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Abstract. We propose, design and construct a variant of the conventional axion haloscope
concept that could be competitive in the search for dark matter axions of masses in the
decade 10-100 µeV. Theses masses are located somewhat above the mass range in which
existing experiments have reached sensitivity to benchmark QCD axion models. Our halo-
scope consists of an array of small microwave cavities connected by rectangular irises, in an
arrangement commonly used in radio-frequency filters. The size of the unit cavity determines
the main resonant frequency, while the possibility to connect a large number of cavities al-
lows to reach large detection volumes. We develop the theoretical framework of the detection
concept, and present design prescriptions to optimize detection capabilities. We describe the
design and realization of a first small-scale prototype of this concept, called Relic Axion De-
tector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities
microwave filter with the detecting mode operating at around 8.4 GHz. This structure has
been electromagnetically characterized at 2 K and 298 K, and it is now placed in ultra-high
vacuum in one of the twin-bores of the 9 T CAST dipole magnet at CERN. We describe the
data acquisition system developed for relic axion detection, and present preliminary results
of the electromagnetic properties of the microwave filter, which show the potential of filters
to reach QCD axion window sensitivity at X-band frequencies.
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1 Introduction

Axions, as well as more generic axion-like particles (ALPs), are currently considered one of
the most promising portals for new physics beyond the Standard Model (SM) of particle
physics. Axions arise in extensions of the SM including the Peccei-Quinn (PQ) mechanism
[1, 2], currently the most compelling solution [3, 4] to the strong-CP problem of Quantum
Chromo Dynamics (QCD). More generic ALPs often appear in diverse types of SM extensions.
Not necessarily related to the axion, ALPs share part of its phenomenology. For example,
it is now known that string theory naturally predicts many ALPs (and the axion itself)
[5]. Beyond their motivation from theoretical arguments, there are additional arguments
motivating their existence coming from cosmology and astrophysics. Most relevantly, axions
are strong candidates to compose all or part of the dark matter (DM).

Indeed, non-relativistic axions could have been produced in the early universe by the
phenomenon called vacuum-realignment (VR) and, in addition, by the decay of topological
defects (TD) of the axion field, like domain walls and axion strings [6]. For both mechanisms,
the production is approximately inversely proportional to the axion mass, which means that
the condition of overproduction of relic axion density translates into a lower bound on the
axion mass. However, the computation of the relic axion density for a given axion model and,
correspondingly, the axion mass for which the right DM density is obtained, is in general
rather uncertain. This is due to dependencies on axion cosmology model and, in the case of
the TD, on computational difficulties.

For axion models with PQ transition happening before inflation, only the VR contribu-
tion needs to be considered (TD are removed by inflation), but it turns out to be dependent
on the unknown value of the initial misalignment angle θi, unique for all the observable Uni-
verse. Assuming a natural O(1) value for this angle, it would translate to axion masses at
the ∼ 10 µeV scale, but much lower mass values could be justified by anthropically finetuned
values of θi [7]. For axion models with PQ transition happening after inflation, the VR
contribution is calculated over an averaged value of θi, thus removing the previous uncer-
tainty. Therefore for these models one can safely set a lower bound to the axion mass of,
at least, mA & 25µeV, but possibly higher, depending on the importance of the TD contri-
bution. However this contribution is difficult to compute, as it requires detailed numerical
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simulation of the behavior of the defects. A recent study [6] claims that TD contribution is
dominant, and therefore shifts the right axion mass up to the 80–130 µeV. A more recent
attempt to quantify this contribution [8] provides a lower range mA = 26.2 ± 3.4 µeV. In
addition, one must note that in particular models in which the TD are long-lived, due to
the existence of several almost-degenerate vacua in the axion potential, the TD contribution
can be substantially increased, and therefore the right axion mass can go to much larger
values [6]. Moreover, if the axion is a subdominant part of DM, the axion mass also moves
to correspondingly higher values. On more general grounds, the VR mechanism is common
also to generic ALPs, and a large fraction of the ALP parameter space can also potentially
contain viable ALP DM models [9]. To summarize, although a large mass-range is in princi-
ple open to axion DM exploration, there is a specific motivation to extend the sensitivity of
conventional searches, so far competitive in the low mass range 1-10 µeV, to higher values.

The conventional axion haloscope technique [10] consists of a high-Q microwave cavity
inside a magnetic field to trigger the conversion of axions from our galactic DM halo into
photons. Being non-relativistic, the axions convert to monochromatic photons with energy
equal to mA. For a cavity whose resonant frequency matches mA, the conversion is enhanced
by a factor proportional to the quality factor of the cavity Q. For a high Q cavity, the
resonant band is small and thus the cavity must be tunable and data taking is performed by
scanning very thin mass-slices of parameter space. Therefore, a useful figure of merit F of
these experiments is proportional to the time needed to scan a fixed axion mass range [11]
down to a given signal-to-noise level and for a given value of the axion-photo coupling gAγ:

F ∼ g4
Aγm

2
AB

4V 2T−2
sysG4Q (1.1)

where B is the magnetic field (assumed constant over the cavity volume), V is the cavity
volume, Tsys is the detection noise temperature, and G is the geometrical form factor of the
cavity mode, typically proportional to the overlap integral between the mode electric field
and the external magnetic field.

The ADMX collaboration [12] has demonstrated that this technique is competitive in the
1 to 10 µeV range and it has realistic prospects to explore this range down to the QCD axion
sensitivity in the near future. Pushing these prospects to higher masses is challenging, because
it requires to make the cavity resonant to higher frequencies, which means a reduced volume
V , and correspondingly reduced sensitivity. One can in principle compensate the loss in V by
improving other parameters, like Q, B or T and indeed substantial effort in these directions
is ongoing in the community. But a most appealing option would be to effectively increase
V by filling a large volume with many high-frequency resonant structures, i.e. effectively
decoupling the detection volume V from the volume of a cavity and the resonant frequency.
Literally replicating a cavity many times and combining their output is possible in theory,
although difficult in practice due to the need to phase match them, and probably it will be
challenging to scale it above a few cavities. An alternative approach is to design extended
periodic structures that could in principle fill large volumes while coherently resonating at a
high frequency. The need of tuning the resonant frequency and keeping competitive values
for the rest of parameters still makes this option challenging, although promising recent ideas
are being tested [13–15].

