incubation, the formazan crystals were dissolved by adding 100 µL of acidified isopropanol [31] 
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and absorbance of each well was measured at 570 nm using the microplate reader. Cell viability 

was calculated with respect to the control according to the formula: 

 

where the blank is given by samples without cells and not treated with the peptide or NPs. 

 

2.11. Cell migration assay 

The ability of AuNPs@Esc(1-21) to stimulate migration of keratinocytes was studied according to a 

modified scratch assay [31-33]. Briefly, HaCaT cells (4 x 104) suspended in DMEMg supplemented 

with 10% FBS were seeded on each side of an ibidi culture insert for live cell analysis (Ibidi, 

Munich, Germany). Inserts were placed into wells of a 24-wells plate and incubated at 37 °C and 

5% CO2 to allow cells grow to confluence. Afterwards, inserts were carefully removed to create a 

cell-free area (pseudo-"wound") of approximately 500 µm, and 300 µl of DMEMg supplemented 

with AuNPs@Esc(1-21) or AuNPs@PEG or the free peptide, were added. Control samples were 

cells treated with DMEMg in the presence of peptide solvent (water). Cells were allowed to migrate 

for 9 h in an appropriate incubator. All experiments were run in triplicates. At different time 

intervals, fields of the pseudo-"wound" area were visualized under an inverted microscope 

(Olympus CKX41) at x 4 magnification and photographed with a Color View II digital camera. The 

percentage of cell-covered area at each time was determined by WIMASIS Image Analysis 

program.  

 

2.12. Statistical analysis 

Quantitative data were expressed as the mean ± SEM. Statistical analysis was performed using two-

way analysis of variance (ANOVA), with PRISM software (GraphPad, San Diego, CA). 

Absorbance sample – Absorbance blank

Absorbance control – Absorbance blank

X 100
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Differences were considered to be statistically significant for p< 0.05. The levels of statistical 

significance are indicated in the legend to figures. 

 

3. Results 

 

3.1. AuNPs synthesis characterization 

AuNPs were synthesized by citrate reduction of gold [55, 56]. The AuNPs exhibited a maximum 

peak of absorption at 519 nm and had an average size of 14 nm as visualized by TEM (Fig. 1). To 

increase the stability of the AuNPs to salt and further centrifugation steps, a bifunctional PEG was 

used [SH-EG(8)-(CH2)2-COOH] [50]. This PEG replaces the citrate molecules and binds to the NPs 

surface via a gold-thiol bond (AuNPs@PEG). Importantly, it also provides a carboxylic group, for 

further derivatization with the peptide via carbodiimide-mediated coupling. In order to attach the 

peptide, the carboxylic groups of the AuNPs@PEG were activated with different amounts and 

ratios of EDC and sulfo-NHS (Table S1) [61] and the stability of the nanoparticles was assessed by 

UV-Vis spectroscopy (Fig. S1). Once selected the amount of EDC and sulfo-NHS that did not alter 

the stability of the AuNPs@PEG, different amounts of peptide were added to the same amount of 

activated AuNPs@PEG. The stability was checked once again by UV-Vis spectroscopy. From these 

data, 2 µg of Esc(1-21) was selected as the maximum amount of peptide that could be added 

without causing precipitation of the negatively-charged AuNPs@PEG during the coupling process 

(Fig. S2).  

 After coupling, the AuNPs@Esc(1-21) were centrifuged and the supernatant was recovered for 

peptide quantification (as indicated in the Experimental section): 0.7 µg of peptide resulted to be 

bound to 20 pmol of AuNPs@PEG, resulting in about 16 molecules of peptide per AuNP@PEG. 

