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Abstract

The stability of the permanent rotations of a heavy gyrostat is analyzed by
means of the Energy-Casimir method. Su�cient and necessary conditions are
established for some of the permanent rotations. The geometry of the gyro-
stat and the value of the gyrostatic moment are relevant in order to get stable
permanent rotations. Moreover, the necessary conditions are also su�cient, for
some configurations of the gyrostat.
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1. Introduction

A gyrostat G is a mechanical system made of a rigid body P called the
platform and other bodies R called the rotors, connected to the platform in
such a way that the motion of the rotors does not modify the distribution of
mass of the gyrostat G. Due to this double spinning, the platform on the one
hand and the rotors on the other, the gyrostat is also known with the name of
dual-spin body.

In Astrodynamics, gyrostats play an essential role, since they are used for
controlling the attitude dynamics of a spacecraft and for stabilizing their ro-
tations. See, for instance, Cochran [8], Hall [15, 16, 17], Elipe and coworkers
[10, 11, 12, 13, 20, 26], Vera [36], Aslanov [4, 5] and also Hughes [19] for further
references.

Besides its practical interest, the rotational motion of a gyrostat is very
interesting from a mathematical point of view. Indeed, principal moments of
inertia and gyrostatic momenta may be considered as parameters in the Euler
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equations of motion and there is a wide variety of possible equilibria, trajecto-
ries and bifurcations even in the simplest case of a gyrostat in free motion, that
is to say, under no external forces. The authors have been studying this case
for several years, and one of the main results obtained is the proof that when
the gyrostat motion is formulated in terms of the angular momentum compo-
nents, this problem is equivalent to a parametric quadratic Hamiltonian [12],
and for those class of quadratic Hamiltonians, the classification of equilibria
and bifurcations in di↵erent regions of the parametric space are well studied
[24, 25, 27].

A further step in the complexity of the problem, and in the approximation
to a real one, is to consider the motion of a gyrostat under the attraction of
a Newtonian field. For this problem, some authors have found approximated
analytical solutions for particular cases [7, 32] and other authors have studied
the equilibria and their stability when the gyrostat is in circular orbit [33, 34]
or in the gravity field of a number of di↵erent rigid bodies [21, 35]. In this
paper we focus on the stability of permanent rotations of a heavy gyrostat with
a fixed point, that is to say when the gyrostat is under a uniform gravity field.
For this case, both necessary and su�cient conditions of stability have been
obtained by means of di↵erent methods. In this sense, Rumiantsev [31] and
Anchev [1, 2] gave su�cient conditions of stability for permanent rotations by
constructing appropriate Lyapunov functions. In the particular case the center
of mass lies on the first principal axis and the gyrostatic moment is directed
along the same axis, Kovalev [22] derived su�cient conditions, that matched
those of Rumiantsev, but also applied KAM theory to study the stability when
the associated quadratic form of the perturbed Hamiltonian is not sign definite,
but the necessary conditions are satisfied.

Previous results can also be derived and improved using the Energy-Casimir
method [3, 18, 29, 30] provided the system can be regarded as a Lie-Poison one.
Indeed, this method has been successfully used to study rigid body dynamics
[6] and recently applied to study the stability of permanent rotations of a heavy
gyrostat [14]. In this paper, the authors obtain, for a special class of permanent
rotations, the same results previously derived by classical methods by Kovalev
[23]. For the other permanent rotations, they provide su�cient stability con-
ditions. However, these conditions are weak, as they do not depend on the
gyrostatic moment. In this paper we obtain new su�cient conditions for all the
permanent rotations in the case studied in [14] and also prove that, in some
configurations of the moments of inertia, they are also necessary conditions.
Besides, on a certain parametric plane, we determine regions for the existence
of the equilibria, as well as bifurcation lines, since the stability depends on those
parameters.

2. Equations of motion

Let us consider a gyrostat, consisting of a rigid asymmetric platform and
three axisymmetric rotors. Each one of these rotors is aligned along one of the
principal axis of the platform. The gyrostat is subject to a uniform and constant
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gravity field. We assume that the gyrostat has a fixed point O. Centered on
this point, we consider two orthonormal reference frames (see Figure 1):

• The inertial fixed reference frame F{O,X, Y, Z}. The direction of the Z
axis is opposite to the action line of the gravity field.