We here propose and develop another particular realization of this idea, in which the
high-frequency resonant structure is an array of N small rectangular cavities connected with
irises. Such an arrangement (see Figure 1) resembles that of a radio-frequency (RF) filter,
although, as will be seen later, it differs in its design parameters. We find that this concept
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allows for an (in principle) arbitrarily large magnetic volume to be instrumented with cavities,
while the resonant frequency is (mostly) determined by the size of a single element. One single
readout channel is foreseen for the full array, i.e avoiding the need of challenging offline signal
combination and phase matching. In addition, the geometrical layout of such arrangement
could be realized in different ways, providing flexibility in instrumenting a large magnetic
volume. The motivation for considering this setup is manifold. First, we would like to develop
a technique that prioritizes scaling-up in V , even at the cost of trading-off in other parameters,
like, e.g. Q. The goal is to take advantage of large magnetic volumes in already existing
infrastructures that could be made available to this type of research. The CAST magnet is
one such existing example. It has been already used for ∼15 years for solar axion searches and
is now partially devoted to host axion haloscope test setups. It is a 10-meter long, 2×15 cm2

aperture, 9 T superconducting dipole, which corresponds to a total B2V = 2.4 T2m3 (to be
compared, e.g., to the B2V ∼ 11 T2m3 of the ADMX magnet). The ambitious goal would
be to instrument something like the magnet of the future axion helioscope IAXO [16], a
dedicated toroidal magnet with B2V & 300 T2m3 with similarly large aspect ratio. These
numbers are very promising to extract axion DM signals provided ways to efficiently use
this magnetic volume are developed. Second, arranging the cavities in 1-dimensional arrays
is perfectly suitable to instrument magnets with large aspect-ratios like the ones of CERN
accelerator magnets or the future IAXO. Third, the weak linear coupling between cavities
through small irises allows a very simple theoretical description that can greatly aid the
design of multiple cavities. Fourth, tuning haloscopes composed of multiple subcavities can
be really challenging. To simplify the design we considered many cavities optimized around
a central frequency with simple and robust tuning mechanisms to allow retuning in a small
range around the central peak (∼ 10%). This strategy would be compromised if the design
phase was long and complicated; the theoretical guidance described in the following sections
is a key part of the conceptual design adopted.

The concept here proposed is being experimentally tested as the Relic Axion Detector
Exploratory Setup (RADES) project. RADES is part of the new experimental program of
CAST, presented and approved by CERN SPSC in 2015 [17], and now under implementation.
As a first step, a small-scale RADES cavity with 5 elements and no tuning has been built
and installed inside the CAST magnet for operation in the current data taking campaign of
the experiment. We must note that another complementary idea to make use of large aspect-
ratio magnetic volumes, based on the use of single long rectangular cavities [18], is also
being tested at the CAST magnet by the CAST-CAPP team. Furthermore, the cavity array
concept independently proposed in [19] shares some conceptual elements with our proposal.
In particular, the authors of [19] identify some of the merits of cavity structures that will
be developed in our work, in particular regarding the scalability in V for high frequency
operation. We here further develop the concept by providing a prescription to optimize the
coupling of the structure with the axion field. Moreover, we propose a different practical
implementation based on a filter-like structure (while in [19] a series of posts or coils are
proposed instead), and we present feasibility results, both based on complete simulations
and on a first experimental prototype. Finally, we recently realised that a very similar
implementation to the one here discussed, an array of cavities interconnected with irises, was
already mentioned by D. Morris in an unpublished preprint [20] from 1984.

In section 2 we will present the theoretical background of the concept of a set of individ-
ual cavities with a coupling between neighboring ones. We will develop design prescriptions
to optimize the performance of the array as axion detectors. In section 3 we discuss possible
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implementations of this concept based on full 3D simulations of the cavity array. In section
4 we present the first RADES demonstrative prototype, currently operated in the CAST
magnet at CERN, and give sensitivity expectations in section 5. We finish in section 6 with
our conclusions and discussion of prospects.

2 Theoretical modeling of a microwave filter

In this paper we refer to an array of cavities connected by irises as a filter. Furthermore,
for simplicity, we consider only the excitation of the fundamental mode of each subcavity,
i.e. higher harmonics are assumed to be well separated. The excitation of a filter by the
oscillating axion DM field1, A = A0e

−jωt, j being the imaginary unit, can be described as

(ω21− M)Ξ = JA = −gAγBeA0 ω
2 G, (2.1)

where Ξ is a column vector of the E-field amplitudes of the fundamental mode of each
cavity, JA is the vector whose components are the axion DM excitation parameters of each
cavity (JA)q = −gAγBeA0 ω

2Gq, with Gq being the geometric factor of the cavity defined
in (A.5)(G a vector of all of them). We derive the formula (2.1) in appendix A, where
we detail also a little more on the theoretical aspects of coupled cavities. The matrix M
contains the natural frequencies, damping factors and couplings between cavities. In our
case of rectangular cavities segmented and connected through irises, M is modeled by the
tri-diagonal and symmetric matrix

M =



Ω̃2
1 K12 0 0 0 0

K21 Ω̃2
2 K23 0 0 0

0 K32 Ω̃2
3 K34 0 0

0 0
. . .

. . .
. . . 0

0 0 0
. . .

. . .
. . .

0 0 0 0 KN,N−1 Ω̃2
N


, (2.2)

Neglecting losses (which will always be kept very small), M is a real square symmetric
matrix of dimensions N×N , with N real eigenvalues with associated eigenvectors. The eigen-
values correspond to the square of the N resonant eigenfrequencies, ω2

i , and the eigenvalues
are vectors ei representing the E-field amplitude and phase of the fundamental mode of each
of the individual cavities. In our notation, Ωq is the eigenfrequency of the q-th individual
cavity in the limit of K → 0, and ωi stands for the i-th resonant frequency of the filter as a
whole. Note that we use the label q for properties of the individual cavities and i for those
of the global filter. A tilde above ω,Ω denotes a complex frequency, where the imaginary
part accounts for losses. Also, Kq−1,q parametrizes the coupling between the q − 1 and q
cavities. The solution of (2.1) gives the electric fields in each cavity Ξ as a superposition of
the E-fields of the resonant modes,

(Ξ)q =
∑
i

(ei)q

(
ei · JA
ω2 − ω̃2

i

)
(2.3)

see the appendix for the derivation.
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Figure 1. Design of a RADES microwave filter-like structure for axion detection composed by five
coupled cavities with length Li and dimensions a and b, connected by rectangular irises of width Wi

and depth t.