Both AuNPs@PEG and AuNPs@Esc(1-21) were characterized by TEM (Fig. 1), UV-Vis 

spectroscopy (Fig. S2 B) and ζ-potential. The slight decrease in the ζ-potential of functionalized 

AuNPs@Esc(1-21) (-35.58 mV) compared to AuNPs@PEG (-39.44 mV) is in accordance with the 



  

14 

 

covalent conjugation of a positively-charged molecule (i.e. the cationic peptide) to the negatively-

charged AuNPs@PEG. Table 1 summarizes the comparison between different molar concentrations 

of AuNPs@Esc(1-21) used in our experiments and the corresponding molar concentration of 

peptide bound to them. 

 

3.2. AuNPs@Esc(1-21) are more active than the free peptide against P. aeruginosa 

It was previously demonstrated that Esc(1-21) provokes, within 15 min, 3-log10 reduction in the 

number of viable bacterial cells (99.9% killing) of the reference strain P. aeruginosa ATCC 27853 

when added at 1 µM to 1 x 106 CFU/mL in physiological solution [52]. When the peptide was 

assayed in NaPB at a concentration range from 4 µM to 0.1 µM against a higher cell density i.e. 4 x 

108 CFU/mL, which was needed to prepare samples for electron microscopy analysis (see next 

paragraphs), a clear dose-dependent bacterial cell death was detected (Fig. 2A). The minimal 

bactericidal concentration sufficient to cause at least 50% decrease in the number of CFU (MBC50) 

within 20 min was of 1 µM (Table 2). Interestingly, when Esc(1-21) was coated onto AuNPs@PEG, 

it was found not only to preserve a concentration-dependent microbicidal effect (Fig. 2B), but also 

to exhibit a significantly higher killing activity, with ~12-fold lower MBC50 (0.08 µM, see Table 2). 

Note that this peptide concentration was equivalent to that of 5 nM AuNPs@Esc(1-21) (Table 1). 

Importantly, when AuNPs@Esc(1-21) were centrifuged after 24 h incubation at 37 °C, no 

antimicrobial activity was observed in the supernatant (data not shown) which indicates that the 

peptide is not detached from the NPs surface. 

According to the reported literature [62], no lethal activity was displayed by AuNPs@PEG. 

Remarkably, when AuNPs@Esc(1-21) were tested against the sessile form of P. aeruginosa, 50% 

killing of biofilm cells was recorded within 2 h treatment (Table 2), at a concentration of coated-

peptide (0.17 µM) which was only 2-fold higher than the MBC50, and about 17-fold lower than the 

MBEC50 of the free peptide (3 µM). No biofilm eradication was manifested by AuNPs@PEG. 
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3.3. AuNPs@Esc(1-21) preserve their antibacterial activity in the presence of a proteolytic enzyme 

In addition, AuNPs@Esc(1-21) were found to retain their antibacterial activity in the presence of 

trypsin. In fact, when the free peptide or the AuNPs@Esc(1-21) were used at their MBC50 after pre-

treatment with trypsin at significantly lower physiological concentration [63], only ~13% killing of 

bacteria was observed for Esc(1-21) (Fig. 3) which corresponds to about 4-fold reduction of activity 

compared to that of the free peptide at its MBC50 (1 µM) without pre-treatment (Fig. 2). In contrast, 

no significant change in the bactericidal activity was caused by pre-incubation of AuNPs@Esc(1-

21) with trypsin (Fig. 3). This is likely due to a higher resistance of Esc(1-21) to enzymatic 

degradation upon its coating to AuNPs@PEG compared to its soluble free form.  

 

3.4. AuNPs@Esc(1-21) have a membrane-perturbing activity  

In order to know whether a membrane-perturbing activity was the major killing mechanism of 

AuNPs@Esc(1-21), in line with what described for the free Esc(1-21) peptide [52], the Sytox Green 

assay on the planktonic form of P. aeruginosa was performed at a concentration of functionalized 

AuNPs@Esc(1-21) giving rise to approximately 70% bacterial death, i.e. 10 nM (Fig. 2B). Sytox 