• The body frame B{O, x, y, z} fixed in the platform. The directions of these
axes coincide with the principal axes of the gyrostat.

X

Y

Z

x

y

z

O

G

g

k

r
G

Figure 1: Asymmetric gyrostat and reference frames.

In the body reference frame B, the tensor of inertia I of the gyrostat is
diagonal, that is, I = diag(I1, I2, I3). As we assume an asymmetric gyrostat,
I1 6= I2 6= I3. On the other hand, the total angular momentum of the gyrostat
can be written as

H = ⇡ + l,

where ⇡ is the angular momentum of the whole gyrostat with rotors at relative
rest (in other words, considering the gyrostat as a rigid body), and l is the
gyrostatic momentum, that is, the relative angular momentum of the rotors
with respect to the platform. Due to the gravity field, the gyrostat is under the
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action of a gravitational torque N about the fixed point O, given by

N = rG ⇥mg = �mg rG ⇥ k̂,

where rG is the position vector of the center of mass G of the gyrostat, k̂ is a
unitary vector in the direction of the Z axis, and m is the mass of the gyrostat.
Under all these assumptions, and by means of the angular momemtum theorem
about the fixed point O,

dH

dt
= N ,

the Euler equations of motion expressed in the body reference frame B take the
form [28]

d⇡1

dt
=

✓
I2 � I3
I2I3

◆
⇡2⇡3 +

l2⇡3

I3
� l3⇡2

I2
+mg(z0k2 � y0k3),

d⇡2

dt
=

✓
I3 � I1
I1I3

◆
⇡1⇡3 +

l3⇡1

I1
� l1⇡3

I3
+mg(x0k3 � z0k1),

d⇡3

dt
=

✓
I1 � I2
I1I2

◆
⇡1⇡2 +

l1⇡2

I2
� l2⇡1

I1
+mg(y0k1 � x0k2),

(1)

where (⇡1,⇡2,⇡3), (l1, l2, l3) and (k1, k2, k3) are the components of the angular
momenta vectors ⇡, l and the unitary vector k̂ respectively, expressed in the
body reference frame B. In addition, (x0, y0, z0) are the coordinates of the mass
center G in the same frame.

On the other hand, the components (k1, k2, k3) also vary in time as they are
expressed in the body reference frame B. The time evolution of these compo-
nents is given by the well known Poisson equations [28]

dk1
dt

=
k2⇡3

I3
� k3⇡2

I2
,

dk2
dt

=
k3⇡1

I1
� k1⇡3

I3
,

dk3
dt

=
k1⇡2

I2
� k2⇡1

I1
.

(2)

Therefore, equations (1) and (2) are the complete set of equations that rule the
rotational dynamics of the asymmetric gyrostat under a uniform and constant
gravity field. Although the variables considered are not canonical, the system
can be described by means of a Hamiltonian function in the framework of Lie-
Poisson systems, in the same way as the classical problem of the motion of a
rigid body [29, 6]. In this case, the associated Hamiltonian function takes the
form (see [14])

H =
1

2

✓
⇡2
1

I1
+

⇡2
2

I2
+

⇡2
3

I3

◆
+mg(x0k1 + y0k2 + z0k3), (3)
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and the corresponding Poisson bracket is given by

{F,G}(⇡, k̂) = �(⇡ + l) · (r⇡F ⇥r⇡G)� k̂ · (r⇡F ⇥rkG+rkF ⇥r⇡G).
(4)

Now, it is easy to check that the equations (1-2) of the gyrostat rotational
motion can be expressed as

⇡̇i = {⇡i,H}, k̇i = {ki,H}, i = 1, 2, 3.