For practical implementation, we have selected a filter with 5 cavities and 4 couplings,
which we show in Figure 1. The eigenvalue problem associated with this matrix for a given
eigenvalue ω2

i , leads to the following system of linear equations

ω2
i


ei1
ei2
ei3
ei4
ei5

 = M


ei1
ei2
ei3
ei4
ei5

 =


Ω2

1 ei1 +K12 ei2
K12 ei1 + Ω2

2 ei2 +K23 ei3
K23 ei2 + Ω2

3 ei3 +K34 ei4
K34 ei3 + Ω2

4 ei4 +K45 ei5
K45 ei4 + Ω2

5 ei5

 (2.4)

where we use eiq = (ei)q (i, q = 1, 2 · · · 5) for the components of the corresponding eigenvec-

tor. By introducing k
(i)
q−1,q = Kq−1,q/ω

2
i the following explicit system of linear equations is

obtained

ω2
i =

Ω2
1 ei1

ei1 − k(i)
12 ei2

=
Ω2

2 ei2

ei2 − k(i)
12 ei1 − k

(i)
23 ei3

=
Ω2

3 ei3

ei3 − k(i)
23 ei2 − k

(i)
34 ei4

=
Ω2

4 ei4

ei4 − k(i)
34 ei3 − k

(i)
45 ei5

=
Ω2

5 ei5

ei5 − k(i)
45 ei4

. (2.5)

We emphasize that we can choose the design parameters Ωq’s and kq−1,q’s by altering
the dimensions of the cavities and irises. The idea thus, is to find out for which values of the
parameters we can obtain a filter coupling to the axion DM with a given set of characteristics.
For this first work we have chosen to fix a desired characteristic frequency ωi (the operational
frequency), and design a filter that maximizes the geometric factor for that frequency,

Gi =

∑
q Vq ei · G
V

, (2.6)

1Recall that the frequency of the axion DM field is similar to the axion mass ω ∼ mA, which is a priori
unknown. We work in natural units ~ = c = 1.
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see discussion around (A.21) in the appendix. In this equation we can observe that the form
factor depends on the alignment of the electric field in each cavity to the external magnetic
field, Be, which is here represented by the sign of Gq. Consequently, it can be maximized
by forcing the electric field in all five cavities to be aligned with the applied magnetic field.
The geometric factors of each individual cavity in a constant external magnetic field Be are
very similar. This is because they are similar in size and working on the fundamental mode
so the vector of geometric factors is G ' (1, 1, 1, 1, 1) × G, with G the geometric factor of
a cavity. Maximum coupling can thus be obtained when one of the filter eigenmodes is
e = (1, 1, 1, 1, 1)/

√
N .

There is some freedom to realize this, but the simplest solution that we have found is

to take all coupling coefficients to be equal to a fixed value k(i) with k(i) = k
(i)
12 = k

(i)
23 =

k
(i)
34 = k

(i)
45 . We choose k(i) < 0, for which our desired solution is the lowest-frequency mode,

min{ωi} = ω1. For positive k(i), our desired mode would correspond to ω5. The resonant
frequencies of the individual cavities Ωq can now be computed from Eq. (2.5), obtaining

Ω2
2 = Ω2

3 = Ω2
4 = ω2

1 (1− 2k(1)) , Ω2
1 = Ω2

5 = ω2
1 (1− k(1)) . (2.7)

The solution is extremely simple: all cavities must share the same resonant frequency, except
for the first and the last one, which need to have larger resonant frequencies by a factor
Ω1/Ω2 =

√
(1− k(1))/(1− 2k(1)), determined by the selected coupling value. For negative

k(1), the factor is smaller than one, so the external cavities have to be slightly larger than
the internal ones. Actually, this solution holds for arbitrary N !

It is straightforward to compute the 4-remaining modes. However, before doing so we
can already advance that they do not couple to the axion, i.e. e2,3,4,5 · G = 0. The reason
is very easy to understand. In absence of losses, the eigenvectors form an orthogonal basis
of the vector space of E-fields in the cavities. Since we have already chosen one vector to
lie parallel to the excitation vector G ∝ (1, 1, 1, 1, 1) the rest are orthogonal to it, and thus
uncoupled. Analytically, we obtain

ω2
i

ω2
1

= 1, 1− 3−
√

5

2
k(1), 1− 5−

√
5

2
k(1), 1− 3 +

√
5

2
k(1), 1− 5 +

√
5

2
k(1) (2.8)

e1 ∝


1
1
1
1
1

 , e2 ∝


+1

+ϕ− 1
0

−ϕ+ 1
−1

 , e3 ∝


−1

2− ϕ
2ϕ− 2
2− ϕ
−1

 , e4 ∝


−1
+ϕ
0
−ϕ
1

 , e5 ∝


−1

+ϕ+ 1
−2ϕ

+ϕ+ 1
−1

 (2.9)

where ϕ = (1+
√

5)/2 = 1.61803 is the golden ratio. Note that at this level of approximation
the eigenvectors do not depend on k(1).

The figure of merit introduced in Eq. (1.1) also depends on the quality factor of the
filter. The unloaded quality factor, Qui , is defined as the ratio of the stored EM energy in
a mode, Ui, to the intrinsic power losses (due to finite conductivity of the cavity walls) per
cycle, P ci [21],

Qui =
Ui

P ci /ωi
=
ωi
Γci

(2.10)
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where Γi = −Im{ω̃2
i }/ωi is the power decay rate of the mode, and the superscript denotes

the intrinsic losses of the cavity. For a TE101, one finds2 [18]

Quq =
1

δ

abL(L2 + a2)

La(L2 + a2) + 2b(L3 + a3)
, (2.11)

with δ the skin depth of the cavity walls, and the rest of notation referring to the cavity
geometry (see Fig. 1). The performance assessment of the proposed solution shown in the
next section includes the estimation of this parameter. In the appendix we show that

Γi '
∑

Γqe
2
iq, (2.12)

where Γq = −Im{Ω̃2
q}/Ωq is the power decay rate of the mode in cavity q. If all the Γ′qs

were exactly the same, all filter modes would have Γi = Γ0 and thus Qui = Quq because of
orthonormality of the basis {ei}. However, the 1st and last cavity have only one iris, and
therefore more losses so some difference is expected.

3 Design of a microwave filter for axion detection

In this section we describe the design of five cavities microwave filter where the fundamental
TE101 mode is resonant in each cavity and optimized for axion detection operating at a
temperature of ∼ 2 K, using the guidance developed in previous section. We start by fixing
the desired frequency of operation of the system, i.e. that of the fundamental mode ω1, and
the inter-cavity coupling k(1). Our optimization condition in Eq. 2.7 fixes the remaining
parameters of the system. We then need to translate the matrix elements Ω’s and K’s of our
analytical model of (2.2) into physical dimensions, cavity and iris dimensions respectively.

We arbitrarily fix our frequency of operation to ω1 = 8.4 GHz, as it corresponds to
waveguide dimensions that comfortably fit into the CAST magnet bore. We restrict ourselves
to a WR90 EIA standard rectangular waveguide, which fixes the width a and height b of all
our cavities as given in Table 1. Within these conditions, the natural frequency Ωq of cavity
q is determined by its length Lq:

Ω2
q =

(π
a

)2
+

(
π

Lq

)2

. (3.1)

Note that this relation holds for an ideal isolated rectangular cavity. The presence of
irises interconnecting the cavities, the presence of ports, or the fact that the corners are
rounded (to facilitate machining) will introduce perturbations to the above relation. In
general we need to resort to numerical simulation of the real geometry to precisely identify
the value of Lq corresponding to a given Ωq. This is done with CST Microwave Studio
electromagnetic commercial software package [22], which works with the time-domain Finite
Integration Technique (FIT).