Green is a membrane-impermeable probe whose fluorescence intensity dramatically enhances upon 

binding to DNA, once it has entered cells with a damaged cytoplasmic membrane. A clear 

membrane disturbance was induced by AuNPs@Esc(1-21), as pointed out by the fast increase of 

fluorescence intensity immediately after their addition to the bacteria, reaching a maximum effect 

within 15-20 min (Fig. 4) in accordance to the kinetics of membrane perturbation previously shown 

by concentrations of the free peptide causing a similar percentage of Pseudomonas killing (~70 %) 

[52]. Note that when a concentration of free Esc(1-21) corresponding to the amount of peptide 

bound to 10 nM AuNPs@Esc(1-21) was used (0.17 µM), no significant alteration of membrane 
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permeability was detected, as indicated by the invariant fluorescent signal of the sample (Fig. 4). 

This is in line with the significantly lower antipseudomonal activity of Esc(1-21) at this 

concentration (data not shown). 

 

3.5. AuNPs@Esc(1-21) destroy the cellular structure of P. aeruginosa (electron microscopy 

analysis) 

The effect of AuNPs@Esc(1-21), when used at their MBC50 on the morphology of the planktonic 

form of P. aeruginosa ATCC 27853 after different incubation times was visualized by electron 

microscopy. As highlighted by SEM analysis (Fig. 5), AuNPs@Esc(1-21) appeared to be 

concentrated on the microbial surface already after 1 min incubation with the bacteria, while 

AuNPs@PEG could not be detected (Fig. 5, left panels). The magnified area in Fig. 5 (left side) 

shows that AuNPs@Esc(1-21) formed clusters attached to the cell membrane at various points, but 

without compromising the cell integrity. This outcome became more pronounced after 8 min 

treatment with AuNPs@Esc(1-21) (Fig. 5, right panels) and was accompanied by membrane 

breakages leading to leakage of intracellular material (Fig. 5, arrows). These results are comparable 

to those previously obtained with the free peptide [52]. In contrast, both the control and 

AuNPs@PEG-treated samples were shown to retain their cellular integrity and only very rarely did 

the AuNPs@PEG appear within Pseudomonas cells (Fig. 5). Furthermore, 15 min after treatment 

with functionalized AuNPs@Esc(1-21), a drastic change in the bacterial shape with a marked 

disintegration of the cellular structure were visualized in some bacteria compared to the control, as 

indicated by TEM analysis (Fig. 6).  

Overall, in combination with the results of the Sytox Green assay described above this additional 

data support the notion that conjugation of Esc(1-21) to AuNPs@PEG does not affect the well-

established membrane-perturbing activity of the peptide [52]. 
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3.6. AuNPs@Esc(1-21) are not toxic to human keratinocytes 

The impact of AuNPs@Esc(1-21) on the viability of human keratinocytes was determined by the 

MTT assay on HaCaT cells. Both AuNPs@Esc(1-21) and AuNPs@PEG did not induce any 

cytotoxic effect, being unable to reduce the number of metabolically active cells up to the highest 

concentration used (60 nM) corresponding to 12 x MBC50 (Fig. 7). This is in agreement with 

published papers showing no toxicity for AuNPs [62] or Esc(1-21) up to 64 µM [31]. Note that 

when AuNPs@Esc(1-21) were incubated with HaCaT cells for a longer time (24 h) at the highest 

concentration used (60 nM), ~97 % cell viability was recorded.  

 

3.7. AuNPs@Esc(1-21) stimulate migration of HaCaT cells  

Finally, to explore whether our functionalized AuNPs were able to retain the ability of the free 

peptide to induce re-epithelialization by migrating HaCaT cells [31], a pseudo-“wound” healing 

assay was carried out. As illustrated in Fig. 8, while non-coated AuNPs@PEG had not effect on 

migration of keratinocytes compared to the control, 5 nM AuNPs@Esc(1-21) promoted the closure 

of the pseudo-“wound” field created in the HaCaT monolayer, with a similar rate to that displayed 

by a 3-fold higher concentration of free Esc(1-21), i.e. 0.25 µM. 

