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1.  Introduction

1.1.  Focus variation microscopy

Focus variation microscopy (FVM) has the capability to mea­
sure both the form and surface texture of a component. In 
contrast to the standard measuring mode which uses stitching 
of overlapping measurement areas to improve the lateral acc­
uracy of measurements over large areas (larger than the field 
of view of objective lenses), measurements without stitching 
are less accurate on most FVM instruments [1]. FVM com­
bined with a multi-axis motion stage provides the function­
ality of a coordinate measuring machine (CMM) and a surface 

texture measuring instrument [2, 3]. Due to this combination, 
FVM is widely used for both form and surface texture mea­
surements in industry, research and academic institutions 
[3–5]. To improve the lateral accuracy and precision of its 
measurement results, commonly available FVM often stitches 
multiple overlapping measurement areas to compensate its 
lateral stage error. The main drawback of this stitching tech­
nique is that measurements with multiple overlapping areas 
(image-field measurements) are time consuming and limited 
by the capacity of the host computer memory to process a 
large number of raw datasets (a stack of images). Using un-
stitched image fields is not a typical measuring mode of the 
instrument; nevertheless, in many cases, dimensional and geo­
metrical measurements require measurement of two or more 
features that are spatially separated over a wide area. Hence, 
measurements with multiple areas are not applicable in this 
case; however, measurements without the overlapping area 
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may cause the lateral errors to significantly affect the mea­
surement results. It is worth noting that a new FVM instru­
ment that allows high-accuracy measurements over large areas 
without stitching and without any lateral error compensations 
has been recently reported elsewhere [6].

In this work, a practical methodology to compensate the 
lateral stage error of FVM using an uncalibrated artefact is 
presented and is applicable to commonly available FVM 
instruments. The developed methodology can be generalised 
to any Cartesian-based CMM. The objective of this method 
is to be able to measure features without overlapping areas 
(multiple image-field measurements) and to compensate the 
lateral stage error to improve the accuracy of the measure­
ment. The proposed methodology requires the measurement 
of an uncalibrated artefact with and without overlapping areas 
(the multiple image-field method) and quantifies the lateral 
errors. The concept of the method is to measure the artefact in 
a number of carefully chosen positions and from the measure­
ment results separate the lateral errors and the artefact errors 
[7–9].

The FVM instrument used is an Alicona G5 Infinite Focus 
(figure 1) based at the University of Nottingham. All meas­
urements in this study were carried out by using 5×  and 
10×  magnification objective lenses. The total measuring 
volume of the FVM instrument was (200  ×  200  ×  100) mm.

In the following section, an analysis of the effect of over­
lapping area measurements on the errors is presented. In 
section 2, a kinematic model of FVM and a procedure to esti­
mate the lateral errors using a proposed uncalibrated artefact 
are presented. Section 3 contains the results of the accuracy 
improvement of measurements applying the proposed lateral 
error compensation method. Finally, section 4 presents con­
clusions and future work.

1.2.  Effect of different stitching strategies on lateral stage 
errors

FVM captures high-resolution images to construct a 3D  
surface model but is limited by a relatively small field of 
view, (2.8  ×  2.8) mm for the 5×  objective and (1.4  ×  1.4) 
mm for the 10×  objective, compared to the size of measured 
surfaces. Therefore, motorised stages that move a sample 
being measured are used to tile-scan the entire surface area. 
The acquired data are combined into one final output dataset 
by a process referred to as stitching. If the data are properly 
stitched, the FVM system numerically compensates the lateral 
error of the stage. However, without stitching the lateral errors 
significantly reduce the accuracy of lateral measurements. To 
solve this problem, the lateral errors should be quantified and 
compensated. For a better understanding of the stitching pro­
cess, a calibrated artefact (figure 2) has been measured with a 
10×  magnification objective lens.

The artefact is a stainless steel block with overall dimen­
sions of (28  ×  28  ×  5) mm, whose upper surface has a grid 
of calottes (semi-spherical holes 0.5 mm in diameter) dis­
tributed as a 6  ×  6 grid array with a nominal separation of 
4 mm between the centres of two consecutive calottes (see 
[1] for the detailed geometry of the artefact). This calibrated 

artefact has been previously used for lateral scale calibration 
for FVM [1].

