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Summary

� Few pan-genomic studies have been conducted in plants, and none of them have focused

on the intraspecific diversity and evolution of their plastid genomes.
� We address this issue in Brachypodium distachyon and its close relatives B. stacei and

B. hybridum, for which a large genomic data set has been compiled. We analyze inter- and

intraspecific plastid comparative genomics and phylogenomic relationships within a family-

wide framework.
� Major indel differences were detected between Brachypodium plastomes. Within

B. distachyon, we detected two main lineages, a mostly Extremely Delayed Flowering (EDF+)

clade and a mostly Spanish (S+) – Turkish (T+) clade, plus nine chloroplast capture and two

plastid DNA (ptDNA) introgression and micro-recombination events. Early Oligocene

(30.9 million yr ago (Ma)) and Late Miocene (10.1Ma) divergence times were inferred for the

respective stem and crown nodes of Brachypodium and a very recent Mid-Pleistocene

(0.9Ma) time for the B. distachyon split.
� Flowering time variation is a main factor driving rapid intraspecific divergence in

B. distachyon, although it is counterbalanced by repeated introgression between previously

isolated lineages. Swapping of plastomes between the three different genomic groups, EDF+,

T+, S+, probably resulted from random backcrossing followed by stabilization through

selection pressure.

Introduction

Plastid DNA (ptDNA) has been widely used in inter- and
intraspecific phylogenetic analyses in multiple species and popula-
tions of plants (Waters et al., 2012; Ma et al., 2014; Middleton
et al., 2014; Wysocki et al., 2015). Phylogenetic dating of mono-
cots and eudicots has also been based on ptDNA (Chaw et al.,
2004). Comparative genomics of whole plastid genomes has pro-
vided a way to detect and investigate genetic variation across seed
plants (Jansen & Ruhlman, 2012). The proliferation of whole
genome sequencing (WGS), which typically includes a substantial
amount of plastid sequence, has provided large data sets which can
be utilized to assemble and analyze plastomes (Nock et al., 2011).

Brachypodium is a small genus in the family Poaceae that con-
tains c. 20 species (17 perennial and three annual) distributed
worldwide (Schippmann, 1991; Catal�an & Olmstead, 2000;
Catal�an et al., 2012, 2016a,b). The three annuals include two
diploids (B. distachyon (2n = 2x = 10; x = 5), B. stacei

(2n = 2x = 20; x = 10)) and their derived allotetraploid
(B. hybridum (2n = 4x = 30; x = 5 + 10)). These three species had
previously been considered cytotypes of B. distachyon (Catal�an
et al., 2012). In addition to the large, overlapping distribution in
their native circum-Mediterranean region (Catal�an et al., 2012,
2016a; L�opez-Alvarez et al., 2012, 2015), B. hybridum has natu-
ralized extensively around the world.

The evolutionary relationship between Brachypodium and other
grasses has been thoroughly studied (Catal�an et al., 1997; Catal�an
& Olmstead, 2000; D€oring et al., 2007). Most recent phyloge-
netic analyses place Brachypodium in an intermediate position
within the Pooideae clade (Minaya et al., 2015; Soreng et al.,
2015; Catal�an et al., 2016a,b). By contrast, only a few studies of
intraspecific variation have been conducted in the genus
Brachypodium, primarily focusing on B. distachyon (e.g. Filiz et al.,
2009; Vogel et al., 2009; Mur et al., 2011; Tyler et al., 2016).

Brachypodium distachyon has been selected as a model plant for
temperate cereals and biofuel grasses (Vogel et al., 2010; Mur
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et al., 2011; Catal�an et al., 2014; Vogel, 2016). Additionally, the
B. distachyon complex has been proposed as a model system for
grass polyploid speciation (Catal�an et al., 2014; Dinh Thi et al.,
2016). Nuclear and plastid genomes of the Bd21 ecotype of
B. distachyon have been sequenced, assembled and annotated.
The nuclear genome is 272Mbp in size (Vogel et al., 2010) and
contains 31 694 protein-coding loci. The current plastid genome
reference (NC_011032.1) is 135 199 base pairs (bp) long and
encodes 133 genes (Bortiri et al., 2008).

In parallel with the creation of the nuclear pan-genome of
B. distachyon from 53 diverse lines (Gordon et al., 2017), and the
genome sequencing of its close congeners B. stacei and
B. hybridum (Brachypodium stacei v1.1 DOE-JGI, http://phyto
zome.jgi.doe.gov/ and B. hybridum early access available through
Phytozome), we isolated ptDNA sequences from WGS paired-
end reads to assemble the corresponding plastomes. Our aim was
to compile a large plastome data set and investigate the evolution-
ary relationships of the annual Brachypodium species within the
grass phylogenetic framework. The specific objectives of this
study were to: assemble, annotate and compare 57 plastomes of
B. distachyon, B. stacei and B. hybridum; reconstruct and date the
divergences within the Brachypodium lineages and a family-wide
plastome phylogeny; infer the genealogical relationships within
the studied accessions of B. distachyon and compare them with
the nuclear genome genealogy; and investigate the potential exis-
tence of plastid introgression and recombination in B. distachyon
ecotypes known to hold nuclear introgressions.

Materials and Methods

Plant materials

Brachypodium distachyon, B. stacei and B. hybridum ecotypes used
in this work are inbred lines derived from our own collections
(Vogel et al., 2009; Mur et al., 2011; Catal�an et al., 2012) and

from the National Plant Germplasm System (NPGS) and
Brachyomics collections (USDA and ABER lines; Vogel et al.,
2006; Garvin, 2007; Garvin et al., 2008). Most ecotypes were
originally collected in Spain, Turkey and Iraq (Supporting Infor-
mation Table S1; Fig. 1) (Vogel & Hill, 2008; Filiz et al., 2009;
Mur et al., 2011). Available plastome data from the main grass
lineages were retrieved from GenBank (Table S2). Flowering
time data were obtained from Gordon et al. (2017). Briefly, flow-
ering time was measured as the number of days elapsed from the
end of vernalization to inflorescence heading, in the growth
chamber, and assigned to flowering time classes following Ream
et al. (2014; see Table S3).