A similar argument holds for the coupling k(1) and the iris dimensions. Each coupling
coefficient k(1) can be identified with a set of irises dimensions: the width W and length t
of the irises. We have fixed t = 2 mm, due to mechanical constraints. The determination
of the value of W that corresponds to a given k(1) is achieved by numerical simulations. By

2Note that in [18] a factor of 2 is missing in front of the w3 term in formula (2.14) (arXiv), which appears
as (2.15) in the PRD version.
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standard calculations of inter-resonator coupling, using symmetry, two coupled resonators
connected by an inductive iris can be divided into two single resonators, one terminated by
a magnetic wall and the other by an electric wall. The coupling k(1) is then determined
from the resonant frequencies of the two individual resonators [23]. Using this method, we
can obtain k(1) for each physical width W . Finally, we must correct the lengths Lq for the
interaction between the cavities and the irises (loading effect), as reported in [24].

This procedure has been followed for a number of geometries exploring different values
of W . The value chosen in Table 1 has been selected on grounds of practical convenience,
i.e. good separation in frequency of the cavity modes and ease of construction. The above
method gives a value of k(1) = −0.0185 for the geometry chosen in Table 1.

Dimensions [mm] T = 2 K T = 298 K lengths
(including the 30µm copper coating layer)

a 22.86 22.99

b 10.16 10.25

L1 = L5 26.68 26.82

L2 = L3 = L4 25.00 25.14

W1 = W2 = W3 = W4 8.00 8.14

t 2.00 1.95

Table 1. Physical dimensions of the five cavities filter design at a temperature of 2 K and at room
temperature, 298 K. In the latter case, dimensions include the 30 µm copper coating which was used
in the construction of the RADES prototype, see section 4.

Figure 2. Electric field distributions for the five characteristic modes of the designed filter. Observe
that coherence between cavities is preserved only in the fundamental mode, as designed.
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Mode Electric field pattern (sign(ei)q) ωi/2π (GHz) G2
i Qui (2 K)

1 + + + + + 8.428 0.65 40386

2 + + 0 - - 8.454 3.2 10−7 42033

3 - + + + - 8.528 8.1 10−5 43654

4 - + 0 - + 8.625 1.6 10−12 45882

5 - + - + - 8.710 6.4 10−6 48048

Table 2. Electric field pattern (signs of eigenvector coefficients), resonant frequency (eigenvalue),
geometric form factor and quality factor for each characteristic mode of the designed filter-like cavity
at 2 K, obtained from the CST simulations referred to in the text.

The remaining geometrical dimensions are fixed by our optimization prescription. In
practice, this optimal geometry is finetuned by performing numerical computation of the
electric field patterns of the resonant modes, and iterating over different values for L1/5 (the
length of the first and last cavities) until maximizing the numerically-computed geometric
factor G1 of the fundamental mode. This process completes all geometric parameters of the
filter as shown in Table 1.

For this particular design, Table 2 shows the electric field patterns (signs of eigenvec-
tor coefficients) and resonant frequencies (eigenvalues) of the five characteristic modes as
computed by CST eigenvalue solver. The electric field patterns of the five resonant modes
of the filter are shown in Fig. 2. Note that they agree very nicely with the eigenvectors
obtained analytically (2.9). In particular, the first mode maintains the coherence along all
the cavities of the structure by design. Table 2 also shows the geometric factor Gi of each
mode, obtained by numerical post-processing of the computed electric field values within
the cavities. As intended, the geometric factor is maximal for the first characteristic mode,
and very close to the theoretical expectation of a TE101 mode resonating in a single cavity
G2
q = (8/π2)2 = 0.657. In addition, the Gi factor of all the other modes are very close to zero.

This gives us confidence that we have indeed identified the correct geometry corresponding
to the optimal configuration of our analytical model. Furthermore, the resonant frequency
of the fundamental mode agrees well with the designed frequency ω1 = 8.4 GHz.

The unloaded Q factor can also be computed with the above simulations, by introduc-
ing appropriate wall losses. The numbers shown in Table 2 are obtained using as input a
conductivity of 2×109 S/m. These values approximately agree with formula (2.11), by which
Qu101 ' 5.5mm/δ, assuming the skin depth of copper at 2 K to be δ ' 0.1µm. Nevertheless,
as will be discussed in the next section, there are other effects that are not well captured by
the simulations and that will push experimental Q to lower values.

To summarize, we have determined a concrete geometrical implementation of a set
of five inter-connected cavities that correspond to the optimal solution from the analytical
model presented in previous section. Detailed numerical simulation reproduces the features
expected from the model solution, in terms of eigenvectors and eigenvalues. Future work will
go in the direction of studying the scalability in V of this solution, as well as its robustness
against small variations of geometrical parameters (mechanical tolerances). In addition,
work is ongoing to better understand the translation of the analytical model parameters into
physical features of the filter.

– 9 –



4 A first exploratory setup

In this section, we describe how we have built and characterized our first five cavities X-band
filter optimized for axion searches. The filter implementation of the design in a realistic
prototype requires some additional considerations: materials selection, physical dimensions
at room temperature, and coaxial probes insertions.

Due to the requirements imposed by the high magnetic field environment of CAST
where the filter is placed, the designed filter has been manufactured using stainless steel
316L by a standard milling machining process, as can be seen in Figure 3. A copper coating
layer with approximately 30 µm thickness has been applied to the structure to improve the
electrical conductivity. This copper layer is expected to have a residual resistance ratio (RRR)
between 30 and 200 but at the frequencies of interest the anomalous skin-depth effect [25, 26]
moderates the increase in conductivity, resulting in a lower increase in Q than otherwise
expected from the RRR. A higher quality factor could have been obtained by means of a
silver outer layer, but this solution was ruled out since it would require a nickel layer between
stainless steel and silver, which is incompatible with the high magnetic field environment of
CAST. The effect of the stainless steel on losses is negligible since the thickness of the copper
layer is much larger than the skin depth for copper at 8.4 GHz (0.7 µm at room temperature
and 0.1 µm at 2 K).

Figure 3. Stainless steel 316L fabricated prototype based on the five cavity X-band filter design.
Left: cavity before coating and assembly. Right: copper-coated cavity mounted onto the insertion
stick. To place the cavity in the region of constant magnetic field in the CAST magnet, it is attached
onto a ∼2-m long hollow insertion stick through which the cabling can be guided to the flange, cf.
Fig 4 (cables not shown in the picture).

A linear correction expansion coefficient has been applied in the manufacturing process
to compensate the change in the physical dimensions due to the temperature expansion from
2 K to room temperature. The expansion coefficients for the stainless steel can be found
in [27].