The holes are numbered starting from left to right and from 
up to down, therefore the four corners are numbered 1, 6, 31 
and 36, as shown in figure 2. For the measurements, row 1–6 
is aligned with the x-axis and column 1–31 is aligned with 
the y -axis. When a measurement is carried out, the first step 
is to determine the size of the image field that covers a meas­
urement area by selecting an initial and final position of the 
measurement process. After the preview before capturing raw 
data, the measuring software shows the whole image field and 
allows the user to select which image tiles should be avoided 
during the measurement. This option is used to create discon­
tinuities in the measurement to highlight the specific func­
tionality under investigation. Figure 3 shows the six different 
stitching strategies used to study the lateral error.

Case (a) is a fully stitched image field and will be used 
as a reference. Case (b) only has information about the 
two calottes studied: 1 and 6 for the x-axis (table 1), 1 and 
31 for the y -axis (table 2). Cases (c)–(e) are image fields 
with only one image tile missing, but in different positions, 
at the beginning, at the centre and at the end respectively. 
Finally, case (f) alternates one image tile with one missing 

Figure 1.  Focus variation microscope.

Figure 2.  Artefact used for the stitching strategies.
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tile. In table 1, the coordinates of the centre of holes 1 and 6 
(along the x-axis) are shown for the different stitching con­
figurations. The distances between those two calottes can be 
compared with case (a), where the stitching was carried out 
for the entire surface area. The maximum differences with 

the reference measurement (case (a)) are cases (b), (e) and 
(f) with differences of  −14.6 µm, −14.8 µm and  −15 µm 
respectively. These three cases have in common that they 
have missed the area tile that is adjacent to calotte 6. It is 
also relevant that in cases (c)–(e), which have only missed 

Figure 3.  Stitching configurations studied.

Table 1.  Distance between calotte 1 and 6 for the six stitching strategies (see figure 2).

Case Calotte x/mm y /mm z/mm distance/mm
difference 
with (a)/µm

(a) 1 −154.5487 −115.4767 −50.3624 20.0079 —
6 −134.5409 −115.4371 −50.4457

(b) 1 −154.5487 −115.4768 −50.3604 19.9933 −14.6
6 −134.5554 −115.4439 −50.4560

(c) 1 −154.5485 −115.4765 −50.3599 20.0063 −1.5
6 −134.5422 −115.4387 −50.4483

(d) 1 −154.5484 −115.4769 −50.3609 19.9989 −8.9
6 −134.5494 −115.4415 −50.4530

(e) 1 −154.5485 −115.4774 −50.3598 19.9930 −14.8
6 −134.5555 −115.4439 −50.4570

(f) 1 −154.5483 −115.4775 −50.3620 19.9929 −15.0
6 −134.5554 −115.4445 −50.4585

Table 2.  Distance between calotte 1 and 31 for the six stitching configurations (see figure 2).

Case Calotte x/mm y /mm z/mm distance/mm
difference 
with (a)/µm

(a) 1 −154.5483 −115.4775 −50.3610 20.0047 —
31 −154.5028 −135.4822 −50.4844

(b) 1 −154.5478 −115.4771 −50.3594 20.0026 −2.2
31 −154.5105 −135.4796 −50.4906

(c) 1 −154.5479 −115.4774 −50.3600 20.0049 0.2
31 −154.5043 −135.4823 −50.4858

(d) 1 −154.5482 −115.4775 −50.3608 20.0032 −1.5
31 −154.5078 −135.4807 −50.4882

(e) 1 −154.5481 −115.4775 −50.3610 20.0020 −2.7
31 −154.5101 −135.4795 −50.4907

(f) 1 −154.5475 −115.4775 −50.3599 20.0016 −3.1
31 −154.5101 −135.4791 −50.4919
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one area tile, the position of the missed image tile determines 
the magnitude of the error. When the image tile missed is 
near to the first calotte measured, the error is smaller (−1.5 
µm). In the centre position, the error is slightly higher (−8.9 
µm) and, finally, when it is furthest from the first position 
measured, the error is higher (−14.8 µm). These measure­
ment results suggest that the FVM system takes informa­
tion about its position from the encoders for the first data 
tile; for the next data tiles the FVM system calculates its 
position using the stitching software and does not take into 
account the information from the encoders. When the system 
cannot stitch a data tile, to locate this tile the system again 
takes information from the encoders, but this position will be 
affected by the errors from the xy-stage.

Without moving the artefact, the same experiment has been 
carried out with the y -axis. In this case, the calottes measured 
are numbers 1 and 31. The results are shown in table 2.

