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Highlights

• A generalization of epidemiologic models on spatial networks
• Inclusion of long-range dispersal of pathogens and spatial embeddedness of plants
• Long-range dispersal favors the propagation of pathogens
• The elongation of plant plots increases the epidemic threshold and decreases dramatically the number of affected

plants
• Observation of patchy regions of infected plants and the absence of a clear propagation front
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EPIDEMICS ON PLANTS. MODELING LONG-RANGE DISPERSAL ON SPATIALLY
EMBEDDED NETWORKS

JUDDY H. ARIAS1, JESUS GÓMEZ-GARDEÑES2, SANDRO MELONI3, ERNESTO ESTRADA4

Abstract. Here we develop an epidemic model that accounts for long-range dispersal of pathogens between plants.
This model generalizes the classical compartmental models–Susceptible-Infected-Susceptible (SIS) and Susceptible-Infected-
Recovered (SIR)–to take into account those factors that are key to understand epidemics in real plant populations. These
ingredients are the spatial characteristics of the plots and fields in which plants are embedded and the effect of long-range
dispersal of pathogens. The spatial characteristics are included through the use of random rectangular graphs which allow
to consider the effects of the elongation of plots and fields, while the long-range dispersal is implemented by considering
transformations, such as the Mellin and Laplace transforms, of a generalization of the adjacency matrix of the geometric
graph. Our results point out that long-range dispersal favors the propagation of pathogens while the elongation of plant
plots increases the epidemic threshold and decreases dramatically the number of affected plants. Interestingly, our model is
able of reproducing the existence of patchy regions of infected plants and the absence of a clear propagation front centered
in the initial infected plants, as it is observed in real plant epidemics.

1. Introduction

Understanding the spread of pathogens on plants has always been an important challenge for agricultural and environ-
mental development [1, 2]. Today, it is well-documented that the long-range dispersal of pathogenic fungi is responsible
for the spread of several important crop diseases at distances ranging from a few meters to thousands of kilometers [3].
Many of these fungi, such as those causing diseases like rust, powdery mildew, and downy mildew diseases, produce a
massive numbers of spores which are then dispersed by wind from one plant to another. Such kind of wind dispersal
is an important surviving mechanism for the spores, which can travel even at inter-continental distances [3]. Another
mechanism of long-range dispersal of pathogenic organisms is by means of vectors [4], ranged from small insets to humans,
which transport the inoculum of the pathogen from one plant to another. Both mechanisms are believed to be responsible
for the dispersal of diseases such as Dutch elm disease [5], citrus canker [6], sudden oak death [7] and rhizomania of
sugar beet [8]. The study of long-range dispersal in plants is not only of remarkable importance for understanding plant
diseases but also for other plant-related processes [9, 10, 11, 12]. For instance, most of the transport of pollen between
plants is carried out by wind or insect pollinators. This biological process is vital for the survival of the species, but it is
also important for understanding transgenic pollen dispersal [13]. Of similar importance is the spreading of evolutionary
novelties across populations. Recently, it has been recognized that rare-events of long-range jumps can lead to drastic
acceleration of these processes [14].

In order to model epidemic processes in plants the modeler dispose of several theoretical tools [15, 16, 17, 18], not
without a few important challenges [19, 20, 21]. The incorporation of long-range dispersal effects, either as diffusive
processes or by including long-range jumps, has been the topic of many researches [22, 23, 24, 25, 26, 27, 28, 29]. Recently,
Vallaeys et al. [13] have stressed that the diffusive process “often seriously underestimates dispersal distances”, and on
the other hand, pure Lévy movements “often overestimates dispersal distances”. Thus, methods that account for an
equilibrated balance between diffusive and long-range dispersal are still needed for modeling epidemic processes in plants
[13]. Another important challenge in modeling plant diseases is the necessity to consider the spatial characteristics of
the plots or fields in which the plants are embedded. As a consequence, those models that consider spatial features for
characterizing the structure of populations in heterogeneous landscapes have gained recent interest [30]. One approach is
to consider spatial networks that treat interactions as a continuous variable that decays with increasing distance. Another,
which is interesting from the perspective of the current work, is to distribute randomly and independently a set of points
on the Euclidean plane to represent the relative spatial location of individual host plants or habitat patches [30]. The
second kind of models give rise to random geometric graphs (RGGs) [31, 32, 33, 34], in which each node is randomly
assigned geometric coordinates and then two nodes are connected if the (Euclidean) distance between them is smaller
than or equal to a certain threshold r. For instance, let us suppose that a pathogen located in a plant i can jump and
infect any susceptible plant inside a certain radius centered on i. This implies that every other node inside the disk of
radius r centered at the infected node i is connected to it.
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In this work we are interested in epidemic processes similar to the transmission of viruses on plants, which are known
to occur mainly transmitted by insect vectors of several families, with Hemiptera being by far the most important group
[35]. For instance, homopterans (a subclass formed by two suborders of Hemiptera) are vectors for about 55% of all
known plant viruses, with aphids transmitting approximately 275 virus species (more than 50% of plant viruses vectored
by insects) and whiteflies transmitting 114 virus species [36, 37]. Aphids represent a vast group of insects covering about
4,700 species, from which 450 species are involved in colonizing food and fiber crop (see fer. [35] and references therein).
In this way of vectored transmission of diseases on plants a nontrivial aspect of the transmission are the behavioral events
related to the vectors. These are a series of successive events followed by vectors that ends up in virus transmission on the
plant. In the case of aphids, it has been recognized that the following events are important [38]: (i) pre-alignment before
landing, (ii) plant contact and assessment of surface cues after landing, (iii) probing on superficial tissues, (iv) location
and insertion of styletes at the appropriate feeding site, (v) salivation followed by committed sap ingestion. From the
point of view of modeling the epidemic spreading, the event of pre-alignment before landing is of vital importance. For
instance, it is not true that an insect simply hop from one plant to another but in some occasions they can remain flying
for long periods (2 hours for whiteflies or 7 hours for N. virescens females) until “attractive” plants are founds for landing.
Then, some insects hop from a plant to a close one, e.g., H. coagulata which tends to make short flights of no more than 5
meters, and others can travel longer distance during their long flying times. For an excellent review and discussion see ref.
[35]. It is also important to notice that although a plant can be selected for landing by an insect due to its attractiveness,
it may or may not be potential host for that insect, and that the discrimination appears after landing and probing on
different plants [39]. All these factors makes the hopping process of insect vectors a nontrivial one and here we propose a
way of capturing some of these nontrivialities into a model for epidemic spreading on plants.