Plastid DNA automated assembly, annotation and
validation

Illumina paired-end and mate-pair libraries from 53
B. distachyon, one B. stacei and three B. hybridum accessions were
produced from total genomic DNA, isolated as described previ-
ously (Peterson et al., 2000), randomly sheared and filtered to
target fragment sizes of 250 bp and 4 kbp, using Covaris LE220
(Covaris, Woburn, MA, USA ) and HydroShear (Genomic Solu-
tions, Ann Arbor, MI, USA), respectively. The KAPA-Illumina
library creation (KAPA Biosystems) and TruSeq v3 paired-end
cluster kits were used for library construction. Sequencing was
performed at the Joint Genome Institute on the Illumina
HiSeq2000 sequencer, yielding reads of 76, 100 and 150 bp
length.

We developed a pipeline, available at https://github.com/eead-
csic-compbio/chloroplast_assembly_protocol, for the assembly
and annotation of plastid genomes (Methods S1; Table S4;
Fig. S1). Briefly, plastid reads were extracted from WGS data
using DUK (http://duk.sourceforge.net), followed by quality
control and error correction, with FAStQC v.0.10.1 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc),

Fig. 1 Native circum-Mediterranean geographic distributions of the Brachypodium distachyon, B. hybridum and B. stacei ecotypes used in the plastome
evolutionary and genomic analyses. Symbol and color codes for accessions are indicated in the chart. Accession numbers correspond to those indicated in
Supporting Information Table S1.
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TRIMMOMATIC v.0.32 (Bolger et al., 2014) and MUSKET v.1.0.6
(Liu et al., 2013). Pass-filtered reads were then assembled with
VELVET v.1.2.07 (Zerbino, 2010), SSPACE BASIC v.2.0 (Boetzer
et al., 2011) and GAPFILLER v.1.11 (Boetzer & Pirovano, 2012;
Nadalin et al., 2012).

This pipeline can be used to perform both de novo and refer-
ence-guided assemblies. Both strategies were performed with 55
out of 57 accessions; in most cases (46, see Table S5) the refer-
ence-guided approach produced fewer and longer contigs than de
novo assemblies. Other parameters affecting assembly outcome
were optimized, such as k-mer size or the number of input reads.
Assembly errors were corrected with SEQUEL v.1.0.2 (Ronen
et al., 2012), and by visual inspection of read mappings using
IGV v.2.3.8 (Thorvaldsd�ottir et al., 2013).

Gene annotation was performed exhaustively for a single plas-
tome of each species, and then transferred with custom scripts to
the remaining plastid assemblies. The ptDNA genomes were
compared with Organellar-Genome DRAW web version (Lohse
et al., 2013) and CIRCOS v.0.69 (Krzywinski et al., 2009). Typical
plant plastomes show four main regions: large single-copy (LSC),
first inverted-repeat (IRa), short single-copy (SSC) and second
inverted-repeat (IRb), as sorted in the current Bd21 accession
(NC_011032.1). Junctions between IR–LSC, LSC–IR, IR–SSC
and SSC–IR regions, as well as main structural variations of
B. stacei and B. hybridum plastomes, were confirmed by PCR
amplification and Sanger sequencing (Table S6). The annotated
plastomes of B. distachyon, B. stacei and B. hybridum ecotypes
were deposited at ENA (European Nucleotide Archive) with
accession numbers LT222229–LT222230 and LT558582–
LT558636.

Intraspecific genealogy, haplotypic network, and genomic
diversity and structure analyses

Plastomes from the 53 B. distachyon accessions (Table S1) were
aligned using MAFFT v.7.031b (Katoh & Standley, 2013); poorly
aligned regions were removed with TRIMAl v.1.2rev59 (Capella-
Guti�errez et al., 2009) using option automated1, which excludes
columns after heuristically computing appropriate gap and simi-
larity thresholds. However, most robust gaps were included in
the final aligned data set and used in the phylogenetic maximum-
likelihood (ML), Bayesian inference (BI) and dating Bayesian
evolutionary analysis (BEAST) approaches. The second inverted
repeat region (IRb) accumulated most ambiguous nucleotides in
our assemblies, probably due to biases in the pipeline (see his-
togram in Fig. 2). Considering that both repeats are essentially
redundant in plastids, only IRa was included in subsequent phy-
logenetic analyses (Nock et al., 2011; Middleton et al., 2014;
Saarela et al., 2015). Alignments were revised and manually
curated using GENEIOUS v.8.1.4 (Kearse et al., 2012).

ML and BI phylogenomic analyses were performed with
RAXML v.8.1.17 (Stamatakis, 2014) and MRBAYES v.3.2.4 (Ron-
quist & Huelsenbeck, 2003; Ronquist et al., 2011), respectively.
The generalized time-reversible plus gamma distribution plus
proportion of invariant sites substitution model (GTR +G + I),
selected by JMODELTEST v.2.1.7 based on the Akaike information

criterion (Guindon & Gascuel, 2003; Darriba et al., 2012), was
imposed in the searches. In the ML search we computed 20
starting trees from 20 distinct randomized maximum parsimony
(MP) trees and 1000 bootstrap replicates. In the BI search, two
sets of four chains were run for 2 million generations, sampling
trees and parameters every 100th generation. A 50% majority rule
consensus tree was computed discarding the first 25% saved trees
as ‘burn-in’. All trees were midpoint rooted.

Haplotypic network analysis was conducted with the 53
B. distachyon plastome alignment after removing IRb and
columns with missing data (Ns), both including and excluding
indels. Statistical parsimony analysis was performed with TCS
v.1.21 (Clement et al., 2000), setting a maximum connection of
1000 steps. Haplotype polymorphism and genetic diversity statis-
tics of the plastome data set, such as the number of segregating
sites (S) and haplotypes (h), the haplotype diversity index (Hd ),
and the number of shared mutations (shm) and the average num-
ber of nucleotide differences (d ) among the three intraspecific
genetic groups retrieved from the phylogenomic analysis (see the
‘Results’ section) were calculated with DNASP v.5 (Librado &
Rozas, 2009).