Once again, cases (b), (e) and (f) have the biggest differ­
ence with respect to the reference case. Case (c) is the closest 
to (a) and case (d) has around one half of the error present in 
cases (b), (e) and (f). Therefore, the behaviour of the stitching 
is similar to that seen in the experiment carried out in the x-
axis; the principal difference is the magnitude of the maximum 
error, for the x-axis this is around five times larger than for the 
y -axis. This is probably due to the propagation of errors, as the 
x-axis is mounted directly above the y -axis.

2.  Methodology

The methodology to quantify and compensate the lateral 
errors of the xy-stage is as follows. Firstly, the kinematic 
model of the FVM is determined. In the kinematic model, all 
errors related to the lateral stage of the FVM system are con­
sidered, both translational and rotational. These errors repre­
sent all the geometrical components of error that can affect 
the result of a lateral measurement. Once the kinematic model 
has been defined, an uncalibrated artefact is measured. The 
artefact is a metal block consisting of calotte features (see 
section 2.2). The artefact is measured with the 5×  objective 
lens twice: with stitching and, in the same position, without 
stitching. The measurements with stitching are the reference 
data used to deduce the kinematic errors. The stitching mea­
surement can be used as a reference since it has been shown to 
improve the lateral accuracy [1]. Hence, the limitation of the 
compensation is dependent on the accuracy of the stitching. 
From the measurements, the centre locations of all the calottes 
are determined by fitting a nominal sphere to the measured 
calottes. These centre locations are used in the kinematic 
model to determine the value of each error component by an 
optimisation procedure to solve an over-constrained system of 
linear equations [10].

2.1.  Kinematic model

The proposed kinematic model for the xy-stage of the FVM is 
represented with the following equation:

TP = R−1
X

[
R−1

Y ·
[
TL − TY

]
− TX

]
� (1)

where TP  are the coordinates of a three-dimensional (3D) 
point without stage errors (from results of stitching), TL con­
tains the z-coordinate (height) of the measured points, and TX  
and TY  are vectors representing the translational errors of the 
x and y  axes. RX and RY are matrices representing rotational 
errors, thus

Rk =

Ö
1 −kRz kRy

kRz 1 −kRx
−kRy kRx 1

è

,� (2)

where k  =  {x, y }, and

TX =

Ö
−x + xTx

xTy − x · xWy
xTz − x · xWz

è

,� (3)

TY =

Ö
yTx

−y + yTy
yTz − y · yWz

è

,� (4)

TL =

Ö
0
0
z

è

.� (5)

The notation used for the geometric errors is taken from 
VDI 2617-3 [11]. Table 3 shows the different components of 
error with a description and how they have been modelled.

The perpendicularity errors (xWy, xWz and yWz) have been 
modelled as a constant value, as they represent the perpend­
icularity error of two axes (angles with unit of radians) and, 
therefore, are independent of the position. However, the 
rotational errors (xRx, xRy, xRz, yRx, yRy and yRz) and the 

Table 3.  Error parameters and model notation.

Error Description model

xWy Perpendicularity error 
between x and y  axes

xWy

xWz Perpendicularity error 
between x and z axes

xWz

yWz Perpendicularity error 
between y  and z axes

yWz

xTx Positional error of x axis xTx1 · x  +  xTx0

xTy X-axis straightness error 
in y -axis direction

xTy1 · x  +  xTy0

xTz X-axis straightness error 
in z-axis direction

xTz1 · x  +  xTz0

yTx Y-axis straightness error 
in x-axis direction

yTx1 · y   +  yTx0

yTy Positional error of y  axis yTy1 · y   +  yTy0

yTz Y-axis straightness error 
in z-axis direction

yTz1 · y   +  yTz0

xRx Roll of x axis xRx1 · x  +  xRx0

xRy Pitch of x axis xRy1 · x  +  xRy0

xRz Yaw of x axis xRz1 · x  +  xRz0

yRx Roll of y  axis yRx1 · y   +  yRx0

yRy Pitch of y  axis yRy1 · y   +  yRy0

yRz Yaw of y  axis yRz1 · y   +  yRz0
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translational errors (xTx, xTy, xTz, yTx, yTy and yTz) have been 
modelled as first-order polynomials, as they are dependent 
on position (see section  3 for a more detailed explanation). 
Therefore, the system has 27 unknown variables. Only lat­
eral errors are considered, z-axis errors have been neglected 
because in the measurements the z-axis movement is limited 
to less than a millimetre.

With the kinematic model and the measurements of the 
artefact, with and without stitching, we can estimate the kin­
ematic and geometrical errors of the lateral stage and use the 
quantified errors to numerically compensate a measurement in 
the lateral direction.