Thus, the system is regarded as a Lie-Poisson system and to study the stability of
relative equilibria we can make use of the Energy-Casimir method. To this end,
the existence of Casimir functions and conserved quantities plays an important
role. For this problem, there are two Casimir functions whose Poisson bracket
commutes with any smooth function defined in the phase space. These two
Casimir functions are

C1 ⌘ k21 + k22 + k23 = 1, (5)

C2 ⌘ (⇡1 + l1)k1 + (⇡2 + l2)k2 + (⇡3 + l3)k3 = p , (6)

being p a constant.
In what follows we will focus on a special situation, when the center of mass

is located on the z axis and only the gyrostatic moment along the z axis is
acting. Thus, x0 = y0 = 0, l1 = l2 = 0 and the equations (1-2) reduce to

d⇡1

dt
=

I2 � I3
I2I3

⇡2⇡3 � l3⇡2

I2
+mgz0k2,

d⇡2

dt
=

I3 � I1
I1I3

⇡1⇡3 +
l3⇡1

I1
�mgz0k1,

d⇡3

dt
=

I1 � I2
I1I2

⇡1⇡2,

dk1
dt

=
k2⇡3

I3
� k3⇡2

I2
,

dk2
dt

=
k3⇡1

I1
� k1⇡3

I3
,

dk3
dt

=
k1⇡2

I2
� k2⇡1

I1
.

(7)

3. Equilibrium solutions

Permanent rotations [9, 11, 28] are of great interest in di↵erent fields of
application and they are obtained as equilibrium solutions of the system (7).
These solutions have been obtained previously by other authors [14]. However,
for the sake of completeness, we give the following result.
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Theorem 1. If x0 = y0 = 0, l3 6= 0 and l1 = l2 = 0 there are three families of
equilibrium points.

E1 ⌘ (0, 0, I3!, 0, 0,±1), ! 2 R.

E2 ⌘ (0, I2! sin', I3! cos', 0, sin', cos'),

with ' 2 (0, 2⇡), ! 2 R, and !2(I3 � I2) cos'+ !l3 � gmz0 = 0.

E3 ⌘ (I1! sin', 0, I3! cos', sin', 0, cos'),

with ' 2 (0, 2⇡), ! 2 R, and !2(I3 � I1) cos'+ !l3 � gmz0 = 0.

Proof.

Equilibria are obtained setting to zero the equations of the motion (7). Thus,
it follows from the third equation of the motion that the product ⇡1⇡2 must be
zero.

In the first place, we consider that both ⇡1 and ⇡2 are zero. Thus, the
nontrivial equations of system (7) turn to be

d⇡1

dt
= mgz0k2,

d⇡2

dt
= �mgz0k1,

dk1
dt

=
k2⇡3

I3
,

dk2
dt

= �k1⇡3

I3
.

These equations vanish if k1 = k2 = 0 and ⇡3 is any real number. By virtue
of (5), we obtain two one-parameter families of equilibrium solutions, we name
E1,

E1 ⌘ (0, 0, I3!, 0, 0,±1),

with ! 2 R.
Now, be ⇡1 = 0 and ⇡2 6= 0. Then, the second and the last two equations of

the motion are simultaneously equal to zero if k1 = 0. Taking into account (5),
we introduce an angle ' 2 (0, 2⇡) in such a way that

k2 = sin', k3 = cos'.

Now, the first and the fourth equations of the motion result to be

d⇡1

dt
=

I2 � I3
I2I3

⇡2⇡3 � l3⇡2

I2
+mgz0 sin',

dk1
dt

=
⇡3

I3
sin'� ⇡2

I2
cos'.

These two equations are equal to zero if

⇡2 = I2! sin', ⇡3 = I3! cos'

and ! is a real number satisfying the equation

!2(I3 � I2) cos'+ !l3 � gmz0 = 0.

In this way, we obtain the biparametric family of equilibrium solutions named
as E2.

A similar analysis, for the case ⇡1 6= 0 and ⇡2 = 0, yields the third family of
equilibrium solutions dubbed E3.
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4. Stability analysis

In this section we will focus on the stability analysis of the equilibrium solu-
tions given in Theorem 1. The stability for the family E1 has been considered
in [36, 37] for a symmetric gyrostat. The other two families have been also
considered in [14], but the stability conditions given are weak, as they do not
depend on the gyrostatic moment.