 

4.  Discussion 

Epithelial infections by P. aeruginosa are actually very difficult to eradicate, mainly due to the 

intrinsic resistance of this microbial pathogen to the currently used drugs, as well as to its 

propensity to grow in biofilm communities protecting bacterial cells from a large diversity of 

environmental insults [64]. Pseudomonas biofilm can easily colonize skin ulcers, mostly in diabetic 

patients or patients with venous or arterial disease, as well as surgical wounds; and has become a 

relevant cause of morbidity and mortality, particularly in hospitalized individuals [65-67]. 
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Nowadays AMPs hold promise as a valid alternative for new anti-infective agents with expanding 

properties [3]. Nevertheless, the limited strategies to enhance their half-life and to deliver them to 

the correct site of infection, without altering the antimicrobial/biological properties of the peptide, 

have contributed to complicate and slow down their clinical translation. As emphasized by 

numerous reports in the literature, AuNPs have revolutionized the field of bio-nanomedicine [68]. 

The application of AuNPs has increased dramatically over the last two decades due to the rapid 

progress of nanoscale analytical tools [69]. Because of their small size, high solubility and vast 

surface area, they can carry a relatively high drug dose [70], thus enhancing its interaction with the 

target cell. Note that non-functionalized AuNPs were shown to be harmless to biological systems, 

due to gold elemental properties, including biocompatibility and chemical inertness (stability/low 

reactivity) [71-77]. It is worthwhile recalling that the previously reported antibacterial activity of 

AuNPs could be due to co-existing chemicals involved in the synthesis of these NPs but not 

completely removed from them [78]. Recent studies have highlighted an antibacterial activity of 

AuNPs, once stabilized with a capping agent (polyelectrolyte poly-allylaminehydrochloride, PHA), 

which would favor self-assembly of AuNPs into long chains speeding up the cell wall breakdown 

and cytoplasm release [79].  

Furthermore, combination of conventional antibiotics e.g. ceftriazone with AuNPs has already 

manifested a six-fold higher effectiveness in killing a variety of bacterial species than the drug 

alone [80]. Yet, the synthesis of sugar residues containing cyclic cationic peptides attached to 

AuNPs was found to show an antimicrobial activity comparable to that of the free peptides [81]. 

Only very lately, an antibacterial activity was demonstrated by a synthetic AMP (i.e. cecropin-

melittin hybrid) when immobilized on AuNPs-coated surfaces to be translated into biomedical 

materials [82] or when used to synthesize AuNPs [83].  

Here, by employing a derivative of the frog skin AMP esculentin-1a, Esc(1-21), we demonstrated a 

remarkably improved antibacterial activity of an AMP chemically conjugated to AuNPs via PEG 

linker compared to the activity explicated by the same concentration of the free peptide. This is 
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likely due to the considerable quantity of Esc(1-21) lining the surface of AuNPs@PEG, regardless 

of its orientation, and to the high concentration of AuNPs@Esc(1-21) on the bacterial surface as 

well as to the prolonged bioavailability of the peptide, being less accessible to bacterial proteases. 

This would ensure a much higher local concentration of Esc(1-21) at the site of bacterium-NP 

contact. Furthermore, by means of the Sytox Green assay and electron microscopy techniques we 

were able to prove that, likewise to the free Esc(1-21), the functionalized AuNPs@Esc(1-21) do 

possess a membrane perturbing activity as a plausible mechanism of bacterial killing. Interestingly, 

non-coated AuNPs@PEG were not detected on the surface of Pseudomonas cells. This points out 

that the cationic Esc(1-21) is the driving force allowing AuNPs@Esc(1-21) to target bacterial cells, 

by presumably recognizing and interacting with the negatively-charged cell surface components, 

lipopolysaccharides. Owing to this interaction, the killing of bacterial cells through a membrane 

disruption process, would take place without intracellular entry of AuNPs@Esc(1-21), according to 

what found for the cationic PHA-AuNPs [84], as well as for the AuNPs containing a hexyl-

substituted ammonium-functionalized thiol as a protective coating [85, 86]. A schematic 

representation of the behavior of both AuNPs@PEG and AuNPs@Esc(1-21) on the bacterium P. 

aeruginosa is sketched in Fig. 9.  