2.2.  Artefact

The uncalibrated artefact used for the lateral error quantifica­
tion and compensation (figure 4) is a rectangular aluminium 
block with dimensions of (180  ×  18  ×  18) mm. On its upper 
surface it has 17 calottes of 2 mm diameter, having a 10 mm 
distance between two consecutive centres. The holes are 
manufactured by a milling process with a ball-nose tool. With 
the uncalibrated artefact and the proposed procedure, a lat­
eral measurement can be compensated with a small number 
of measurements to characterise the lateral stage errors for the 
compensation, so that the procedure is easy to implement and 
practical for industry. Note that the lateral scale of the FVM 
must have been calibrated prior to the procedure presented 
here [12].

The methodology is implemented by measuring the arte­
fact in different positions twice: with and without stitching. 
Three positions are chosen to introduce coordinates in to 
the kinematic model to estimate the error components: (1) 
aligned with the x-axis, (2) aligned with the y -axis and (3) 
at a random angle position of the xy-stage, as shown in 
figure 4(b). The method is independent of the positions chosen 
because it compares each point with itself, with and without 
stitching. For the three measurements, the first centre hole is 
located at the same physical position. The coordinates of the 
measurement, used as the reference for the lateral errors with 
stitching, are introduced in to the kinematic model as the TP  
vector, while the coordinates without stitching are introduced 
in to the kinematic model as the x, y  and z coordinates inside 
the vectors TX , TY  and (TL). With the kinematic model, and 

several measurements with and without stitching, an over-
constrained system of equations can be obtained and solved 
to estimate the lateral stage error. With the estimated errors, 
compensation can be applied to lateral measurement without 
stitching to improve the measurement accuracy. In the case 
presented in this paper, to estimate the error components we 
have used the coordinates of 45 hole centres measured from 
the artefact in the three directions: x-axis, y -axis and in the 
diagonal.

For the purpose of verification of the proposed method­
ology, additional measurements of the artefact are taken at 
other positions, also aligned with the axes, and in diagonal 
orientations. A total of 162 3D centre coordinates were meas­
ured with and without stitching for the entire range of the xy-
stage. These measurements will be used to verify that the error 
compensation can be applied for the entire xy-range.

3.  Results

The kinematic model is presented as a system of equa­
tions  with 27 unknown variables (see equation  (1) and 
table 3), which are the rotational and translational errors. To 
estimate the values of the unknown variables, we are using 
information from the three coordinates of the 45 centre loca­
tions measured. The Levenberg–Marquardt (LM) algorithm 
has been used for optimisation of this non-linear system of 
equations [13], where the objective function is the Euclidean 
error. The parameter minimised is the residual error, which 
is defined as the difference between the coordinates without 
stitching (x, y , z coordinates of the vectors TX , TY , and TL) 
passed through the kinematic model, and the coordinates with 
stitching (TP ):

Point Error =R−1
X

[
R−1

Y
[
TL − TY

]
− TX

]
− TP.� (6)

Even though the system is over-constrained, the function is 
non-linear with many local optimum solutions. The iterative 
LM algorithm to solve the optimisation requires a good ini­
tial solution so that the results converge to an optimum solu­
tion [13]. In our objective function (equation (6)) there are 
some parameters interfering with others (while one parameter 

Figure 4.  The uncalibrated artefact used for the error compensation 
methodology.

Figure 5.  Residual error as the function of the number of iterations.
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grows, another decreases to compensate its effect), this way 
the optimal solution cannot be found and the solution is deter­
mined by the maximum number of iterations allowed by the 
optimization stopping criteria (figure 5).

Setting this value in one iteration, the 27 parameters of 
the geometric errors can be calculated and a correction can 
be performed. Figure  6 shows the initial error when meas­
uring distances between centres, and the residual error after 

Figure 6.  Distance measurement errors before and after the correction with the parameters obtained with one iteration.

Figure 7.  Geometrical errors estimated for 5×  magnification objective lens.

Figure 8.  Distance measurement errors before and after the correction with the ten parameters of kinematic model.