Bayesian genomic clustering analysis was performed to infer
the structure of the data, using a B. distachyon ptDNA data
matrix of 298 mapped polymorphic positions, and to assign
accessions’ plastomes to the inferred groups using STRUCTURE

v.2.3.4 (Pritchard et al., 2000). The program was run for a num-
ber of potential genomic groups (K) from 1 to 6, imposing ances-
tral admixture and correlated allele frequencies priors. Ten
independent runs with 100 000 burn-in steps followed by
1000 000 generations were computed for each K. The number of
genetic clusters was estimated using STRUCTURE HARVESTER (Earl
& vonHoldt, 2012), which identifies the optimal K based both
on the posterior probability of the data for a given K and the ΔK
(Evanno et al., 2005). The potential existence of interplastome
recombination in two introgressed ecotypes (see the ‘Results’
section) was further assessed through visual inspection of the
mapped polymorphic alignments and through the recombination
detection methods implemented in RDP4 v.4.56 (RDP,
GENECONV, BOOTSCAN, MAXCHI, CHIMAERA, SISCAN, LARD,
3SEQ; Martin et al., 2015) and in ORGCONV v.1.1 (Hao, 2010),
using default settings in all cases.

Phylogenetic and molecular dating analyses

A grass plastome alignment was built including all B. distachyon
ecotypes, one B. stacei ecotype and one B. hybridum ecotype (55
accessions; Table S1) plus the plastomes of 90 grasses (Table S2).
ML analysis was performed with RAXML following the same
steps indicated above. Pairwise Tamura–Nei (TN) raw genetic
distances and pairwise TN patristic (RAXML-tree) distances were
computed between all pairs of grass entries using MEGA v.7.0.14
(Kumar et al., 2016) and Geneious (Kearse et al., 2012), respec-
tively.

Divergence time estimations of the Brachypodium lineages
were calculated within a family-wide dated phylogeny using a
Bayesian nested dating partitioned approach (Pokorny et al.,

� 2017 The Authors

New Phytologist� 2017 New Phytologist Trust
New Phytologist (2017)

www.newphytologist.com

New
Phytologist Research 3



2011; Mairal et al., 2015) in BEAST v.1.8.2 (Drummond et al.,
2012). Because there are no known fossil records of
Brachypodium, a high-level more inclusive grass data set (93 sam-
ples = 90 grass species + 1 B. distachyon + 1 B. stacei + 1
B. hybridum accession, 110 370 bp in length, 22 489 polymor-
phic positions) was used to estimate divergence times within the
B. distachyon ingroup (53 samples, 110 370 bp in length, 415
polymorphic positions). The grass tree was rooted with the

ancestral species Anomochloa marantoidea. The estimated ages
were drawn from deep-time calibrations imposed in the Poaceae
partition and were used to constrain the molecular clock rate of
the linked B. distachyon population-level data set and to calibrate
the divergence time of its crown node. We estimated divergence
times among the Poaceae lineage imposing GTR +G + I, lognor-
mal relaxed clock and Yule tree models, a broad uniform distri-
bution prior for the uncorrelated lognormal distribution (ucld)

Fig. 2 Plastome maps of Brachypodium distachyon ABR6 (inner circle) and B. stacei ABR114 (outer circle). A 1161 bp insertion is shown in the B. stacei
map (D, see upper-left quadrant), as well as a deletion of rps19 locus (*, see lower-right quadrant). Smaller inner circles and tracks correspond,
respectively, to a map of plastome regions (LSC, SSC, IRA and IRB), a histogram of observed single nucleotide polymorphisms (SNPs) across all 57 aligned
plastomes and a histogram of undetermined nucleotides, marked as N characters in the alignments.
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mean (lower = 1.0E-6; upper = 0.1) and a default exponential
prior for ucld standard deviation (SD). Calibrations were drawn
from the compilation of grass fossils of Str€omberg (2011) and
from fossil-rich dating analyses of the grass family (Bouchenak-
Khelladi et al., 2010; Christin et al., 2014). To accommodate
uncertainties in the fossil records and fossil-based calibrations, we
incorporated in the divergence time analysis normal distribution
priors with mean and SD values of the normal distribution set
for upper and lower dates of the geological period of the fossil, or
the estimated divergence ages of the calibrated tree node, repre-
senting 5 and 95% quantiles of the distribution. We used two
calibration points, imposing secondary age constrains for the
crown nodes of Poaceae (normal prior mean = 90.0 Ma, SD =
1.0) and of the BOP (Bambusoideae, Oryzoideae, Pooideae)
+ PACMAD (Panicoideae, Arundinoideae, Chloridoideae,
Micrairoideae, Aristidoideae, Danthonioideae) clade (normal
prior mean = 55.0Ma, SD = 0.5), covering the age ranges of their
respective fossil records and nodal age estimates. For the
intraspecific B. distachyon data set we imposed a coalescent con-
stant-size tree model. We ran 1000 000 000 Markov chain
Monte Carlo (MCMC) generations in BEAST with a sampling fre-
quency of 1000 generations after a burn-in period of 1%. The
adequacy of parameters was checked using TRACER v.1.6 (http://
beast.bio.ed.ac.uk/Tracer), noting effective sample size (ESS)
values > 200. Maximum clade credibility (MCC) trees were com-
puted for the Poaceae and for the B. distachyon data sets after dis-
carding 1% of the respective saved trees as burn-in.

Results

Structure, gene content and sequence in B. distachyon,
B. stacei and B. hybridum plastomes

Assemblies were obtained for 57 plastomes. Forty-one contained
≤ 10 contigs, with an average longest contig length of 84 kbp and
1769 depth coverage (Table S5). After scaffolding, 45 assemblies
had ≤ 4 scaffolds with a mean plastome length of 124.5 kbp.
Missing data ranged from 0 to 6%, with most plastomes (38)
showing ≤ 0.1%. Most of the missing sequence was located in the
IRb region, which was difficult to assemble because of its redun-
dancy. The resulting Brachypodium plastomes were highly con-
served in terms of synteny and gene number. Plastome lengths
varied from 134 991 to 135 214 bp in B. distachyon, and between
136 326 and 136 330 bp in B. stacei and B. hybridum (Table S5).