We have added an output coaxial probe to extract RF power from the cavity, named port
1, and an input coaxial probe to inject a calibration signal for diagnostic purposes, named
port 2. The probes are placed at the center of the top side of the first and last cavity. Right
angle 50 Ω SMA coaxial connectors [28] are used to fit in the CAST magnet borehole [29].
The electromagnetic properties of the filter with probes have been computed with CST at
2 K and at room temperature. The probe in port 1 has been designed to operate at critical
coupling, for which the tip has been adjusted to be level with the internal face of the cavity.
The probe of port 2 is intended to be weakly coupled, and so its tip has been retracted 1 mm
inside the internal wall of the cavity. The input coaxial probe will be short-circuited during
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axion detection operation.
The cavity is placed inside one of the bores of the prototype LHC dipole magnet placed

at CAST at CERN. Figure 4 shows the schematic layout of the setup inside the magnet. The
signal is amplified at cryogenic stage and extracted to the DAQ electronics placed outside
the magnet. A cryogenic amplifier 3 providing a 40 dB gain in the 8-9 GHz range, is placed
inside a copper vessel at the cryogenic section limited by flange 1. Then, RF cables are
transitioned from cryogenic environment to room temperature by means of thermal plates.
In addition, port 2 is intended for calibration and monitoring of the working frequency and
correct operation of the amplifier. Temperature and bias cables are made of phosphor bronze
from [31] to minimize thermal leakages. RF cables are 3.5 mm semirigid coaxial copper from
Microcoax [32]; connectors are Sub-Miniature version A (SMA).

Magnet cryostat

Cold bore (~2 K)

Thermal shield (77 K)

F
la
ng
e
1

F
la
ng
e
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ra
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 p
or
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Si
gn
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1

to DAQ

Thermal
contact

RADES cavityCryogenic amplifier

Figure 4. Layout of the RADES setup inside the CAST magnet, showing the position of the cavity
inside the magnet bore, the cryogenic amplifier and the transition of both RF connections (signal and
calibration) from the cavity ports to the DAQ system outside the magnet.

The Data Adquisition System (DAQ) is formed by the analog module (a heterodyne
receiver) and the digital module (an A/D converter plus a field programmable gate array
(FPGA)). The DAQ was manufactured by TTI Norte [30]. The analog module includes
a low-noise amplifier operating from 8 GHz to 9 GHz, with a nominal gain of 55 dB and
a very good return loss of 30 dB, and a submodule that makes the frequency translation
from X-band to a intermediate frequency of 140 MHz. The analog signal is converted into

3Model TXA4000 manufactured by TTI Norte [30]
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digital format with a sampling rate of 37.5 MHz. The FPGA integrates 2048 Fast Fourier
Transforms (FFTs) to store 12 MHz of bandwidth. A more detailed description of the DAQ,
is left for a future publication including our data analysis to search for an axion signal.
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-12
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Figure 5. Measured scattering transmission parameter S12 (purple and green lines for room tem-
perature and 2.13 K respectively), analytical model (gray lines) and axion DM power normalized to
the peak (red). The RF signal has been injected through port 2 and detected in port 1. The upper
plot shows room temperature results and the lower one at 2.13 K. In the latter case, the RF cables
and amplifier are included in the system, which causes the extra spectral features other than the five
resonant peaks.

The cavity characterization data shown in this paper were taken with a Vector Network
Analyser (VNA) Rohde & Schwarz ZVA67 (ZVA24) with built-in attenuators to input an X-
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band RF signal in port 1 at room temperature (298 K). In Figure 5 the measured transmission
scattering parameter of the filter S12 is shown at room temperature (upper plot) and at 2.13
K (bottom plot) for frequencies around 8.4 GHz. In both cases the five resonant peaks of
the filter are clearly seen. The slight frequency displacement of the peaks (see Table 3) is
compatible with the contraction of the dimensions at cryogenic temperatures. While the
data at room temperature were taken at the laboratory with the cavity directly connected
to the VNA, the data at 2.13 K were taken including the cables and amplifier and with the
input signal properly attenuated at 0 dB to avoid saturation of the cryogenic amplifier, which
explains the additional spectral features in the plot. The measured pattern of frequencies
agree very well with the CST simulated ones, as seen in Table 3 and the absolute offset in
frequency between data and simulation is within the mechanical tolerance of our fabrication.
This gives us confidence that the actual field distribution of our cavity is indeed as predicted
by the simulation.

Mode ω298 K
i /(2π) ω2 K

i /(2π) ωCST
i /(2π) (ω298 K

i − ω2K
i )/(2π) (ωCST

i − ω2K
i )/(2π)

1 8.379 8.398 8.428 0.028 0.030

2 8.399 8.429 8.454 0.031 0.025

3 8.474 8.504 8.528 0.030 0.024

4 8.572 8.602 8.625 0.030 0.023

5 8.658 8.687 8.710 0.030 0.023

Table 3. Resonant frequencies (in GHz) for the five modes of the cavity. Columns 1 and 2 show the
experimental values obtained at 298 K and 2 K respectively, while column 3 shows the values obtained
from the CST simulation (from Table 2). The difference between the 298 K and 2 K values (column 3)
is a constant offset due to the temperature contraction. The difference between the experimental and
simulated values is also approximately constant and compatible with the tolerance of our fabrication.

An additional check is done to validate our understanding of the system. The data of
Fig. 5 is also compared directly with the analytical model using Eq. A.23. All matrix param-
eters in 2.2 are allowed to vary independently to find the best fit (including an imaginary part
for the diagonal elements to allow for cavity losses and properly fit the width of the peaks), as
well as a overall normalization. So the system is allowed to depart from the optimal solution
defined in section 2. The result of the fit to the 298 K data, shown as gray line in Fig. 5, is
able to reproduce the measured data remarkably. Then we check that the solution found in
this way shows only a very mild departure from the optimal solution and, most importantly,
its geometric factor is within 0.1% of the maximum value expected for the optimal solution.
The same solution is overlaid with the 2 K data, only readjusting the normalization and the
ω1 to account for the temperature contraction. For the current prototype, we consider that
the cross-checks presented confirm our understanding of the system, and that the fabricated
prototype enjoys a field distribution very similar to the one intended. Further work will
go in the direction of better establishing this protocol of comparisons of experimental data
with both simulations and analytical model, in order to assess the requirements in terms of
mechanical tolerances required for larger, more demanding RADES prototypes. In addition,
the output power due to axion DM can be computed immediately with the help of (A.22),
obtaining the red curves of Fig. 5. We have normalized the curves to the maximum power
on resonance. As designed, only the first peak couples to the axion.