The fact that plants are not mobile as humans and animals produces lower mixing levels in a given population.
Consequently, the shape of the plot or field in which the plants are distributed affects significantly disease dynamics in
these systems. In fact, there are both empirical and theoretical evidence that support this hypothesis [40, 41, 42, 43, 44,
45, 46, 47]. In general, it has been suggested that square plots and fields favor higher spreading of plant diseases than
elongated ones of the same area [40, 41, 42]. It is important to remark that the area of the field also plays a fundamental
role, with larger plots and fields favoring more the spreading of diseases [44, 46, 47]. Also, the orientation of elongated fields
may affect the disease propagation with orientations perpendicular to prevalent winds suppressing epidemic progression
[41, 42]. All in all, for plots and field of the same area and orientation there is empirical and theoretical evidence that
elongated shapes decreases the impact of epidemics on plant populations. It is worth noting that the theoretical models
[45, 46, 47] used in the previously mentioned studies do not use network theory as a tool for the study of epidemic
spreading. Recently, Estrada et al. have generalized the RGGs to consider rectangular areas [48, 49, 50] and have used
them as plant fields to show analytically and computationally that the rectangular elongation of these fields produces a
significant delay on the disease propagation on plants [51].

In this work we develop a new model that combines three desirable ingredients for modeling plant diseases: (i) a
network environment in which the proximity between plants determines their connectivity, (ii) the spatial embeddeness of
plants in areas of different shapes, (iii) inclusion of long-range jumps allowing distance-dependent dispersal of pathogens.
The model is based on a generalization of classical epidemiological models, such as Susceptible-Infected-Susceptible (SIS)
and Susceptible-Infected-Recovered (SIR) models, in which the infection is propagated through the nodes and edges of a
spatial network and in which long-range dispersal of the disease is allowed. The spatial networks used here allow to study
the effect of elongation of plant crops and fields on the dispersal of the pathogen. We first formulate mathematically this
model and then use it for the analysis of epidemic spread on hypothetical plant plots. According to our current results
the propagation of pathogens through plants when long-range dispersal is present is characterized by the following general
patterns: (i) much faster propagation of disease than in normal diffusive regimes, (ii) the elongation of plant plots/fields
increases the infectivity needed to trigger the epidemics; (iii) the elongation of the plots/fields decays dramatically the
number of affected plants; (iv) the number of plants dead (removed) in a very elongated plot/field is much less when
the dynamics is controlled by a Mellin transform than when it is controlled by the Laplace one; (v) the dynamics is
characterized by the existence of patchy regions of infected plants and by the absence of a clear propagation front that
separates infected from noninfected plants.

2. The Model

2.1. Modeling scenario. Here we consider plants represented by the nodes of a graph G = (V,E) . The plants are
assumed to be randomly and independently distributed (see Fig. 2.1 (a)) on a given plot or field of rectangular shape
and unit area. Then, we model such scenario by a random rectangular graph (RRG). An RRG is defined by considering
a rectangle [0, a] × [0, b] where a, b ∈ R, a ≥ b. For the sake of simplicity we will consider unit rectangles of the form
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[0, a] ×
[
0, a−1

]
. The construction of the RRG is as follow. We distribute randomly and independently n points on this

rectangle. We then center at each point a disk of radius r, which hereafter we call the influence radius. In Fig. 2.1 (a) we
illustrate a possible connection radius for the plant in the center. It indicates that the pathogen can jump to any plant
which is at a distance shorter or equal than r. Notice that for the construction of RRG only one radius for each node
is used and it remains fixed for all the experiments. Let i be an arbitrary plant in the rectangle and let Di be the disk
of radius r centered at i. Then, we connect every node inside the disk Di to the point i. By doing so for each of the n
points we construct the RRG. When a = 1 the rectangle [0, a] × [0, a−1] is simply the unit square [0, 1]2. This model is
known as the random geometric graph (RGG) and has been widely studied in the mathematical literature. In Fig. 2.1
((b) and (c)) we illustrate two RRGs with different values of the rectangle side length a and the same number of nodes
and edges. In Fig. 2.1 (b) when a = 1 the graph corresponds to the classical random geometric graph in which the nodes
are embedded into a unit square. The case illustrated in Fig. 2.1 (c) corresponds to a = 2 and it represents a slightly
elongated rectangle.
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Figure 2.1. Schematic illustration of a random distribution of plants in a plot or field (a), a squared
random geometric graph (b) and an elongated random rectangular graph (c).

The adjacency matrix of the RRG is defined as the matrix A ∈ Rn×n whose entries are given by

(2.1) A (i, j) =

{
1
0

if (i, j) ∈ E,
otherwise.