Reference accession B. distachyon Bd21 (NC_011032.1; Bor-
tiri et al., 2008) and the B. distachyon Bd21 control (Bd21C,
assembled and annotated in the current study) showed some dif-
ferences (10 single nucleotide polymorphisms (SNPs) and 19
indels; Table S7a). These polymorphisms had read depth cover-
age ranging from 2199 to 16 7509 and were also confirmed in
several of the other B. distachyon accessions (see Table S7a).
While most of these polymorphisms lay in intergenic regions,
some were located in protein coding genes such as psbA (one syn-
onymous (Syn) mutation), psbK (one nonsynonymous (NSyn)
mutation), rpoC2 (one Syn and one NSyn), psaA (one Syn), and
also in one copy of the rRNA 16S locus.

Brachypodium distachyon plastomes showed the same gene
arrangement and number (133) as Bd21C (Table S7a,b). In partic-
ular, they contained 76 protein coding genes, seven of which were
duplicated genes, 20 nonredundant tRNAs (out of a total 38), four
rRNAs in both inverted repeats, four pseudogenes (trnI, rps12a,
trnT and trnI) and two hypothetical open reading frames (ycf). Sev-
eral polymorphisms, mostly nonsynonymous, were detected in
comparison to several grass plastomes. The most polymorphic loci
were rpoC2 (70 SNPs), ndhF (59 SNPs), rpoB (31 SNPs) and
matK (30 SNPs), suggesting a significant correlation between SNP
frequency and gene length (R2 = 0.68, P < 2.2e-16; Table S7b).
Brachypodium stacei and B. hybridum accessions showed the

same overall plastid genomic features as the B. distachyon acces-
sions, with two exceptions (Fig. 2). They both contained a
1161 bp insertion between psaI and rbcL in the LSC region. This
insertion was confirmed by read mapping (Fig. S2a,b), and it was
also detected in homologous regions of several grasses
(Table S7c). It corresponds to a coding sequence (CDS) fragment
annotated as pseudogene rpl23 (Table S7d). The B. stacei and
B. hybridum plastomes also contained a deletion of an rps19 copy
between psbA and trnH in the IRb repeat, which was confirmed
through PCR amplification and Sanger sequencing (Fig. S2c;
Methods S1). The presence of these indels in the plastid genomes
of the three B. hybridum accessions suggests that they were
inherited from B. stacei-type maternal parents. Six polymor-
phisms were detected between the B. hybridum and B. stacei plas-
tomes (Table S7e). These polymorphisms were located in
intergenic regions, except for a Syn substitution in psbT (ecotype
BdTR6G, B. hybridum) and an NSyn mutation in one copy of
rpl23 (ecotype ABR113, B. hybridum).

Furthermore, a conceptual RNA-edited translation (U to C)
was inferred in the ndhB gene of all the B. hybridum accessions
and B. stacei, as well as in the ndhK gene of the B. distachyon Gaz8
accession.

Genealogy, haplotypic groups and diversity of
B. distachyon plastomes

BEAST (Fig. 3a), ML (Fig. S3a) and BI (Fig. S3b) analyses
detected two main diverging lineages within B. distachyon that
were structured phenotypically (Fig. 3a, Plastome tree; Table S3).
One of them corresponded to an EDF+ clade, and the second to
an S+T+ clade of remaining accessions, which showed a mixture
of flowering phenotypes (Fig. 3a, Plastome tree; Table S3). The
second clade was divided by further geographical substructure
into a paraphyletic Western group (‘Spanish’ group – S+),
including almost all ecotypes from Spain, France and Italy, and a
monophyletic Eastern group (‘Turkish’ group – T+), including
ecotypes from Turkey and Iraq, plus two Spanish accessions
(ABR3, Uni2). While the divergences of the main lineages and
sublineages had high bootstrap support (BS) and posterior proba-
bility support (PPS), the support of some internal branches of the
S+ group was low (Figs 3a, Plastome tree, S3a,b).

Haplotypic network analyses detected 36 or 32 distinct
ptDNA haplotypes, including or excluding indels, respectively
(Table S8). A set of 298 nucleotide polymorphic sites extracted
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(a)

(b)

Fig. 3 Intraspecific evolutionary analysis of Brachypodium distachyon plastomes, including dated plastome genealogy, haplotypic network and genomic
structure plots compared against the B. distachyon nuclear genealogical tree. (a) BEAST nested dated chronogram of 53 B. distachyon plastomes showing
estimated divergence times for below-species-level lineages (left). Datings (Ma) were inferred from calibrations obtained from above-species-level
estimations. Thickness of branches indicates posterior probability support (thick branches, 0.95–1; intermediate branches, 0.90–0.94; thin branches,
< 0.90). Genomic structure plots showing percentages of membership of plastomes’ profiles to K = 2 and K = 4 genomic groups (center). Chloroplast
capture and introgression events detected through topological contrast of the plastome and the nuclear trees (nuclear DNA (nDNA) tree from Gordon
et al., 2017) (right). Discontinuous and continuous lines mark potential chloroplast capture events and introgression events, respectively. Color codes for
flowering time class groups and phylogenetic groups are indicated in the respective charts. Flowering time class groups are classified according to Ream
et al. (2014) (see Supporting Information Table S3). (b) Haplotypic statistical parsimony network constructed with the B. distachyon plastomes using TCS.
Dots represent mutation steps; numbers of mutation steps are indicated on branches. Color codes for clusters are indicated in the chart.
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from the full B. distachyon plastome alignment confirmed the
occurrence of 32 distinct ptDNA haplotypes; six haplotypes were
shared by different accessions (H1, 13; H2, two; H3, three; H4,
four; H5, three; H6, two) and 26 haplotypes were unique
(Table S8). The TCS analysis clustered the 32 haplotypes into six
groups (Fig. 3b), matching the structure observed in the
genealogical ptDNA tree (Fig. 3a, Plastome tree). The haplotypic
network was fully resolved except for one internal loop. The
EDF+ haplotypes were separated from the cluster of S+ group
and T+ group haplotypes by 59 and 74 step mutations, respec-
tively. Within the EDF+ group there were two highly isolated
clusters separated by 57 steps, one including only Turkish acces-
sions (BdTR7A, H3, H5) and the second including Turkish and
eastern European accessions (H4, Bd1-1, Bd29-1). The isolated
Spanish Arn1+ Mon3 accessions of the S+T+ group showed an
internal loop connecting its haplotypes with those of the EDF+
group (70 steps) and those of the remaining accessions of the
S+T+ group (61 steps). Within the core S+T+ group, haplotypes
clustered into four relatively close clusters, three of them includ-
ing only accessions from the West (Spain, France and Italy), and
the fourth cluster including mostly accessions from the East
(Turkey, Iraq, plus Uni2 and ABR3) (Fig. 3b).