Using the shape of the 8.4 GHz peak, we have determined a loaded Q value of ∼ 6000,
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which would imply Qu1 ∼ 12000 if the filter was critically coupled. From |S11| measurements
in the lab we roughly estimate our actual port 1 coupling to be around 0.64, which implies
Qu1 ∼ 16000. This is a factor of ∼ 3 − 4 smaller than the predicted value shown in Tab. 2,
which we suspect it is due to a smaller RRR ratio than assumed of our Cu coating due to
the anomalous skin effect or other imperfections in the coating, and perhaps the effect of the
horizontal cut in the cavity (not included in the simulations). Further work will be invested
in controlling the output port coupling and modeling Q.

To conclude, the behavior of the prototype satisfactorily matches our expectations from
the analytical model and gives us confidence on the validity of the theoretical framework
described in section 2 to guide us in the design of more ambitious setups. The prototype
described above is now in a few-weeks data taking phase in CAST. In a future publication we
will report on the experience and results from this first data taking. In the following section
we anticipate the expected sensitivity of our setup to axions at a masses corresponding to
around 8.4 GHz.

5 Sensitivity projection

In the following we give an estimate of the prospect sensitivity of the RADES prototype
cavity. This estimate is based on geometric and electromagnetic properties of the prototype
cavity but no data analysis of the data acquired with the cavity is pursued. The analysis of
the data taken with the RADES cavity will be the topic of a separate article.

The output power of the cavity when a mode i is excited resonantly by axion DM,
mA ∼ ωi, is given by (A.9)

P = κg2
Aγ

1

mA
B2
eρDMV QiG2

i (5.1)

= 1.25× 10−24 Watt
κ

0.5
CAγ

2 mA

30µeV

(
Be
9 T

)2 V

1 l

Q

104

(
Gi

0.69

)2

(5.2)

where we have taken the local DM density ρDM = m2
AA

2
0/2 = 0.4 GeV/cm3. Using that the

axion excitation has a bandwidth ∆νa ' mA/(2πQa) with Qa ∼ 106, much smaller than the
width of the cavity resonance ∆νc ∼ mA/2πQ. Here κ the cavity coupling efficiency (see
appendix) and Gi is the geometric factor defined in (A.5), which for a filter becomes the sum
(2.6). We have also used the QCD axion relation,

gAγ ≡ 2.0× 10−16CAγ
mA

µeV
GeV−1 , (5.3)

since we want to gauge our sensitivity through our reach on the dimensionless O(1) parameter
CAγ , cf. [33].

The tiny axion signal needs to compete against the effective noise temperature of the
system Tsys, typically the sum of thermal and amplifier noise. In the axion line-width this
corresponds to a power,

PT = Tsys∆νa = 6.0× 10−19 Watt
Tsys
6 K

106

Qa

mA

30µeV
. (5.4)

The noise is expected to be smooth as a function of frequency and can be thus sub-
tracted. The signal has to be only stronger than the expected noise fluctuations in the bin,
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which are σPT = PT /
√

∆νat after a measurement time t. Judging from (5.2) and (5.4) we
need circa ∆νat ∼ 108 to find an axion DM signal, which corresponds to measurement times
of the order of t ∼ few hours. Demanding a meaningful signal to noise ratio S/N for a given
measurement time t with the cavity tuned to a given axion mass, the sensitivity for the axion-
photon coupling CAγ is then given by Dicke’s radiometer equation, S/N = Pa

√
∆νat/PT , as

CAγ |reach ' 21.7

(
S
N

3

) 1
2 9 T

Be

(
1 l

V

) 1
2
(

104

Q

) 1
2
(
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Gi

) 1
2
(
Teff

10 K

) 1
2
(

0.5

κ

) 1
2
(
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t

) 1
4

.

The volume of the prototype cavity described in section 4 is V ' 0.03 l. As reasonable
measurement time for the run of the prototype cavity we have assumed 20 weeks, the Q value
is taken to be 6000 and and effective noise temperature Teff ∼ 6 K (4 K from vendor test
report and 2 K as magnet temperature). At a signal to noise ratio of 3 we then obtain the
prospect shown in Figure 6. It has to be emphasized that the prospect presumes that axions
constitute all of Dark Matter.

Note that this sensitivity is obtained only for a very narrow axion mass range of order
∼ mA/Q. A resonant mode with a given Q has a line width which contains therefore a
number ∼ Qa/Q of possible axion mass channels, so that with the cavity tuned to a given
frequency we are measuring all these channels simultaneously. For a future tunable RADES
cavity, tuning steps are then of order ν/Q.

In Figure 6, we have also included the benchmark sensitivity of KSVZ axions |CAγ | =
1.92 and a yellow band containing QCD axion models as summarised in [33, 34]. In this
estimate the sensitivity of our prototype is already at the level of the most optimistically
coupled models in the band, and within a factor of a few in gAγ to the KSVZ theoretical
prediction [35, 36], assuming the electromagnetic properties already measured at 2.13 K.
The results of the cavity performance presented in this work are encouraging us to build a
larger cavity which can reach benchmark QCD sensitivity.

6 Summary and Conclusions

There is a strong motivation to search for axion DM in the 10-100 µeV mass range. An
increasing experimental effort is taking place worldwide to develop competitive implementa-
tions of the axion haloscope technique in this mass range, for which the V ∼ m−3

A relationship
of a simple resonant cavity leads to a strong penalty in sensitivity. Some of these efforts focus
on developing extended resonant structures that could instrument large magnetic volumes V
while resonating at relatively high frequencies [13–15]. The RADES approach developed in
this paper is based on the geometry of microwave filters to achieve this goal.

We have presented the theoretical framework to characterize the resonant modes in an
array of long-rectangular cavities segmented and connected through irises. The framework
has similarities with the cavity array developed in [19], although it differs in the formalism
used. It allows to build an analytical model that provides practical design guidelines to
find the optimal cavity parameters maximizing the G2 factor. We have designed and built
a concrete implementation of the concept, as a 5-cavity filter-like structure, that enjoys an
optimized resonant mode at 8.4 GHz. We have ran numerical simulations based on the Finite
Integration Technique, to assess and fine-tune the final parameters of the filter-like structure.

A first RADES prototype, following the above prescriptions, has been built in stain-
less steel 316L with a copper coating layer of ∼ 30 µm thickness. We have measured the
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Figure 6. Prospect sensitivity (green region) to the axion photon coupling of the RADES prototype
inside the CAST magnet assuming 20 weeks data taking with electromagnetic properties of the filter
detailed in this text. Note that we cut the width of the green region at the half-width of the resonance
peak. A RADES-like filter of ∼350 sub-cavities filling a full CAST LHC magnet bore-length of 9 m
would reach KSVZ sensitivity (light green region).

electromagnetic properties of the cavity both at room temperature and at 2.13 K inside the
CAST magnet at CERN. The observed parameters agree very well both with simulations and
with the simple analytical model, validating the method presented in this work. This first
RADES prototype is now installed inside the CAST magnet and actual data-taking with the
magnet powered is ongoing with a dedicated DAQ system. Preliminary sensitivity prospects
have been presented. Even with the small volume of the current prototype, sensitivity to
the optimistic edge of the QCD axion band should be already achievable (for a thin range
centered around mA ∼ 34.64µeV), while sensitivity to KSVZ would be reachable by a larger
version filling all the 10 m length of the CAST magnet.