Taking into account that we are considering a Poisson system, to establish
su�cient stability conditions we can use the classical energy-Casimir method
[3, 18] or a generalized version given in [30], which reads

Theorem 2 (Generalized energy-Casimir method). Let (M, {., .}, h) be a
Poisson system, and m 2 M be an equilibrium of the Hamiltonian vector field
Xh. If there is a set of conserved quantities C1, . . . , Cn 2 C1(M) for which

d(h+ C1 + · · ·+ Cn)(m) = 0,

and
d

2(h+ C1 + · · ·+ Cn)(m)|W⇥W ,

is definite for W defined by

W = kerdC1(m) \ · · · \ kerdCn(m),

then m is stable. If W = {0}, m is always stable.

To begin with, we state the first stability result, concerning the equilibrium
point E1.

Theorem 3. The equilibrium E1 is stable if the following conditions are satis-
fied

(I3 � I1)!2 + l3! > gmz0, (I3 � I2)!2 + l3! > gmz0, k3 = 1.

(I3 � I1)!2 + l3! > �gmz0, (I3 � I2)!2 + l3! > �gmz0, k3 = �1.

Proof. The proof can be found in [14], Theorem 7.

This result can be complemented by the necessary conditions of stability,
also given in [23]. In this sense, we have the following Theorem.

Theorem 4. If the equilibrium E1 is stable, then it must be satisfied

[(I3 � I1)!2 + l3! � gmz0] [(I3 � I2)!2 + l3! � gmz0] > 0, k3 = 1.

[(I3 � I1)!2 + l3! + gmz0] [(I3 � I2)!2 + l3! + gmz0] > 0, k3 = �1.

Proof. The proof is straightforward, taking into account that a necessary
condition to be stable is to be linearly stable. Thus, none of the eigenvalues
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of the linearized system can have positive real part. However, the linearized
system around E1, for the case k3 = 1, is defined by the Jacobian matrix

JE1 =

0

BBBBBBBBBBBBB@

0
(I2 � I3)! � l3

I2
0 0 gmz0 0

(I3 � I1)! + l3
I1

0 0 �gmz0 0 0

0 0 0 0 0 0

0 � 1

I2
0 0 ! 0

1

I1
0 0 �! 0 0

0 0 0 0 0 0

1

CCCCCCCCCCCCCA

.

The eigenvalues of JE1 are the roots of the characteristic polynomial, which has
the following form

�2(�4 + a�2 + b).

It is clear that there are two eigenvalues equal to 0 and, for the remaining
four eigenvalues, it follows that if �0 is an eigenvalue, also ��0, �̄0 and ��̄0

are eigenvalues. Thus, a necessary condition for E1 to be linear stable is that
eigenvalues have zero real part, which means that the coe�cient b must be
greater than 0. However,

b =
1

I1I2
[(I3 � I1)!

2 + l3! � gmz0] [(I3 � I2)!
2 + l3! � gmz0],

and the first case is proved. The case k3 = �1 can be proved in the same way.

Note that, in the case the two expressions in brackets are positive, necessary
and su�cient conditions are exactly the same.

Remark 1. It is worth to mention that in the axisymmetric case, I2 = I1, the
two stability conditions, for k3 = 1 (similarly for k3 = �1), reduce to one

(I3 � I1)!
2 + l3! > gmz0. (8)

However, this is a di↵erent stability condition of the classical one [36]

(I3! + l3)
2 � 4gmz0I1. (9)

This is due to the fact that, in the augmented Hamiltonian used to prove the
stability in Theorem 3, the conservation of the third component of the angular
momentum, appearing in the symmetric case, cannot be considered. Thus, the
stability condition is more restrictive, in the sense that if (8) is satisfied, also
(9) is satisfied, but not necessarily in the reverse way. Indeed,

(I3! + l3)2

4I1
� (I3 � I1)!

2 + l3!,
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Figure 2: The angle formed by the vectors (⇡1,⇡2,⇡3) and (k1, k2, k3) with the corresponding

equilibrium position E1, (0, 0, 2), (0, 0, 1), for the case I1 = I2 = 1, I3 = 2, mgz0 = 2, ! = 1

and l3 = 0.9. The initial conditions of the trajectory are (0.01, 0.01, 2.01, 0.0141418, 0, 0.9999)
and the angle is measured in degrees.

provided that

(I3! + l3)
2 � 4I1((I3 � I1)!

2 + l3!) = (I3! + l3 � 2I1!)
2 � 0.

To emphasize this situation, we consider a gyrostat with the following values
for the parameters

I1 = I2 = 1, I3 = 2, gmz0 = 2, ! = 1, l3 = 0.9.