Plastome genomic diversity was variable within B. distachyon
accessions (number of segregating sites (S) = 298, haplotypes
(h) = 32, haplotype diversity index (Hd) = 0.933), and especially
within the S+ (S = 137, h = 17, Hd = 0.993) and EDF+ (S = 107,
h = 6, Hd = 0.846) groups (Table 1a). Our analyses indicated that
the T+ group was less variable (S = 12, h = 9, Hd = 0.658) than
the others. Diversity hp values were not significantly different
among groups. The S+ and T+ groups showed the lowest average
number of nucleotide differences (d = 33.970), reflecting their
close genomic affinities. By contrast, the EDF+ group showed
the highest nucleotide differences to any of them (EDF+ – S+,
d = 112.632; EDF+ – T+, d = 112.790), although it also shared
six polymorphisms with the S+ group (EDF+ – S+, shm = 6)
(Table 1b).

When the B. distachyon plastome genealogy was compared to
an SNP-based nuclear pan-genome genealogy generated in our

parallel study (Fig. 3a, Nuclear tree; Gordon et al., 2017), the
plastome tree revealed 11 cases of potential chloroplast capture
and introgression. Seven cases (BdTR11A, BdTR11I, BdTR11G,
BdTR13A, BdTR13C, BdTR3C, Bis1) corresponded to nuclear
T+ ecotypes nested within the plastid EDF+ clade, two cases
(ABR3, Uni2) to nuclear S+ ecotypes nested within the plastid
T+ group, and two cases (Arn1, Mon3) to introgressed nuclear
EDF+ ecotypes nested (and introgressed) within the plastid
S+T+ clade (Fig. 3). All these cases suggest the existence of gene
flow between the most diverged B. distachyon lineages. The
STRUCTURE search further confirmed the potential ‘admixed’
nature of the Arn1 and Mon3 plastomes. The Bayesian structure
analysis selected two optimal plastome groups with respect to sec-
ond-order rate of change of the log probability of data between
successive K values for a particular K (DK), the best DK = 2 corre-
sponded to the EDF+ and S+T+ clades, with individual haplo-
types showing high percentages of membership (> 95%) to their
respective groups except the Arn1 and Mon3 haplotypes which
showed similar percentages (40–60%) to both groups (Fig. 3a,
plastome structure; Table S9). The next optimal grouping was
for DK = 4; in this partition EDF+, S+ and T+ haplotypes clus-
tered separately and the Arn1 and Mon3 haplotypes formed an
independent group (all memberships > 95%). None of the
recombination methods assayed in RDP4 and ORGCONV detected
significant recombination in our data set; however, visual
inspection of the polymorphic data matrix detected potential
micro-recombination events in Arn1 and Mon3 (Fig. S4). Both
haplotypes showed a large part of their sequences (polymorphic
positions 1–225) as being similar to S+T+ sequences, and a small
part of them (polymorphic positions 226–230) similar to EDF+
sequences. Polymorphic positions 1–237, 238–245 and 246–298
were located in the LSC, IR and SSC regions, respectively (Figs 2,
S4).

Plastid phylogenomics and divergence time estimations of
Poaceae and B. distachyon lineages

ML (Fig. S5a,b) and BI (Fig. S5c,d) phylogenomic analysis of the
grass plastome data set (Table S2) placed the monophyletic
Brachypodium lineage in an intermediate and strongly supported
diverging position within the Pooideae clade. Brachypodium was
resolved as sister to the recently evolved core pooid clade, whereas
the close Diarrheneae (Diarrhena) lineage was sister to the
Brachypodium + core clade. Relationships among successively
diverging basal Pooideae (Brachyelytreae, Phaenospematae,
Meliceae, Stipeae) and BOP (Bambusoideae, Oryzoideae) and
PACMAD (six Panicoideae species) lineages were congruent with
previous studies; most bifurcations in the topology showed strong
BS and PPS values. Within Brachypodium, the B. stacei clade
(formed by B. stacei and the stacei-like B. hybridum plastomes)
was resolved as sister to the B. distachyon clade. The latter lineage
showed the divergence of the strongly supported EDF+ and
S+T+ clades (Fig. S5a,c).