The results here presented demonstrate the potential of microwave filters based on
coupled adjacent cavities as axion haloscopes from C-band to K-band frequencies. Our next
steps are to design larger V filters which can cover the QCD motivated values of gAγ, as well
as to devise a suitable tuning mechanism to allow for effectively scan a relevant mA range.
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A General formalism

In the background of a time-varying axion DM field4, A(t), and a strong magnetic field, Be,
Maxwell’s equations get an additional source

∇ ·E = 0 , ∇×B− Ė = gAγBe Ȧ (A.1)

∇ ·B = 0 , ∇×E + Ḃ = 0 (A.2)

due to the axion coupling to two photons, which is described by the Lagrangian density,

LAγ = gAγB ·EA . (A.3)

Let us first review how this source excites a resonant cavity. The E,B fields can be ex-
panded as a sum of orthonormal cavity modes EEm(x) that solve the Poisson equation,
∇2EEm(x) = −ω2

mEEm(x) with a characteristic eigenfrequency ωm. Modes are normalised
as
∫
V d

3x EEm · EE ′m = V δmm′ where V is the volume of the cavity. Writing the electric field
as E =

∑
mEm(t)EEm(x), Ampere’s equation projected into the m-th mode gives the time

evolution of the amplitude

Ëm + ω2
mEm + ΓmĖm = −gAγBeÄG (A.4)

where we have parametrised energy losses by a decay rate, Γm, and defined the geometric
factor,

Gm =
1

BeV

∫
Vc

d3x Be · EEm . (A.5)

Observe that the background Be field must have a parallel component along the desired
mode’s E-field to become excited by axion DM. We will use homogeneous Be fields, so it is
convenient to use Be = |Be|. The decay rate is defined such that, in absence of sources and
for small losses Γm � ωm the field amplitude decrease as |Em(t)| = |Em(0)| exp(−Γmt/2)
and the energy in a mode Um as |Em|2 ∝ exp(−Γmt). The ratio ωm/Γm corresponds to

4The spatial variation of the axion DM field is negligible as long as the number of cavities is N . 1000.
Much longer cavities could be used to infer the velocity distribution of axion DM as pointed out in [37].
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the energy loss per oscillation cycle of the mode m and is defined as the quality factor of a
resonator,

Qm =
ωm
Γm

. (A.6)

When excited by a monochromatic axion DM field, A = A0e
−jωt, the E-field amplitude

of each mode approaches the steady state solution,

Em = −gAγBeA×
ω2Gm

ω2 − ω2
m + jωΓm

. (A.7)

A quick look at Ampere’s equation, suggests that the typical E-field amplitude induced by
the axion DM field is E ∼ gAγBeA. This is exactly what we get when we excite a mode
much above its natural frequency, ω � ωm (barring the geometric factor). Below the natural
frequency, ω < ωm, Em gets suppressed by a factor ω2/ω2

m. On resonance ω ∼ ωm the
amplitude increases by a factor (ωm/Γm)2 = Q2

m. The EM energy stored in the cavity splits
in a sum over modes,

U =

∫
d3x

1

2
(|E|2 + |B|2) =

∑
m

1

2
|Em|2

(
ω2 + ω2

m

2ω2

)
=
∑
m

Um. (A.8)

The energy in a mode can be read by a suitably coupled small antenna, but the power
extracted contributes to the losses, i.e. Γm = Γcm + Γsm where Γcm represents damping due to
surface currents in the cavity walls or other intrinsic loses and Γsm the losses invested in the
output signal. The signal power is,

P = ΓsmUm = κ
ωm
Qm

|gAγBeA0|2 V |Gm|2

2

ω4

(ω2 − w2
m)2 + (ωmω/Qm)2

, (A.9)

where the coupling coefficient is κ = Γsm/(Γ
c
m + Γsm). For a given value of the intrinsic losses,

the optimum signal is obtained for κ = 1/2. On resonance the output power gets enhanced
by the quality factor Qm.

Let us now consider a number N of cavities. In this paper we focus on the case where
all the cavities have one mode close to a common central resonant frequency, which is well
separated from neighbouring resonances and couples to the axion DM with geometric factors
of order Gc ∼ 1. From this moment on, neighbouring modes are integrated out of the
discussion, assuming they play no role. Each cavity has thus just one mode. To make our
notation more compact, we label the amplitude of the relevant mode, r, of the q-th cavity as
Ξq, and introduce complex frequencies as

Ω̃2
q = ω2

q − jωqΓq, (A.10)

including the losses in the imaginary part and using ω ∼ ωr there for practicality. We couple
the cavities through small irises forming a linear array that we call filter. The coupling is linear
and can be described with a coupling coefficient Kqq′ . When excited by a monochromatic
axion DM field A = A0e

−jωt, the system of coupled equations for the amplitudes of the
fundamental mode can be described by

(ω2 − Ω̃2
1)Ξ1 = K12Ξ2 − gAγBeAω2 G1

(ω2 − Ω̃2
2)Ξ2 = K21Ξ1 +K23Ξ3 − gAγBeAω2 G2

...

(ω2 − Ω̃2
N )ΞN = KN,N−1ΞN−1 − gAγBeAω2 GN , (A.11)
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which we can write as the vector equation (2.1),

(ω21− M)Ξ = JA = −gAγBeA0 ω
2 G. (A.12)

Note that we use overbars for vectors of cavity properties, and boldface for 3D vectors like
electric or magnetic fields.

An array of rectangular cavities segmented and connected through irises is modelled by
the tri-diagonal matrix

M =



Ω̃2
1 K12 0 0 0 0

K21 Ω̃2
2 K23 0 0 0

0 K32 Ω̃2
3 K34 0 0

0 0
. . .

. . .
. . . 0

0 0 0
. . .

. . .
. . .

0 0 0 0 KN,N−1 Ω̃2
N


, (A.13)

In practice we will mostly consider real K’s with Kqq′ = Kq′q, neglecting losses. The EM
modes of the filter around the fundamental mode correspond to the N eigenvectors of this
matrix, {e}, satisfying

M ei = λi ei. (A.14)

As long as imaginary parts are small, the matrix M is symmetric and the eigenvectors approx-
imately orthogonal in the ordinary sense. Likewise, the i-th eigenvalue λi correspond to the
square of the i-th characteristic resonant frequency of the whole set of N -coupled cavities,
which we label as λi = ω̃2

i . We will use the subindex q to label properties of the individual
cavities and i for the global solutions of the filter array.