Another outstanding matter is that similarly to what recorded for the free Esc(1-21), we were able to 

demonstrate that AuNPs@Esc(1-21) also stimulate cells migration in a pseudo-“wound” healing 

assay on a monolayer of keratinocytes, suggesting their propensity to accelerate recovery of an 

injured skin layer, following bacterial infection. 

To the best of our knowledge, this is the first report showing that covalent conjugation of a linear 

membrane-active AMP to soluble AuNPs, via a PEG linker, dramatically increases 

antibacterial/antibiofilm activities against one of the most diffused nosocomial pathogens , i.e. P. 

aeruginosa, without being noxious. As mentioned above, recent studies showed an 

antipseudomonal activity by the cecropin-melittin AMP when covalently bound to surface-tethered 

AuNPs. However, an extremely high concentration of coated peptide (110 µg/cm2 corresponding to 
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~2 mM peptide in solution) was needed to cause 70% killing of bacterial cells within 2 h [82]. In 

addition, the minimal growth inhibitory concentration of immobilized peptide was found to be 8-9 

times higher than that of the soluble AMP [82]. Furthermore, in the paper from Rai and colleagues 

[83], it was demonstrated that when the cecropin-melittin AMP was functionalized onto citrate 

AuNPs, only a very slight antibacterial activity was exhibited (less than 10% killing of the Gram-

negative bacterium Escherichia coli) and that the obtained NPs precipitated in less than one hour. 

Only when cecropin-melittin AuNPs were prepared by a one-pot methodology, they were able to 

display a relative antibacterial activity, although eight days were required to produce such NPs [83]. 

More specifically, 1,25 µg/mL of immobilized cecropin-melittin peptide (~0,7 µM) was necessary 

to kill approximately ~105 E. coli cells in 1 h, whereas in our case ~ 107 cells of the widely feared 

Pseudomonas pathogen were eliminated within 20 min by 5 nM AuNPs@Esc(1-21) corresponding 

to 0.08 µM of coated-peptide (Table 1). In addition, we have found that AuNPs@PEG 

functionalized with Esc(1-21) do not precipitate within months. Obtaining peptides that maintain 

their activity after immobilization and that are stable over time is of the utmost importance thinking 

on clinic translation opportunities. 

On the whole, our results suggest Esc(1-21)-coated AuNPs@PEG to be a valuable and 

advantageous therapeutic solution for local treatment of skin infections. In support of this 

hypothesis, it was demonstrated recently that AuNPs can pass through different types of animal 

tissues and that diffusion through the stratum corneum barrier of intact human and mouse skin is 

influenced by their size, shape and charge [87]. In an in vitro diffusion cell system, AuNPs have 

been found to penetrate all layers of human skin [76] in greater amount than other metal NPs, i.e. 

silver NPs (which can be absorbed through the skin [77]), thus raising the interest for developments 

of AuNPs in transdermal administration of drugs and therapy. 
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5. Conclusions 

The engineered peptide-conjugated AuNPs@PEG presented in this work have been shown to 

enhance by approximately 15-fold the antipseudomonal activity of the membrane-active Esc(1-21) 

without being toxic to human cells i.e. keratinocytes as well as to increase the peptide’s re-

epithelialization activity on a keratinocytes monolayer. In conclusion, these findings make our 

designed NPs attractive candidates for their future development as new nanoscale formulations 

likely for topical (dermatological) treatment of epithelial infections [88, 89]. Importantly, even 

though in this study we presented data of AuNPs@Esc(1-21) only against P. aeruginosa, we 

believe that our designed NPs will be biocidal against a wide range of microbial pathogens. This is 

corroborated by the large spectrum of antimicrobial activity of Esc(1-21) [90]; its ability to perturb 

anionic model membranes mimicking those of bacterial cells (manuscript in preparation) and; the 

capacity of its shorter analog Esc(1-18) to damage the membrane of both Gram-positive and Gram-

negative bacteria [51, 91].  