The degree of a node ki, is the number of nearest-neighbor connections that the node i has. The consideration of the
elongation of the unit rectangles where the nodes of the graph resides is an important modeling feature in the current
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work. There has been experimental evidences that the elongation of the plots and fields in which the plants are growing
decreases the rate of epidemic propagation and makes more difficult the infection to become epidemics. However, it is
obvious that the elongation of the rectangles with a fixed connection radius will make the graph disconnected at certain
point. In the general case of RRGs we have proved that the average degree k̄ depends on the number of nodes n and a
function f of the elongation of the rectangle: k̄ = (n− 1)f , where f is given by (see ref. [48] for details):

(2.2) f =





πr2 − 4
3 (a+ a−1)r3 + 1

2r
4, for 0 ≤ r ≤ b

− 4
3ar

3 − r2a−2 + 1
6a
−4 + ( 4

3r
2 + 2

3a
−2)
√
a2r2 − 1 for b ≤ r ≤ a

+2r2 arcsin( 1
ar ),

−r2(a2 + a−2) + 1
6 (a4 + a−4)− 1

2r
4 for a ≤ r ≤

√
a2 + a−2

+( 4
3r

2a−1 + 2
3a)
√
r2 − a2 + ( 4

3r
2 + 2

3a
−2)
√
a2r2 − 1

−2r2(arccos( 1
ar )− arcsin(ar )).

Then, in the case of RRGs the probability of the graph being connected depends on both the connection radius and
the elongation of the rectangle. Explicitly, such probability P [· · · ] is written in the limit when the number of nodes is
very large as

(2.3) lim
n→∞

P [(n− 1)f − log n ≤ α] = exp (− exp (−α)) ,

where α is a parameter, which indicates that when α → +∞ the RRG is almost surely connected when n → ∞, and
almost surely disconnected when α → −∞. Because the parameter α is unknown and it depends on the specific RRG
considered, we have obtained a lower bound for exp (− exp (−α)) using (2.3):

(2.4) exp (− exp (− ((n− 1)f − log n))) ≤ exp (− exp (−α)) .

Then, we can plot the values of the connectivity radius versus the elongation of the rectangles (see Fig.2.2). The
curve joining the points of this plot makes a separation between the RRGs which are connected (upper triangular part)
from those which are disconnected (lower triangular part). That is, the curve represents the critical radii versus critical
elongation, and it gives the critical region indicating the connectivity of the RRGs. In this work we use values of r
which guarantee that the graph is connected for the studied values of the elongation parameter a. In addition, we check
individually that every graph is connected.

Another important aspect related to the connectivity of RRGs is about network density, i.e., number of links per given
size. The number of links varies with the elongation of the rectangle, with larger elongation producing less links for a
constant connection radius. In modeling plant diseases we keep the connection radius constant as a consequence of the
fact that the radius of action of the pathogen is fixed. Then, the decay of the edge density with the elongation is a natural
result due to the fact that the elongation makes the propagation of the pathogen more directional. That is, in a square
the pathogen has almost the same probability of hopping in any direction, but in a very elongated plot it can only hops in
the direction of the larger axis, and such decrease in the direction of the hopping is reflected in the decay of the number
of edges in the graph.

2.2. Long-range interactions (LRI) epidemic models.

2.2.1. Generalities. Here we consider two epidemiological models for modeling the disease propagation on plants, namely
the SIS and SIR models. When studying plants a frequently found situation is a systemic or ‘all-or-nothing’ diseases of
crops or annual plants. In these cases, the most convenient model to be used is the SIR one, in which the plants are either
susceptible, infected or die after the infection. However, in some situations hosts recover from the disease and become
susceptible again as soon as they recover. This is the case for instance when plants recover by shedding and regrowing
diseased leaves. In this particular scenario the most appropriate model is the SIS, which has been used in such situations
by several authors [52, 53, 54]. In the case of vectored plant diseases, such as the ones mainly considered here, Jeger et al.
[55] have recommended the SIS model as the main theoretical framework for modeling the epidemic spreading. We now
describe the main mathematical formalism for these two models in which we incorporate the LRIs.
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Figure 2.2. Plot of the critical versus the rectangle elongation for the RRGs. The line dividing the two
regions represents the critical values of radius and elongation for RRGs with n = 1000 nodes. All the
calculations are the result of averaging 20 random realizations of the RRG with the given parameters.

Let us now write the equations of the SIS model taking place through the nodes and edges of the graph. Let si be
the probability of individual i of being susceptible to the infection, and let xi be the probability of individual i of being
infective after having been infected by the disease. Then, if the birth and death rates of the epidemics are β and µ,
respectively we have the following equations for the SIS model on the graph:

(2.5) Ṡi = −βSi
∑

j

Aijxj + µxi,

(2.6) ẋi = βSi
∑

j

Aijxj − µxi.

In a similar way, the SIR model is written as

(2.7) Ṡi = −βSi
∑

j

Aijxj ,

(2.8) ẋi = βSi
∑

j

Aijxj − µxi,

(2.9) Ṙi = µxi,

where Ri is the probability of individual i of being recovered from infection.
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2.2.2. LRI on plant diseases. In the previously defined model, an infective particle is considered to jump from one plant
i to another plant j if and only if the two plants are connected in the corresponding spatial network. That is, in the
case of the RRGs G = (V,E) considered here the transmission of the disease is only possible if (i, j) ∈ E. This scenario
corresponds to the case of an insect vector that hops only at short distances without any pre-alignment behavior. That is,
this corresponds to an insect that does not discriminate among the different plants around its actual position and simply
hops to the nearest neighbor one which is available. This situation if represents in Fig. 2.3 (a).