Both plastome raw pairwise genetic distances and pairwise
patristic (RAXML tree) distances (Table S10; Fig. 4) supported
the intermediate evolutionary position of Brachypodium within

Table 1 (a) Chloroplast haplotype diversity analysis of Brachypodium
distachyon ecotypes and genomic groups (EDF+, S+, T+); group size and
chloroplast haplotype diversity parameters: (b) pairwise estimates of the
number of shared mutations (above diagonal) and the average number of
nucleotide differences (below diagonal) between genomic groups

(a) Genomic groups N S h Hd hp

EDF+ 13 107 6 0.846 12.780 (3.872–31.128)
S+ 18 137 17 0.993 12.388 (3.804–30.837)
T+ 22 12 9 0.658 12.683 (3.784–28.087)
B. distachyon

(all ecotypes)
53 298 32 0.933 12.442 (4.218–28.245)

(b) shm

d EDF+ S+ T+

EDF+ — 6 0
S+ 112.632 — 0
T+ 112.790 33.970 —
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the Pooideae clade (Fig. S5a–d). Moreover, Tamura–Nei (raw)
genetic and patristic distances indicated a closer relationship of
Brachypodieae to more ancestral basal pooid lineages (e.g. smaller
genetic/patristic distances to Stipeae and Phaenospermatae than
to recently evolved core pooid lineages (Triticodae, Poodae))
(Table S10; Fig. 4). They also revealed its closest relatedness to its
evolutionarily nearest relative Diarrheneae. Distances of Brachy-
podieae to some Poodae lineages (e.g. Loliinae, Anthoxanthiinae)
were similar to those observed to less closely related (e.g. Bambu-
soideae, Oryzeae (Rhynchorhiza)), or even much less closely
related Puelioideae (Puelia) lineages (Table S10; Fig. 4).

The BEAST ptDNA MCC tree yielded the same topology of
Poaceae (Figs 5, S6a) as that of the ML and BI trees (Fig. S5a–d).
The dating analysis inferred intermediate Early Oligocene diver-
gence times for the stem nodes of the Diarrheneae (31.9 Ma) and
Brachypodieae (30.9 Ma) lineages, and divergence ages ranging
from the more ancestral Mid- to Late Eocene splits of the basal
pooids (Brachyelytreae, 44.2 Ma; Phaenospermatae, 38.4 Ma;

Meliceae, 36.7 Ma; Stipeae, 35.3 Ma) to the recent Late
Oligocene–Early Miocene splits of the core pooids (crown,
27.8 Ma; Poodae, 23.9 Ma; Triticodae, 17.6 Ma) lineages. A
Mid- to Late Miocene age (10.1 Ma) was estimated for the
B. stacei/B. distachyon split and a recent Mid-Pleistocene age
(0.9 Ma) for the split of the most recent common ancestor
(MRCA) of B. distachyon (Figs 5, S6a). According to our nested
dating analysis, intraspecific divergences within B. distachyon
occurred very recently, during the last half million years (e.g.
EDF+ and S+T+ splits, 0.55Ma; Figs 3a, Plastome tree, S6b).

Discussion

The plastid genomes of Brachypodium

Our study allowed us to construct the first large-scale intraspecific
plastome analysis of a grass for the model species B. distachyon
and a comparative genomics analysis with its close congeners

Fig. 4 Color-coded matrices of pairwise Tamura–Nei (TN) genetic distances between the plastome sequences of 99 Poaceae species and three
Brachypodium (B. distachyon, B. stacei, B. hybridum) species. Below diagonal, pairwise raw TN genetic distances; above diagonal, pairwise
phylogenetically based patristic TN genetic distances (computed on the RAXML tree, see Supporting Information Fig. S5b). Color-associated distance
values are indicated in the chart.
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B. stacei and B. hybridum (Fig. 2; Table S5). We detected two
main indels between B. distachyon and B. stacei/B. hybridum plas-
tomes (Fig. S2), and no structural changes but a total of 415
polymorphisms (298 without indels) among the 53 B. distachyon
ecotypes (Table S7a,b). A 1161 bp insert and the deletion of one
copy of the rps19 gene, discovered in both the B. stacei and the
B. hybridum ecotypes, indicates that the former is probably the
maternal diploid plastome donor of the B. hybridum accession
used in this study, which is consistent with previous findings
reporting B. stacei as the maternal progenitor of most, but not all,
wild B. hybridum populations (L�opez-Alvarez et al., 2012). The
scarce number of polymorphisms (six) found in the B. hybridum
as compared to the B. stacei plastome (Table S7e) indicates either
that the B. hybridum plastome has remained almost intact since
the formation of B. hybridum or that there has been continuous
gene flow from B. stacei to B. hybridum (e.g. in Pleistocene–
Holocene times, after the dated split of B. distachyon parent;
Figs 3a, S6b).

The 1161 bp insert found in the B. stacei/B. hybridum plas-
tomes contains an rpl23 pseudogene of 225 bp located around
position 56 335 bp (Table S7c; Figs 2, S2a,b). The presence of an
rpl23 pseudogene in this region has been reported in several
monocots and in a large number of grasses, with insert sizes rang-
ing from 40 to 243 bp (Morris & Duvall, 2010), whereas other
authors have detected a functional rpl23 copy in Agrostis
stolonifera (NC_008591) and Sorghum bicolor (NC_008602)
(Saski et al., 2007). In this study, all the assessed B. distachyon
plastomes lack the insert and show two annotated rpl23 func-
tional copies and no pseudogene, whereas the B. stacei/
B. hybridum plastomes have also two functional rpl23 copies plus
the rbcL-psaI insert rpl23 pseudogene (Table S7c; Fig. 2a,b).
In monocots, the trnH-rps19 cluster is located near the junc-

tions of LSC and the two inverted repeats (Borsch & Quandt,
2009, and references therein). Wang et al. (2008) described three
types of IR–LSC junctions based on the organization of their
flanking genes in several monocots and dicots. While the studied

Fig. 5 BEAST nested dated chronogram of 93 grass plastomes showing estimated divergence times and posterior probability support values for
above-species-level lineages. Stars indicate nodal calibration priors (ages) for the Poaceae and BOP + PACMAD clades. Line thickness indicates posterior
probability support, which was > 0.97 in all branches.
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B. distachyon plastomes fit the type III class typical of monocots
(trnH-rps19 clusters contain the rps19 gene in both IRs), the
B. stacei/B. hybridum plastomes show a single rps19 copy near the
rpl22 functional LSC flanking gene, and the lack of the second
rps19 copy (Fig. S2c), fitting best the type I junction model. The
type I class is mostly found in basal angiosperms, Magnoliids and
Eudicots (Wang et al., 2008). Thus, the rbcL-psaI insert rpl23
pseudogene and the trnH-rps19 type I cluster constitute land-
marks of the more ancestral B. stacei chloroplast genome.