As a first and very illustrative example, we consider an array of identical cavities coupled
by identical irises. The Ω matrix is Toeplitz with identical diagonal elements Ω̃2

q and couplings
K, and can be immediately diagonalised. The eigenvectors and frequencies are

ei =
1√

(1 +N)/2


sin
(

iπ
N+11

)
sin
(

iπ
N+12

)
...

sin
(

iπ
N+1N

)

 , ω̃2
i = Ω̃2

q + 2K cos

(
iπ

N + 1

)
; i = 1, ..., N.

(A.15)
We note that this solution is also shown in [19], barring differences in formalism. The result
is valid for arbitrary complex Ω̃2

q and real k (although it generalises straightforwardly to the
complex case). The original resonance splits into N non-equally spaced modes in a band
∆ω ' K/ωq centred at ωq. For k < 0, the lowest frequency mode corresponds to i = 1 and
its eigenvector has all positive components, i.e. the electric fields of the cavities oscillate
in phase. As i and the eigenfrequency increase, the E-fields alternate between positive and
negative signed values faster until the N -th mode, for which the E-field changes sign in
each contiguous cavity. Therefore, we expect that the fundamental mode is the one coupling
best to axion DM in an homogeneous Be covering all the array. We have normalised the
eigenvectors as |ei|2 = 1. Note also that the normalisation factor decreases as i increases.

Let us come back to the general case (A.12). We can solve for the electric fields in each
individual cavity excited by axion DM (A.12) with the aid of the eigenmodes of the cavity.
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Denoting as R the transformation that diagonalises M

R−1MR = 
2 ≡ diag{ω̃2
1, ω̃

2
2, ..., ω̃

2
N} (A.16)

we formally obtain

Ξ = R

(
1

ω2 − 
2

)
R−1 JA. (A.17)

which can be written as

(Ξ)q '
∑
i

(ei)q

(
ei · JA
ω2 − ω̃2

i

)
(A.18)

where we have used that Rqi = (ei)q, i.e. the transformation matrix is a row of column
eigenvectors ei. The approximation ' is due to the fact that we have also used R−1 ' RT .
Both matrices are exactly the same when Ω is real, and approximately equal when the
imaginary components (due to losses being very small) are small.

The interpretation of the above formula is clear when we compare it with its 1-cavity
counterpart, (A.7). The original fundamental mode has split into N modes of the array and so
the electric-field in the q-th cavity, (Ξ)q, is now a linear superposition of the electric-fields of
each array mode i in that cavity. Each array mode contribution is weighted by the resonator
response factor (ω2− ω̃2

i )
−1 and the corresponding geometric factor ei · G. This last quantity

is precisely what one would expect from a geometric factor because the sum of individual
integrals can be understood as a global EE ·Be integral. In other words, the axion DM field
oscillating at ω, excites every mode of the array with a weight given by ei · JA/(ω2 − ω̃2

i ).
The electric field in a cavity of the array is the superposition of the E-fields of each mode.
Note that all modes oscillate at the same frequency, being forced by the axion field, but they
can have different phases and can cancel partially or totally. The interference is dictated by
the sign of the geometric factor and the sign of ω2 − ω̃2

i (whether ω is above the resonant
frequency ωi or below).

If the modes of the filter are sufficiently separated, the signal power output from a
given port at a frequency where one mode dominates is still given by (A.9) but κ, ωm, Q, V,G
have to be understood as pertaining a mode of the filter. Let us discuss the relation of the
filter properties with the individual properties of each cavity. The eigenfrequencies Ω2

i are
given by the diagonalisation of the matrix M and so are the imaginary parts. However, if
the imaginary parts are very small, as will be our case, one can diagonalise Re{M} with an
orthonormal basis {e} and compute the losses of the i-th mode as a perturbation

Γi ' (ei)
T Im{M}ei =

∑
q

Γq(ei)
2
q , (A.19)

which follows from the definition (A.14) because Im{M} = diag{ωΓ1, ..., ωΓN} is a diagonal
matrix. The last formula has the obvious interpretation of a reweighed sum of losses according
to the energy stored in each cavity. If the cavities are very similar, as will be our case, the
intrinsic losses in each of them are very similar, Γcq ∼ Γc0, and thus we obtain

Γci ∼ Γc0
∑
q

(ei)
2
q = Γc0 . (A.20)
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Therefore the unloaded quality factor of the filter, Qui = ωi/Γ
c
i , must be very similar to that

of each of the individual cavities. The optimal coupling factor continues to be κ = 1/2, which
means Γsi = Γci . However, the intrinsic losses are shared among the cavities and the output
port will be placed in one of them, at least that would be the simplest option. It is good
to bear in mind that this means that this output cavity could have a much larger ratio of
output to intrinsic losses, which could potentially lead to large mode distortions and eventual
quenching in the large N limit. The geometric factor for one cavity is defined in (A.5), which
in the multi-cavity case can be interpreted as

Gi =

∑
q Vq ei · G
V

, (A.21)

where V =
∑

q Vq is the sum over cavity volumes. In the case where cavities are similar and
their individual geometric factors too, Gi ' G0. The obvious boost in signal comes essentially
from the increase in volume V =

∑
q Vq which in the filter case will be NVq. In (A.21), we

have assumed an homogeneous Be but it is straightforward to include if it varies between
cavities.

If the modes of the cavity are not well separated or we want to take interference effects
into account, we can derive a more general formula from the power output from a port in
the q-th cavity,

P = Γsq
|gAγBeA0|2 Vq

2

∣∣∣∣∣∑
i

(ei)q

(
ei · JA
ω2 − ω̃2

i

)∣∣∣∣∣
2

. (A.22)

This is the equation we use in our comparisons with experiment.

This equation is also valid for the power output when we artificially inject a signal in
one or several cavities. The S12 parameter is defined as the power transmitted across a filter
and can be used to calibrate our filters. In order to compute it, we inject a signal in one
cavity (qin typically q = N for us) and detect it in other (typically qout = 1), the port we
use for the axion DM signal. This can be modeled by a source term in (A.12) that is not
homogeneous like the axion, but localised in the input cavity JA → Jin with (Jin)q ∝ δq,qin
The standard nomenclature is to call these ports 1 and 2. Mixing a bit the notation to please
logic and tradition simultaneously we can write,

|S12|2 =∝

∣∣∣∣∣∑
i

(ei)qout

(
ei · jin
ω2 − ω̃2

i

)∣∣∣∣∣
2

∝

∣∣∣∣∣∑
i

(ei)q=1(ei)q=2

ω2 − ω̃2
i

∣∣∣∣∣
2

. (A.23)

The proportionality factor includes the strength of the input coupling, etc.
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