A different scenario arises if we consider that the insect vector has a pre-alignment behavior and also that it needs a
plant contact and assessment of the surface cues after landing. In this case, the insect vector can flight from its current
position to another plant, which looks attractive to it, and which is not necessarily close to the current one. Also, it is
possible that the nearest plants look attractive or appetitive to the insect, it lands on it, but after probing it decides not
to colonize the plant. Then, it hops to another nearest neighbor and the process continues until it finds an appetitive
plant. Indeed, Irwin et al. [56] have identified the following categories of aphids according to their behavior: (a) transient
non-vectors, which land and probe but do not colonize the crop and do not transmit the virus; (b) transient vectors,
which land and probe without colonizing the crop but transmit the virus; (c) colonizing non-vectors, which land, stay and
reproduce on the crop but do not transmit the virus; (d) colonizing vectors, which land, stay and reproduce on the crop
and transmit the virus. Obviously, we are interested here in those categories in which there is transmission of the virus,
but the category (a) is also important, as it represents a non-steady state of the vector, which can be exploring until it
finds the appropriate plant to become any of the other categories. In Fig. 2.3 (b)-(d) we represent scenarios in which an
insect vector can hop not to the nearest neighbor of its current position but to a second, third, fourth neighbor, and so
forth. In the way they are represented here they intent to capture the idea the insect can land in a nearest neighbor and
probe it but being in category (a) at each of the empty circles of the graphics. For instance, in Fig. 2.3 (b) the insect hops
to a nearest neighbor and probe on it but decides not to colonize and hops again to the second nearest neighbor, probes
it and decides to colonize it. Then, the resulting trajectory is a two-edges hop in the network, where the transmission is
effective only at the endpoints, because at the intermediate ones the insect behaves as a transient non-vector.

Then, in mathematical terms our model consists of the following. We consider that the chances of the virus to be
transported from an infected to a susceptible plant decays with the “distance” at which these two plants are located
in the field. This is a consequence of the empirical observations that most of insects prefer to colonize not so distant
plants from its original position. By distance we consider here the separation in terms of the number of steps in the
shortest path connecting both nodes in the network, due to the possible multi-hopping nature of these exploratory hops
of transient non-vectors. Resuming, in Fig. 2.3 an infected plant (represented in light green) can transmit the pathogen
to any of its nearest neighbors with a probability σ1. In addition, the pathogen can jump to a second nearest-neighbor
with probability σ2 < σ1. Similarly, it can hop to a third, fourth, and so forth neighbor, such that the probabilities decay
as: σdmax < · · · < σ1, where dmax is the diameter—the longest shortest path—of the network.

2.2.3. Mathematical formulation. In order to implement mathematically the model of disease propagation in this new
scenario we need to define the k-path adjacency matrices which account for the hop of the infective particle beyond the
nearest neighbors of from its current position. Let dmax be the graph diameter, i.e., the maximum shortest path distance
in the graph.

Definition 1. Let d ≤ dmax. The d-path adjacency matrix, denoted by Ad, of a connected graph of n nodes is the square,
symmetric, n× n matrix whose entries are:

(2.10) Ad (i, j) =

{
1
0

if dij = d,
otherwise,

where dij is the shortest path distance between the nodes i and j. Obviously A1 = A. The d-path degree of the node i is
given by

(2.11) kd (i) =
(
1TAd

)
i

where ~1 is an all-ones column vector.
Let us now consider the following transformed d-path adjacency matrices:
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(a) (b)

(c) (d)

Figure 2.3. Schematic representation of the long-range dispersal of pathogens among plants embedded
in a field or plot, such that the probabilities of jumping from one plant to another decay with the shortest-
path distance among the plants. From (a) to (d) the hop of the pathogen occurs in one, two, three and
four steps, respectively, such as the it is transported from the first (infected) plant to the last (susceptible)
plant but not to any of the intermediate ones (marked by empty circles). The probabilities in which such
processes occur decays with the number of steps, such that: σ4 < σ3 < σ2 < σ1,

(2.12) Ãτ =





∑dmax

d=1 d−sAd,

A+
∑dmax

d=2 exp (−λd)Ad,

forτ = Mell, s > 0

for τ = Lapl, λ>0,

where τ indicates the type of transformation, i.e., Mellin or Laplace transforms. In the case of Laplacian operators
transformed by the same type of transformation we have previously proved that the transformed operators are
self-adjoint and bounded under certain conditions [57, 58].

Let us define the generalized degree of a given node i as

(2.13) k̃τ (i) =
(
Ãτ1

)
i
.

Now we plug the transformed d-path adjacency matrices into the SIS and SIR models to get the generalized epidemic
models with long-range interactions. These equations are given below for the case of the Mellin transformed d-path
adjacency matrices in the SIS model

(2.14) ṡi = −βS
∑

j

(
dmax∑

d=1

d−sAd

)

ij

xj + µxi,
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(2.15) ẋi = βSi
∑

j

(
dmax∑

d=1

d−sAd

)

ij

xj − µxi.

Then, when s → ∞ we recover the classical SIS or SIR models in which there is no long-range hops of the infective
particle. When s→ 0 the infective particle can hop to any node of the graph with identical probability, which corresponds
to the situation of an infection diffusing on a complete graph Kn. The situation is quite the same with the Laplace
transformed d-path adjacency matrices as defined in (2.12) for the cases when λ→∞ and λ→ 0. Thus, in every case we
always recover the original classical epidemiological models of graphs for large values of the parameters in the transforms of
the d-path adjacency matrices and we approach the diffusion of the epidemic on a complete graph when these parameters
tend to zero.