Flowering time divergence, chloroplast capture and
introgression in B. distachyon plastomes

Our genealogical and haplotypic network analyses have detected
a main split of two intraspecific B. distachyon lineages (EDF+ vs
S+T+) that are not primarily connected with geography but with
flowering time phenotypic traits, although the second clade is
further separated into two geographically disjunct western (S+)
and eastern (T+) circum-Mediterranean groups (Figs 3a, plas-
tome tree, S3a,b; Table S3). Although our geographic sampling is
biased towards Spain, Turkey and Iraq, these regions span the
entire native distribution area of B. distachyon (L�opez-Alvarez
et al., 2012, 2015), and our results are comparable with those
obtained by Tyler et al. (2016) using nuclear SNPs from geno-
typing-by-sequencing (GBS) data. Haplotypic divergence data
confirm the isolation of the EDF+ clade from the S+ and T+
genomic groups and similar haplotypic diversity values of EDF+
and S+ (Table 1a,b). Intraspecific evolutionary studies of organ-
isms tend to recover the spatiotemporal divergence of popula-
tions, which are usually associated with a geographical
distribution, detecting a typical isolation-by-distance (IBD) pat-
tern (Wright, 1943; Jenkins et al., 2010). However, long-distance
dispersal events and biological and ecological traits have influ-
enced the population structure in B. distachyon (Vogel et al.,
2009; Mur et al., 2011; L�opez-Alvarez et al., 2012; Tyler et al.,
2016). Here, we have detected a strong influence of flowering
time in the ancestral divergence of the B. distachyon EDF+ and
S+T+ lineages, as several EDF+ lines (BdTR7A, BdTR8I, Tek2,
Tek4) flower considerably later than the S+T+ lines (Fig. 3a,
Plastome tree; Table S3). Our parallel nuclear pan-genome study
of B. distachyon has also recovered a main EDF+ clade, including
all the extremely delayed flowering (EDF) lines of our plastome
clade (Fig. 3a, nuclear tree), and recent population genetic studies
of B. distachyon based on GBS data (Tyler et al., 2016) have also
found it. Thus, flowering time is a main biological factor control-
ling the divergence of the major annual B. distachyon clades since
the late Pleistocene (0.9–0.55Ma) (Figs 3a, Plastome and
Nuclear trees, S6b). Flowering time has been extensively studied
in temperate cereals (barley, wheat), which have winter and
spring races governed by vernalization and photoperiod require-
ments analogous to the delayed and rapid flowering phenotypes
observed in B. distachyon (Vogel & Bragg, 2009; Schwartz et al.,
2010; Colton-Gagnon et al., 2014; Ream et al., 2014; Woods
et al., 2014). Although inflorescence heading-date phenotypic
data in this work come from growth chamber experiments (Gor-
don et al., 2017), they parallel the outcomes observed in field

experiments (e.g. variation in flowering time was detected
between winter-annual and spring-annual wild accessions of
B. distachyon; Manzaneda et al., 2015; A. J. Manzaneda, pers.
comm.). Our study highlights the evolutionary importance of
flowering time in driving intraspecies divergence.

It could be expected that flowering time isolation would create
a barrier to gene flow, which might ultimately lead to (micro)spe-
ciation (Silvertown et al., 2005; Lowry et al., 2008; Noirot et al.,
2016). However, our study has demonstrated that it is not the
case in B. distachyon, where frequent introgressions have appar-
ently occurred between the EDF+ and S+T+ clades during the
last half million years (Figs 3a, S6b). Topological comparison
between the plastome and nuclear trees (Fig. 3a) indicated that
seven Turkish accessions (BdTR11A, BdTR11I, BdTR11G,
BdTR13A, BdTR13C, BdTR3C, Bis1) that are deeply and
strongly nested within the eastern group of the S+T+ clade in the
nuclear tree are, however, deeply and strongly nested within the
eastern group of the EDF+ clade in the plastome tree and net-
work. Similarly, two Spanish accessions (ABR3, Uni2) deeply
nested within the western group of the S+T+ clade in the nuclear
tree are instead nested within the eastern group of the S+T+ clade
in the plastome tree, but with low support (Figs 3a,b, S3a,b).
Moreover, two Spanish accessions (Arn1, Mon3) which are part
of the EDF+ clade in the nuclear tree are nested within the S+T+
clade in the plastome tree, and form a loop with an EDF+ sub-
group in the plastome haplotypic network (Figs 3a,b, S3a,b).
Interestingly, genomic structure analyses indicated considerable
introgression signals in the Arn1 and Mon3 nuclear and plastid
genomes, whereas the seven Turkish accessions and the two
Spanish accessions do not show evidence of introgression to the
other genetic group in their chloroplast or nuclear genomes
(Figs 3a, plastome genomic structure, S4). These results support
the occurrence of two different introgression events. An early
introgression of an S+T+ Spanish lineage with a member of the
EDF+ clade could have originated the admixed ancestor of the
Arn1/Mon3 lineage that kept most of its maternal S+T+ plas-
tome but two-thirds of its paternal nuclear EDF+ genome over
generations (Gordon et al., 2017). According to our dating analy-
sis, this introgression probably occurred in Ionian–Upper Pleis-
tocene times (0.55–0.02Ma) (Figs 3a, S6b). By contrast, more
recent late Pleistocene–Holocene (0.025–0.007Ma) introgres-
sions between geographically close Turkish EDF+ and S+T+
lines probably resulted in the seven lines that show chloroplast
capture for their intact EDF+ plastomes in combination with
their intact paternal nuclear S+T+ genomes, the latter probably
originating through repeated back-crossing to paternal S+T+
individuals (Figs 3a, S4, S6b). A similar late Pleistocene–
Holocene scenario of introgressions and repeated backcrossing,
but between geographically distant S+ and T+ lines, probably
resulted in the two Spanish lines that show chloroplast capture
for their intact T+ maternal plastomes and their paternal nuclear
S+ genomes (Figs 3a, S4). These observations support previous
evidence of long-distance dispersal of eastern B. distachyon seeds
to the West across the Mediterranean basin (cf. L�opez-Alvarez
et al., 2012, 2015). Additionally, Uni2 shows a significantly
smaller inbreeding coefficient (Fis = 0.48) than the remaining
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highly selfed B. distachyon accessions (median Fis = 0.88)
(Gordon et al., 2017), suggesting than the reduced Fis might
reflect recent potential interpopulation crosses.