Meas. Sci. Technol. 30 (2019) 065002
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applying the correction. The error components have been 
obtained after optimising the non-linear function with a total 
number of 45 equations. To verify that the correction is giving 
optimum results in the whole work space, the correction has 
been applied to the measurements over 162 calottes in dif­
ferent positions. It can be seen that the correction obtained 
is optimum for most of the points (with residual errors 
between  +5 µm and  −8 µm), although there is a case which 
has some points only partially compensated and its residual 
error reaches the value of  −25 µm. This is due to the interfer­
ence among some parameters. To find which parameters are 
interfering, we develop the equations of the kinematic model 
(equations (7)–(9)):

XP = x − xTx − yTx + xRy · [xTz + yTz − z + yRx· (y + yTy)

− x · xWz − y · yWz + yRy · yTx] + yRz · (y + yTy)

+ xRz · [y − xTy + yTy + x · xWy + yRz · yTx.
+ yRx · (z − yTz + y · yWz)]− yRy · (z − yTz + y · yWz) ,� (7)

YP = y − xTy + yTy + xRz · [xTx − x + yTx

− yRz · (y + yTy) + yRy · (z − yTz + y · yWz)]

− xRx · [xTz + yTz − z + yRx · (y + yTy)− x · xWz

− y · yWz + yRy · yTx] + x · xWy + yRz · yTx

+ yRx · (z − yTz + y · yWz),
�

(8)
ZP = z − yTz − xTz − xRy · [xTx − x + yTx − yRz · (y + yTy)

+ yRy · (z − yTz + y · yWz)]− yRx · (y + yTy)

+ x · xWz + y · yWz − yRy ∗ yTx − xRx · [y − xTy

+ yTy + x · xWy + yRz · yTx + yRx · (z − yTz + y · yWz)].�
(9)

Neglecting the coupled parameters, we obtain the 
following:

XP = x − xTx − yTx − xRy · z + yRz · y + xRz · y − yRy · z,�
(10)

YP = y − xTy + yTy − xRz · x + xRx · z + x · xWy + yRx · z,�
(11)

ZP = z − yTz − xTz + xRy · x − yRx · y

+ x · xWz + y · yWz − xRx · y.� (12)
The simplified model becomes

Figure 9.  Histogram of the error in distance measurements: (a) nine 
parameters, (b) 27 parameters.




XP

YP

ZP


 =




x
y
z


−




xTx + yTx
xTy − yTy
yTz + xTz


+




0 yRz + xRz −xRy − yRy
−xRz + xWy 0 xRx + yRx
xRy + xWz −yRx − xRx + yWz 0


 ·




x
y
z


 .

�

(13)

As we are measuring with a z-coordinate as approximately 
constant, we cannot obtain accurate information about the 
parameters that are coupled to the z-coordinate: xRy, yRy, 
xRx and yRx. Moreover, some of those parameters interfere 
with other parameters in the model, for example, yRx and xRx 
interfere with yWz, or xRy interferes with xWz. Therefore, 
xRy, yRy, xRx and yRx have been neglected. The parameter 
xRz interferes with the perpendicularity xWy and the rotational 
error yRz. This information can be used to simplify some poly­
nomials of the parameter used in the model in equation (13), 
thus




XP

YP

ZP


 =




x
y
z


−




xTx + yTx
−yTy + xTy
yTz + xTz


+




0 yRz 0
xWy 0 0
xWz yWz 0


 ·




x
y
z


 .

� (14)

The parameters xTz0 and yTz0 may be treated as one com­
bined parameter (xTz0  +  yTz0). The parameters yWz, xWz, 
xWy, yRz, xTy, yTx, xTz and yTz have been modelled as zero-
order polynomials (constant terms); xTx and yTy have been 
modelled as linear polynomials and their constant terms xTx0 
and yTy0 have been combined with the parameters yTx0 and 
xTy0 respectively:



XP

YP

ZP


 =




xTx0 + yTx0

yTy0 + xTy0

yTz0 + xTz0


+



(1 − xTx1) yRz0 0

xWy (1 + yTy1) 0
xWz yWz 1


 ·




x
y
z


 .

� (15)

These simplifications make the model more robust, 
reaching an optimum solution with only three iterations. 
Figure 7 shows the geometrical errors of the lateral stage of 
the FVM obtained from the proposed methodology. A total of 
nine rotational and translational errors of the lateral stage have 
been estimated.

With the estimation of the errors, it is possible to perform 
an error compensation of any lateral measurements, where the 
measurements are carried out without stitching. The param­
eters estimated are used in the original kinematic model (equa­
tion (1)) to calculate the corrected position of each centre. 
With the corrected positions, the distance measurement error 
can be calculated (figure 8).