2.3. Markovian formulation. Equations (2.14) and (2.15) are only valid when the number of infected individuals is
small, e.g., close to the epidemic threshold. Here, following the framework introduced in [66], we formulate a Markovian
evolutionary equation that, in principle, is valid for any epidemic prevalence. We denote, as in the former section, β as
the probability that a susceptible node contracts the disease when contacting an infected one, and µ the probability that
an infected node passes to Susceptible (SIS) or Recovered (SIR). Let pi(t) be the probability that a node i is infected at
time t. This way, under the framework of an SIS disease, the evolution of this probability reads:

(2.16) pi(t+ 1) = pi(t)(1− µ) + (1− pi(t))qi(t) ,
where the first term on the r.h.s accounts for the probability that if node i is infected at time t it will not recover in the
next time step t + 1. The second term in its turn, is the probability that, when node i is healthy at time t, it becomes
infected at time t+ 1, being the infection probability qi(t). This probability reads:

(2.17) qi(t) = 1−
N∏

j=1

[
1− βÃτijpj(t)

]

where matrix Ãτ accounts for the interaction strength between pairs of nodes as defined in Eq. (2.12). The expression
qi(t) is calculated as 1 minus the probability that the node i is not infected by any infectious contact. This last probability
is the product over all the possible contacts of node i, considering that a node j transmits the disease to i with probability
βÃτijpj . Note that if node j is not connected to i, Ãτij = 0, then the corresponding term in the product is equal to 1, since
j cannot infect i regardless of its state, pj(t).

Eq. (2.16) governs the evolution of a SIS epidemics. For an SIR disease the Markovian equations reads as follows:

pi(t+ 1) = pi(t)(1− µ) + (1− pi(t)− ρi(t))qi(t) ,(2.18)
ρi(t+ 1) = ρi(t) + µpi(t) ,(2.19)

where ρi(t) is the probability that node i is recovered at time t. The expression for the infection probability qi(t) is
identical to that of Eq. (2.17).

We should notice here that, as explained before, these equations hold for any disease incidence, while Eqs. (2.14) and
(2.15) are only valid when the disease prevalence is small.. To explain this, take Eq. (2.17) for qi(t) and consider that
the prevalence is small, pi � 1 ∀i, and for this reason let us denote pi = xi. Then, the product in (2.17) transform into:
1 −∑N

j=1 βÃ
τ
ijxj . the new expression for qi(t) in Eq. (2.18), and passing from discrete to continuous time, we recover a

similar expression to that in Eq. (2.15) for the evolution of the infected state of node i. For more details the reader is
referred to [67].

2.4. LRI epidemics vs. dispersal kernel models. Arguably, the most used models for the study of dispersal processes
in ecology are based on “dispersal kernels”, a term which emerges from the mathematical studies of population spread.
Dispersal kernels are widely applied to the study of effective dispersal in plant studies, such as seedlings and sapling, as
well as in effective pollen dispersal and the dispersal of active movers [68]. In general, a dispersal kernel consists in a
single point source designated as the origin of the dispersion embedded into a continuous space. It is assumed that the
population of dispersers follows a given probability density function (PDF), which is named the dispersal location kernel
and denoted by KL (r). Then, the probability of having a dispersal end point with given coordinates (typically in polar
coordinates) in an infinitesimally small area dA = dxdy (see Fig. 2.4) is obtained from that PDF as KL (r) dA. In general,
it is assumed that the dispersal shows radial symmetry, such as the kernel integrates to 1 over the whole two dimensional
space. Nathan et al. [68] have reviewed 13 different types of dispersal kernels, such as Gaussian, (negative exponential,
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power-law, logistic, etc.). The applications reported for these kernels include the dispersal of pollen, seeds, beetles, moths,
birds, mammals, butterflies, fish, propagules, and flies, with pollen and seedling having the largest number of reports.

Figure 2.4. Illustration of a dispersal kernel with origin in the center of coordinates and a small region
of area dA = dxdy for which the probability of finding the disperser is given by KL (r) dA, where KL (r)
is the dispersal location kernel.

Then, there is a fundamental difference between the use of dispersal kernels and the LRI epidemic model developed
here. Dispersal kernels are appropriate for modeling processes in which the spread is produced on a continuous space, such
as the case of pollen, seeding or the radial distribution of insects mainly driven by wind. However, in the case of insect
vectors the situation is greatly different due to the behavioral events that precede the transmission of the viruses. For
instance, it is reported that the flight of whiteflies in the field is not entirely wind-oriented, possibly due to the fact that
they are looking for the most attractive and appetitive plants. The documented fact that even after landing aphids may
or may not colonize and transmit the viruses to a plant also imposes certain differences with the use of dispersal kernels.
Indeed, in the LRI epidemic model we have a discrete space in which the plants are represented at specified positions of
the space. We also assume that the propagator of the disease hops from plant to plant as it is characteristics of insect
vectors.