Our analyses also point towards the potential existence of
heteroplasmic recombination in the Arn1 and Mon3 plastomes
(Fig. 3a, plastome structure; Table S9). Also, visual inspection of
the polymorphic data matrix identified a large proportion of their
plastomes as S+T+ type and a smaller proportion of them (e.g.
micro-recombinations) as EDF+ type (Fig. S4). Natural chloro-
plast heteroplasmy originated from biparentally inherited chloro-
plasts is infrequent in angiosperms (but see Mogensen, 1996).
While plastid inheritance is considered to be mostly maternal
(Jansen & Ruhlman, 2012), evidence of ptDNA biparental inher-
itance and of introgression has been documented in flowering
plants (Mason-Gamer et al., 1995; Mogensen, 1996), including
potential low levels of sexual organelle recombination (Greiner
et al., 2015). For instance, heteroplasmy and potential inter- or
intraspecific recombination have been detected in the plastomes
of the highly hybridogenous genus Citrus (Carbonell-Caballero
et al., 2015). Also, interspecific chloroplast recombination was
observed after somatic cell fusion in Nicotiana (Medgyesy et al.,
1985). Our study reports the first case of potential intraspecific
recombination between different plastome types in these two
introgressed B. distachyon accessions.

Evolutionary placement of a model genus for both
temperate and tropical grasses

The phylogenomic analysis of 145 grass plastomes allowed us to
infer the phylogenetic placement of Brachypodium and to calcu-
late its genetic and patristic distances to other grass lineages
(Table S10; Figs 4, 5, S5a–d, S6a). The intermediate nesting of
Brachypodium within the Pooideae clade and the relationships of
the other Poaceae lineages agree with previous studies based on
nuclear or plastid genes (Bouchenak-Khelladi et al., 2008; Schnei-
der et al., 2011; Hochbach et al., 2015; Soreng et al., 2015) or
whole plastome sequences (Saarela et al., 2015). The sister but
non-inclusive relationship of Brachypodium to the core pooid
clade (Triticodae (Triticeae + Bromeae)/Poodae (Poeae + Ave-
neae)), originally proposed by Davis & Soreng (1993), was aban-
doned in favor of the inclusion of Brachypodium within the ‘core
pooids’, a nontaxonomic but independently evolved natural
group, in some recent analyses (Davis & Soreng, 2007; Saarela
et al., 2015; Soreng et al., 2015). Our ML and BI analyses support
the sister relationship proposed by Davis & Soreng (Fig. S5a–d)
as well as divergence times intermediate between those of the basal
ancestral pooids and the recently evolved core pooids (Figs 5,
S6a). Additionally, our pairwise ptDNA genetic and patristic dis-
tances have further confirmed that Brachypodium is closer to some
basal pooid lineages than to the core pooid lineages (Table S10;
Fig. 4), corroborating similar results based on nuclear single copy
genes (Minaya et al., 2015). Also, our genetic and phylogeneti-
cally based patristic data indicate that Brachypodium is similarly
close to some core pooid groups than to more distant Oryzoideae
and Puelioideae lineages. The evolutionary placement of
Brachypodium in the Poaceae supports its utility as a model system

for the monocots, as has been recently manifested in functional
genomic studies of regulation of vernalization and flowering time.
B. distachyon shows either seasonal response to flowering mecha-
nisms close to those of core pooid grasses adapted to cold and
temperate climates (Fjellheim et al., 2014), or new flowering
repressor vernalization genes shared with basal pooids, other trop-
ical and subtropical grasses and less related Musaceae and Are-
caceae (Woods et al., 2016). Under the sampling in this study,
the isolated and ‘bridging’ intermediate position of Brachypodium
within the Pooideae supports its value as a model genus for many
types of grasses, particularly for bioenergy crops (Brkljacic et al.,
2011) from different grass subfamilies (e.g. Miscanthus, Paspalum
(Panicoideae), Thinopyrum (Pooideae)).

Our estimated divergence times for the main Poaceae lineages
(Oryzoideae, 52Ma; Bambusoideae 49Ma; Pooideae, 44Ma)
(Figs 5, S6a) are in agreement with those calculated by
Bouchenak-Khelladi et al. (2010) and Christin et al. (2014) but
slightly older than those estimated by Wu & Ge (2012). Our
results support early Oligocene (32Ma) and late Miocene (10Ma)
splits for the respective stem and crown nodes of Brachypodium,
which are also slightly older than those calculated by Catal�an et al.
(2012), although the highest posterior density range intervals over-
lap in both studies. The relatively old divergence inferred for the
annual B. stacei and B. distachyon lineages in the late Miocene con-
trasts with the very recent burst of the intraspecific B. distachyon
lineages. The estimated time of the late radiation (0.9Ma) is in
agreement with the estimated age of B. hybridum (c. 1Ma; cf.
Catal�an et al., 2012), the allotetraploid derivative of crosses
between B. stacei and B. distachyon. Thus, the two complementary
dating analyses fit a Mid-Pleistocene scenario for the almost con-
temporary origins of both parent and hybrid species.

Conclusion

Our comparative genomic study of whole plastome sequences of
B. distachyon and its close relatives allowed us to detect intraspeci-
fic introgressions and other associated evolutionary events (e.g.
biparental plastome inheritance, heteroplasmy) that could not be
detected with single genes. The observed plastome admixture that
goes along with the nuclear genome admixture in the
B. distachyon Arn1 and Mon3 lines, and the essential swapping of
plastomes among the three different B. distachyon plastome
groups (EDF+, S+, T+), probably resulted from random back-
crossing followed by stabilization through selection pressure. The
chloroplast genome of B. distachyon is much more constrained as
compared to its nuclear genome as we do not observe variation in
the plastome genes.
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