A significant error reduction of the lateral measurements 
without stitching can be obtained with the proposed error 
compensation methodology and with the uncalibrated arte­
fact. Figure 9(a) shows that the residual error obtained in dis­
tance measurement with the nine-parameter kinematic model 
is improved compared to the residual error in distance meas­
urement obtained with the 27-parameter kinematic model 
(figure 9(b)). Though from a physical point of view all the 
errors are completely independent variables, from a mathe­
matical point of view a problem with parameter redundancy 
arises: the higher the order of the polynomials used to model 
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the errors, the greater this redundancy, therefore the simplifi­
cation is justified.

These results have been obtained for measurements with 
the 5×  magnification objective lens. As these geometrical 
errors are due to manufacturing errors and misalignments, 
they may change when other magnification objective lenses 
are used. The same procedure has been used to estimate the 
errors for the 10×  magnification objective lens. In this case, 
the artefact used in section 2 has been measured twice (figure 
2), with and without stitching, as shown in figure 10.

Figure 11 shows the new estimation of the geometrical 
errors obtained with the 10×  magnification objective lens.

The difference between the coordinates measured with 
and without stitching is considered as the initial error. The 
coordinates of the workpiece obtained on the measurement 
without stitching (figure 10(b)) are corrected by applying the 
kinematic model (equation (1)) and the estimated errors are 
obtained (figure 11).

Comparing the geometric errors between the 5×  magnifi­
cation objective and 10×  magnification objective lenses (fig­
ures 7 and 11), it can be seen that xTx and yTy have similar 
values; these two components are the ones more related to 
the overlapping of image tiles. The translational components 
have smaller values for the 10×  magnification objective than 

Figure 12.  Errors before and after the correction on the calibrated stainless steel artefact.

Figure 10.  Measured areas: (a) measuring the calottes and the area in between the calottes, (b) measuring only the calottes.

Figure 11.  Geometrical errors estimated for 10×  magnification objective lens.
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those obtained for the 5×  magnification objective, but the 
signs and relationships between them are similar: xTy0 and 
yTx0 have negative values and magnitudes three times higher 
than xTz0  +  yTz0, which has a positive value. The squareness 
errors yWz and xWz are different for both lenses but xWy has 
a similar value. This error may be because yWz and xWz are 
optical configuration related errors, so different lenses will 
have different perpendicularity errors and xWy will depend on 
the xy-stage so it does not change with different lenses. But 
it should also be taken into account that volumetric solutions 
do not have a real physical equivalence as they only provide 
optimum values for the joint set of all parameters.

In figure  12, the errors in distance measurements before 
and after applying the correction of the calibrated stainless 
steel artefact (figure 2) are represented. The initial error is 
defined as the difference between the coordinates measured 
with stitching (figure 10(a)) and the coordinates measured 
without stitching (figure 10(b)). The residual error is defined 
as the difference between the coordinates measured with 
stitching (figure 10(a)) and coordinates obtained after cor­
recting the measurement without stitching (figure 10(b)), with 
the geometrical errors estimated (figure 11).

The lateral error of a measurement without stitching is 
reduced from an amplitude of 18 µm over measurements 
of 20 mm, to an amplitude of 2.5 µm over the whole space 
measured. Moreover, a considerable amount of computational 
time and data storage saving are gained with the non-stitching 
measurements. In the first case (measurement with stitching), 
the number of image tiles measured is 225 and in the second 
case it is 49.

4.  Conclusions and future work

Generally, it is worth noting that measurement without image 
stitching is not the normal operating mode of commonly avail­
able FVM instruments. Moreover, typical measurements with 
the instrument are usually not over a large area of (180  ×  180) 
mm. Nevertheless, we have shown that it is possible to char­
acterise the xy-stage of a FVM by performing two types of 
measurement (with stitching and without stitching) with an 
uncalibrated artefact. The methodology allows compensa­
tion of lateral errors of non-stitching measurements of dif­
ferent features on a surface. The corrections obtained can 
significantly reduce the error of lateral measurements. The 
lateral error of the uncompensated non-stitching measure­
ments can reach values of 200 µm over a measurement length 
of 200 mm. Typically measurements are not performed over 
such large ranges ((200  ×  200) mm), and thus, the maximum 
errors are not representative for common FVM measurements. 
Nevertheless, after the compensation, the residual error is less 
than 15 µm. The correction allows measurement of relevant 
features independently of features in between them so that a 
considerable saving on computation and data storage can be 
obtained. Future work includes the manufacture of an artefact 

with features at different z heights to extend the analysis to 
the z-axis so that 3D dimensional error compensation can be 
applied.
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