In the particular case of insect vectors like aphids it should be noticed that there are two main propagation mechanisms,
either through “inadvertent” or “intentional” transport mechanisms [69]. The first corresponds to the case in which aphids
are transported in an involuntary act, such as when they are propelled by the force of impact, gravity, air current, of a
combination of them. The intentional transport is a voluntary act which is prompted by the preprogrammed movement of
the aphids–the most important one being migration–or by external perturbations in which the aphids are driven by their
sensed stimuli to the environment. The class of inadverted transport is clearly well-described by dispersal kernels due
to the spatial characteristics of the processes involved. On the other hand, the intentional displacement is much better
described by LRI on networks as described here. Thus, we think that both models (dispersal kernels and LRI epidemic)
are complimentary more than duplicative. It is true that if the density of the plant population is very high, covering
mainly the whole 2D space, then both approaches are appropriate for describing the dispersal of pathogens across the
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plants. It is also important to remark that the LRI epidemic model can be enriched by using many of the different types
of functions already used as dispersal kernels instead of the only two ones that we have used here. Finally, it should be
remarked that extensions of the current approach by combining it with dispersal kernels will offer a gold opportunity to
describe transport of insect vectors due to inadverted and intentional mechanisms combined.

3. Results

Let us now analyze what are the effects of considering long-range interactions in a population subjected to contagion
processes of SIR and SIS types. To this aim we build synthetic networks by first constructing a RRGs with a = 2 and
r = 0.1. With the adjacency matrix A1 of the graph we calculate the different distance matrices Ad in order to construct
both the Mellin and Laplace transformations of the graph corresponding to different values of s, as introduced in Eq. (2.12).
Once the networks are built and matrices Ãτ computed, we conduct extensive numerical Monte Carlo simulations of both
the SIS and SIR dynamics and for different values of the transformations parameters. In the simulations we start seeding
the infection in a small fraction, 0.01, of the nodes. Here we always use discrete time step simulations. At each time-step,
each infected node contacts all the susceptible agents in the network and the disease is propagated with probability Aτijλ
–where Aτij is the interaction strength between nodes i and j – and then, all the nodes update their state synchronously.
In the SIS we let the system evolve for 5 ·104 time-steps to assure that the steady state has been reached and then, wait for
an additional 103 time-steps to calculate the fraction of infected nodes I as the average of I(t) over this last period. In the
SIR dynamics instead, we let the system evolve until the epidemics ends and thus calculate the fraction of recovered (dead
or removed) nodes R. For each selection of the transformation’s parameters and infectivity λ we perform 500 independent
runs with different initial conditions. The final values of I and R are obtained as the average over all the runs. For the
Markovian formulation of the two dynamics the epidemic curve has been obtained iterating for the nodes in the system of
Eqs. 2.16 and 2.17 for the SIS and Eqs. 2.18 and 2.19 for the SIR respectively. Using a RRG composed by n = 103 nodes
and elongation a = 2.0 (r = 0.1) we compare the results of the Markovian formulation and the numerical simulations for
the four possible cases: SIS and SIR dynamics, Exponential and Mellin transformations. For all the panels of Figure 3.1
we have a good agreement between the Markovian (continuous lines) and numerical Monte Carlo simulations (circles).

3.1. Influence of long-range dispersal. As expected, in all the scenarios a decrease in infected and dead plants is
observed for higher values of the transformations parameters – i.e., lower interaction strength between distant nodes –
highlighting the role of physical distance between infected plants. Another interesting result of our analysis is that the
Mellin transformation favors more the diffusion of the disease with respect to the Laplace transformation (see Fig. 3.1).
These differences are very important in practical terms. It is known that when dispersal processes are described by
exponentially decaying distributions [64], the probability of moving a given distance decreases with the separation of the
places at least in proportion to the exponential distribution. These models can be approximated by diffusion models on
an appropriate scale. In recent years, there has been accumulated evidence on the existence of unusual, extreme dispersal
events, which are better modeled by power-law decay dispersal than with exponential ones. The spatial consequences of
this kind of dispersal processes are analyzed in a further section of this paper.

A very important observation is that when the transformation parameters λ or s tend asymptotically to zero, i.e., when
the long-range dispersal is quite strong, the epidemic threshold goes to zero. That is, as the long-range dispersal of the
pathogen increases the number of infected plants needed to trigger an epidemics is practical nil. The epidemic threshold
ζ =

(
β
µ

)
represents a threshold in the sense that when ζ < 1 the infection dies out and if ζ > 1 the disease becomes

an epidemic. In those cases where ζ = 1, the disease remains in the population becoming endemic. The value of this
threshold strongly depends on the topology of the network. In particular, for a given graph G = (V,E), it has been shown
that [65, 66, 70]:

(3.1) ζ =
1

`1 (G)
,

where `1 (G) is the largest eigenvalue of the adjacency matrix of the network. Then, let τ = {λ, s} be the parameter of
the transform used in the SIS or SIR model described in this work. We then have the following result.

Lemma 2. Let G = (V,E) be any graph with n nodes and with transformed d-path adjacency matrix Ãτ for τ = {λ, s} .
Let ζ (τ) = (λ1 (G, τ))

−1 be the epidemic threshold and λ1 (G, τ) be the largest eigenvalue of Ãτ . Then,

(3.2) lim
n→∞

lim
τ→0

ζ (τ) = 0.
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Proof. We have that lim
τ→0

Ãτ = J − I, where J is an all-ones matrix and I is the corresponding identity matrix. Then,
lim
τ→0

λ1 (G, τ) = λ1 (J − I) = n − 1, where n is the number of nodes. Thus, for sufficiently large graphs, i.e., n → ∞ we
have that lim

n→∞
1/ (n− 1) = 0, which proves the result. �

In other words, for sufficiently large graphs and with very strong long-range dispersal of the pathogen, the number of
infected individuals needed to trigger an epidemics is negligible.

Figure 3.1. Comparison between the numerical solution of the Markovian formulation and the Monte-
Carlo simulations for the SIS ((a) and (b)) and SIR ((c) and (d)) dynamics and for the Exponential ((a)
and (c)) and Mellin transformations ((b) and (d)). Continuous lines represent the Markovian formulation
while colored circles Monte-Carlo simulations. Different colors represent the different parameters of the
transformations. Each point is the average over 500 Monte-Carlo simulations with different initial con-
ditions. The original network is a RRG with n = 103 nodes, elongation a = 2.0 and connection radius
r = 0.1.