Future interdisciplinary studies aimed at understanding the basic rules governing molecular 

interactions between such coated-AuNPs and cells or complex tissues e.g. the skin, will offer the 

possibility to rationally design new pharmacological AMP-based strategies to overcome the limited 

biostability, toxicity and inefficient delivery of AMPs to the target infectious site. Furthermore, 

combination of AMP conjugated-AuNPs with phothermal therapy is highly expected to produce 

advancement of nanomedicine for the local treatment of chronic infected wounds. Indeed, once 

irradiated by laser, AuNPs can efficiently convert photo energy into heat, causing a temperature 

raise in the specific target site with killing of bacteria [92]. 
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Table 1. Comparison between molar concentration of AuNPs@Esc(1-21) and the corresponding 
molar concentration of Esc(1-21).  

Molar concentration of 

AuNPs@Esc(1-21) 
Molar concentration of 

peptide coated onto AuNPs 

 

20 nM 0.35 µM 
 

10 nM 0.17 µM 
 

5 nM 0.08 µM 
 

 

Table 2 Antimicrobial activity of Esc(1-21) and AuNPs@Esc(1-21) on both free living and biofilm 
forms of P. aeruginosa ATCC 27853  

 Antibacterial Activity 

 

Compound 

Planktonic form  

MBC50 

Biofilm form 

MBEC50 

Esc(1-21) 1 µM 3 µMa 

AuNPs@Esc(1-21) 5 nM (=0.08 µM peptide) 10 nM (=0.17 µM peptide) 

 

aThis value was taken from ref.[52]. 
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FIGURE LEGENDS 

 

Fig. 1 TEM analysis of AuNPs. A small volume of AuNPs was dropped onto a TEM grid and after 

drying was imaged using a TEM Tecnai F20. A) AuNPs as synthetized. B) AuNPs@PEG. C) 

AuNPs@Esc(1-21). Scale bar: 20 nm. 

 

Fig. 2 Antipseudomonal activity of Esc(1-21) (panel A) or AuNPs@Esc(1-21) (panel B). Bacterial 

cells (4 x 108 CFU/mL) were incubated with different concentrations of the peptide or 

AuNPs@Esc(1-21) for 20 min at 37 °C. Afterwards, aliquots were withdrawn for colony counts 

after overnight incubation at 37 °C. Note that the concentration of peptide coated onto 2.5 nM, 5 

nM, 10 nM, 20 nM and 50 nM of AuNPs@Esc(1-21) was equal to 0.04 µM, 0.08 µM, 0.17 µM, 

0.35 µM and 0.87 µM, respectively. The percentage of bacterial killing was calculated compared to 

the control (buffer-treated bacterial cells) and is reported on the y-axis. Dotted line indicates 50% 

bacterial killing. Data points are the mean of triplicate samples ± SEM of three independent 

experiments. 

 

Fig. 3 Antipseudomonal activity of Esc(1-21) or AuNPs@Esc(1-21) at their MBC50 (1 µM and 5 

nM, respectively) after treatment with trypsin (0.02 µg/mL). Bacteria (4 x 108 CFU/mL) were 

incubated with the peptide/AuNPs@Esc(1-21) pre-treated with the enzyme. After 20 min at 37 °C, 

aliquots were withdrawn for colony counts. The percentage of bacterial killing was calculated 

compared to the control (buffer-treated bacterial cells) and is reported on the y-axis. Dotted line 

indicates 50% bacterial killing.  