In addition to the Montecarlo simulations we have solved the Markovian equations for the SIS model. In Fig. 3.1
we show the good agreement between the Markovian approach and the results of the Monte Carlo simulations. The
main advantage of the Markovian approach is that we do not need to perform many computational realizations. Instead,
we only solve the equations once for each λ value. The two panels of Figure 3.2 show (in color code) the fraction of
infected individuals for the SIS model, as a function of the infection probability β and the exponents of the respective
transformations s (Mellin) and λ (Laplace). The number of infected individuals is calculated here as I =

∑N
j=1 pj in the

stationary state. The results clearly show that as exponents s and λ approach to zero (note the logarithmic scale in the
axes of both figures) the epidemic threshold βc gets smaller. Obviously, as these exponents become very small we reach a
saturation for the epidemic threshold around a small value βc ∼ 10−3 due to the finite size of the networks n = 103.

3.2. Influence of plot/field elongation. One of the most important characteristics of the current model is that we can
study the influence of the elongation of plots and fields over the propagation of a disease on plants. That is, using the
random rectangular graphs instead of the classical “RGG” we can elongate the rectangle keeping the area of the plot/field
constant. We investigate the effects of this rectangle elongation by studying the epidemic dynamics on rectangles with
length to width ratios ranging from 1 to 100. In Fig. 3.3 we illustrate the results of applying the Laplace transform to
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Figure 3.2. The panels show (see color code) the stationary fraction of infected individuals in the
Markovian dynamics of the SIS model as a function of the infection probability β and the exponents,
s (Mellin) and λ (Laplace), of the transformations at work. The recovery probability has been set to
µ = 0.5 and the size of the network is n = 103.

the SIR model using different values of the transform parameter λ and for different elongations of the rectangle. As can
be seen, for any value of the Laplace transform parameter λ there is a significant influence of the rectangle elongation of
the spread of the disease. The main effect observed is a decay in the speed of propagation of the disease as a function of
β as observed by the smaller percentage of dead plants R when the rectangle has a width/length ratio of 100 than when
it has a ratio of 1. The effect of larger λ is observed across the panels as a result of the delay in reaching the saturation
of the epidemic as a function of β.

In Fig. 3.4 we illustrate the results obtained for the elongation of rectangles with width/length ratios from 1 to 100
when the dynamics is controlled by a Mellin transform of the SIR model. In general, the results are qualitatively similar to
those obtained by the Laplace transform, but there are significant quantitatively differences which deserve to be considered
in detail. Let us first consider the effect of the infectivity β. It can be seen that the Mellin transformed dynamics reaches
the saturation for smaller values of the infectivity β than the Laplace transformed dynamics. For instance, even when
the Mellin parameter is relatively large, e.g., s = 4, the saturation is reached for relatively small values of β (see panel
(d) of Fig. 3.4). However, this is not observed for the Laplace transform where even for relatively small values of λ the
saturation is obtained for relatively large values of the infectivity (see panels (c) and (d) of Fig. 3.3). This is a consequence
of the following. In the Mellin transform we have a power-law dependence of the pathogen jumps which make that it can
reach regions very far from its original position in the plot/field. Such hops are not so dramatic in the case of the Laplace
transformed one, where the jumps are controlled by an exponential law.

Now, the most remarkable, and surprising, effect of elongation is observed when we consider its effects on the percentage
of plant dead for a given infectivity value. In the case of the Laplace transform when the long-range dispersal is very
strong, e.g., λ = 0.5 the elongation of the rectangle from a = 1 to a = 10 drops the percentage of deaths by 25%. However,
in the case of the Mellin transformed dynamics when the long-range dispersal is quite strong, e.g., s = 1, the percentage
of deaths is dropped by 50% when the rectangle is elongated from a = 1 to a = 10. This result is at first unexpected and
somehow counter-intuitive because the effects of the long-range dispersal produced by the Mellin transformed dynamics
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Figure 3.3. (color online) Effect of elongation a on the final fraction of recovered nodes in the SIR
dynamics for 4 different values of the exponential transformation: λ = 0.5 (panel a), λ = 1.0 (panel b),
λ = 1.5 (panel c) and λ = 2.0 (panel d). Each point is the average over 500 Monte-Carlo simulations with
different initial conditions. The original network is a RRG with n = 103 nodes, elongation a = 1, . . . , 10
and connection radius r = 0.1.

are stronger than those produced by the Laplace transform. Thus, we should expect that the percentage of deaths in the
Mellin transformed dynamics for any rectangle should be larger than those produced by the Laplace transformed. However,
we would notice that we are comparing two transformations (Laplace with λ = 0.5 and Mellin with s = 1) without taking
any point in common such as, e.g., the total strength of the interactions (that could be measured as the sum over the
entries of the transformed adjacency matrix given two values of λ and s). The main causes of this effect observed here
are not totally clear. However, we guess that they should revolve around the fact that the Mellin transformed dynamics
produces a much faster propagation of the pathogen across vast regions of the plot/field (see further analysis in the next
section). Then, due to the eventual death of the plants in those isolated regions there are not infected plants to continue
the propagation and the epidemics eventually dies. The existence of such patches of infection are made clear in the next
section of this work.

In closing, we have that the elongation of the plots/fields produces the following effects: (i) the level of infectivity β
needed to trigger the epidemics is larger for more elongated rectangles than for the square; (ii) the number of deaths is
larger in the square than in the most elongated rectangles; and (iii) the number of deaths is significantly smaller when the
dynamics is controlled by the Mellin transform than with the Laplace transform.

3.3. Spatial patterns. An important experimental observation about the dispersal of diseases in plants is the existence
of unusual, extreme dispersal events, which follow power-law decay dispersal. The most important consequence of these
kinds of dispersal processes of pathogens is the generation of spatial patterns without well-defined epidemic fronts [59],
which generate clusters of different sizes [24]. This is a fundamental difference with the Gaussian-like diffusive processes
in which waves separating infected from uninfected territory exist, such that the first propagate smoothly and at constant
speed [60, 61, 62]. As a matter of example we reproduce here a Figure from Grice et al. [63] in which the abundance
of C. grandiflora–an invasive species, acting here as the pathogen–in Dalrymple Shire, northern Queensland, Australia
displays a clear patchy pattern (Fig. 3.5), characteristic of this type of power-law dispersal in the continuous space. The
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Figure 3.4. (color online) Effect of elongation a on the final fraction of recovered nodes in the SIR
dynamics for 4 different values of the Mellin transformation: s = 1.0 (panel a),s = 2.0 (panel b), s = 3.0
(panel c) and s = 4.0 (panel d). Each point is the average over 500 Monte-Carlo simulations with
different initial conditions. The original network is a RRG with n = 103 nodes, elongation a = 1, . . . , 10
and connection radius r = 0.1. We have set here µ = 0.5 since we are not trying to characterize any
particular disease. For µ = 1, for instance, the recovery is too fast to see the spatial propagation and,
conversely, in the case µ =0 the dynamics would be an SI dynamics. We decided to lie between these two
limiting cases.

question is then, whether such patchy patterns are also observed in the discrete space in which the LRI epidemic model
is developed.

Our model clearly reproduces such kind of patchy dispersal of the pathogen in which there is not a clear wave separating
infected from uninfected territory. In Fig. 3.6 we display the dispersal patterns of a pathogen in a rectangular plot of
length/width ratio 4 showing the infection times τi for µ = 0.5 and β = 0.18 when starting the simulation from a single
infected node which is placed in the top left part of the field. Three cases are shown: (top): the original (not transformed)
network; (central): The Mellin-transformed network with s = 3; and (bottom): The Laplace-transformed network with
λ = 1. The values of the transformation and β have been chosen since the two transformed networks yield similar number
of deaths at the end of the simulation. From the first plot it is clear that for β = 0.18, the original network is supercritical
and the infection pattern is well described as a cascade of infections very well correlated with the spatial distribution of
nodes. The second plot (Mellin) shows that the transformed network yields a completely different behavior. First, a large
number of deaths for the same β value in a shorter time (30 time steps). This is due to the long-range initial infections (see
circles) that appear far away from the first infection seed. The third plot (Laplace) shows that despite the same number
of infections are achieved, the mechanisms behind them are quite different. First, there are not significant long-range
infections and, second, the time needed is much longer than for the Mellin-transformed network. From these plots we can
hypothesize that the patchy behavior is easier to achieve from the Mellin mechanism than for the Laplace one. Indeed,
for smaller (although supercritical) β values, most of the realizations of the SIR dynamics in Mellin-transformed networks
yield patchy distributions of dead nodes as those found in real scenarios.
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Figure 3.5. Abundance (% cover) of (left panel) C. grandiflora and (right panel) Z. mauritiana in
Dalrymple Shire, northern Queensland, Australia (reproduced from Grice et al. [63]). The star indicates
the site of first introduction. Notice the patchy areas of “infection” and the lack of a clear front wave from
the site of first introduction to the uninfected region. Reproduced with permission from [63].

4. Conclusions

We have developed a model here that accounts for long-range dispersal of pathogens in disease propagation in networked
systems. The model is a generalization of the classical SIS and SIR equations on networks by using a transformed
adjacency operator. The current model also incorporates spatial characteristics of the plots and fields in which the plants
are embedded. These spatial characteristics are included through the use of random rectangular graphs which allow to
consider the effects of the elongation of plots and fields on epidemic spreading dynamics. Using this generalized model we
have studied the propagation of epidemics on plants emulating a few realistic scenarios of plant diseases. We have found
that under the influence of long-range dispersal there is much faster propagation of a disease than in normal diffusive
regimes. We also observed that the elongation of plant plots/fields increases the infectivity needed to trigger the epidemics
and that such elongation of the plots/fields decreases dramatically the number of plants dead. That is, the number of
plants dead in a very elongated plot/field is much less when the dynamics is controlled by a Mellin transform than when
it is controlled by the Laplace one, and they both are significantly smaller than when the disease is propagated without
long-range dispersal effects. Last but not least, we also observed that the dynamics in the Mellin-transformed networks
is characterized by the existence of patchy regions of infected plants and by the absence of a clear propagation front that
separates infected from noninfected plants. All in all, we consider that the current model represents an important step
forward for modeling epidemic propagation on plants allowing the variation of a few parameters that simulate realistic
scenarios. The model can also be adapted to other scenarios of propagation and dispersal in spatially embedded regions,
such as seed dispersal, and propagation of wildfires.
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Figure 3.6. Time of infection of individual nodes in a RRG with a = 2, n = 1000, using the non-
transformed model (top panel), Mellin-transformed (central panel) and Laplace-transformed (bottom
panel) SIR model with β = 0.105 and µ = 0.5. Here we used r = 0.05 to create a sparser networks that
allow to visualize better the patchy regions.
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