No killing activity was caused by the enzyme at the concentration used or AuNPs@PEG and 

therefore they are not shown. Data points are the mean of triplicate samples ± SEM of three 

independent experiments.  
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Fig. 4 Kinetics of cytoplasmic membrane permeabilization of P. aeruginosa ATCC 27853 (4 x 108 

CFU/ml) induced by 10 nM AuNPs@Esc(1-21) or the corresponding concentration of free Esc(1-

21). Bacterial cells were incubated with 1 µM Sytox Green in NaPB. Once basal fluorescence 

reached a constant value, 10 nM AuNPs@Esc(1-21) or AuNPs@PEG as well as the equivalent 

concentration of free  Esc(1-21) were added, and changes in fluorescence (λexc= 485 nm, λems = 535 

nm) were monitored for 30 min. Considering the absorbance of AuNPs@PEG as a background, 

measurements of samples containing AuNPs@PEG were subtracted from those containing 

AuNPs@Esc(1-21). Control (Ctrl) was given by buffer-treated bacteria. The ratio of each value to 

the initial one measured after 1 min from NPs/peptide addition is reported on the y-axis. The values 

represent the mean of triplicate samples from a single experiment, representative of three different 

experiments.  

 

Fig. 5 SEM of P. aeruginosa cells after 1 min (left panels) or 8 min (right panels) treatment with 

AuNPs@Esc(1-21) at the MBC50 or with AuNPs@PEG, at the same molar concentration. Controls 

(Ctrl) were buffer-treated cells. Insets are magnifications of image areas indicated by the black 

frame. Arrows indicate cell debris. 

 

Fig. 6 TEM micrographs of P. aeruginosa cells after 15 min treatment with AuNPs@Esc(1-21) at 

the MBC50 (A) or buffer (B)  Black arrows indicate lysed bacterial cells. Scale bar: 200 nm 

 

  
Fig. 7 Effects of AuNPs@PEG or AuNPs@Esc(1-21) on the viability of HaCaT cells after 2 h 

treatment. Cell viability was determined by the MTT reduction to insoluble formazan (see Materials 

and Methods for additional details). The percentage represents the cell viability with respect to the 

control. Data points are the mean of triplicate samples ± SEM of three independent experiments.  
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Fig. 8 Effect of AuNPs@PEG and AuNPs@Esc(1-21) on the closure of a pseudo-“wound” field 

produced in a monolayer of HaCaT cells, seeded in each side of an ibidi culture insert. (A): Cells 

were grown to confluence and afterwards, they were treated with 5 nM AuNPs@PEG, 

AuNPs@Esc(1-21) or with 0.25 µM Esc(1-21). Cells were photographed at the time of insert 

removal (0 h) and examined for cell migration after 3, 6 and 9 h and compared to the Ctrl. All data 

are the mean of three independent experiments ± SEM. The levels of statistical significance 

between Ctrl and treated samples are indicated as follows *p < 0.05, **p < 0.01. (B): Micrographs 

showing representative results of pseudo-“wound” closure after 6 h treatment. 

 

Fig. 9 Cartoon representing the mode of action of AuNPs@Esc(1-21) (A) and AuNPs@PEG (B) on 

the bacterium P. aeruginosa. When in contact with microbes, AuNPs@Esc(1-21) quickly 

concentrate on different sites of the bacterial surface, without entering into Pseudomonas cells, and 

cause disruption of the cellular structure. In contrast, despite AuNPs@PEG form clusters in 

solution, they are harmless to Pseudomonas cells and do not aggregate on their surface. 
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Statement of significance: Despite conjugation of AMPs to AuNPs represent a worthwhile 
solution to face some limitations for their development as new therapeutics, only a very limited 
number of studies is available on peptide-coated AuNPs. Importantly, this is the first report 
showing that a covalent binding of a linear AMP via a poly(ethylene glycol) linker to AuNPs highly 
enhances anti-Pseudomonal activity, preserving the same mode of action of the free peptide, 
without being harmful. Furthemore, AuNPs@Esc(1-21) are expected to accelerate recovery of an 
injured skin layer. All together, these findings suggest our peptide-coated AuNPs as attractive novel 
nanoscale formulation to treat bacterial infections and to heal the injured tissue. 
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