It is easy to check that

(I3 � I1)!
2 + l3! = 1.9 < gmz0 = 2

and
(I3! + l3)

2 = 8.41 > 4mgz0I1 = 8.

That is to say, stability condition (9) is satisfied, but not condition (8). Nu-
merical integration of a trajectory starting close to the equilibrium position
(0, 0, 2, 0, 0, 1) shows that it remains close to the equilibrium point along time.
As we move away from the equilibrium, the trajectories stay close to it, but
performing a precession movement. This can be seen in Figure 2.

Now, we state a result about the stability of the second and third families
of permanent rotations, E2 and E3, which turns to be more general than that
one given in [14].

Theorem 5. The equilibrium E2 is stable if the following conditions are satis-
fied

I1 > I3, l22 > (I2 � I1)(I1w
2 � 4l3! cos'+ 3(I1 � I2)!

2 cos2 ').

In particular, if cos' = 0, E2 is stable if

I1 > I3, l43 > I1(I2 � I1)m
2g2z20 .
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Analogously, the equilibrium E3 is stable if the following conditions are satisfied

I1 > I2, l23 > (I3 � I1)(I1w
2 � 4l3! cos'+ 3(I1 � I3)!

2 cos2 ').

In particular, if cos' = 0, E3 is stable if

I1 > I2, l43 > I1(I3 � I1)m
2g2z20 .

Proof. We will perform the proof for the equilibrium E3, as the other case is
exactly the same, interchanging the role played by the moments of inertia I2
and I3. Following Theorem 2, we introduce the augmented Hamiltonian

H =
1

2

✓
⇡2
1

I1
+

⇡2
2

I2
+

⇡2
3

I3

◆
+mgz0k3+�(⇡1k1+⇡2k2+(l3+⇡3)k3)+µ(k21+k22+k23),

(10)
where to the Hamiltonian function (3) we have added a linear combination of
the two Casimir functions (5) and (6). It is easy to check that equilibrium E3

is a critical point of H if the parameters � and µ are given by

� = �!, µ =
I1!2

2
.

Let us now determine the space

W = kerdC1(E3) \ kerdC2(E3),

where C1 and C2 are the Casimir functions already given by (5) and (6) and
introduced in the augmented Hamiltonian (10). On the one hand, we have

dC1(E3) = 2 sin' dk1 + 2 cos' dk3

and, on the other hand,

dC2(E3) = sin' d⇡1 + cos' d⇡3 + I1! sin' dk1 + (l3 + I3! cos') dk3.

Equating to zero the above expressions, we obtain the relations

d⇡3 = �d⇡1 tan'+

✓
l3

cos'
+ (I3 � I1)!

◆
tan' dk1, dk3 = �dk1 tan'.

Thus, W = kerdC1(E3) \ kerdC2(E3) is generated by the vectors

ê1 cos'�ê3 sin', ê2, ê3[l3+(I3�I1)! cos'] sin'+ê4 cos
2 '�ê6 sin' cos', ê5.

Let v be a six dimensional vector in W , then

v = (x1 cos', x2,
�(x1 � l3x3 + (I1 � I3)!x3 cos') sin', x3 cos2 ', x4,�x3 cos' sin'),
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where xi 2 R, i = 1, . . . , 4. Then, the Hessian matrix of the augmented Hamilto-
nian in the reduced space W is computed straightforwardly from the quadratic
form in the variables xi,

vT ·

2

6666666666666666664

@2H

@⇡2
1

@2H

@⇡1⇡2

@2H

@⇡1⇡3

@2H

@⇡1k1

@2H

@⇡1k2

@2H

@⇡1k3
@2H

@⇡1⇡2

@2H

@⇡2
2

@2H

@⇡2⇡3

@2H

@⇡2k1

@2H

@⇡2k2

@2H

@⇡2k3
@2H

@⇡1⇡3

@2H

@⇡2⇡3

@2H

@⇡2
3

@2H

@⇡3k1

@2H

@⇡3k2

@2H

@⇡3k3
@2H

@⇡1k1

@2H

@⇡2k1

@2H

@⇡3k1

@2H

@k21

@2H

@k1k2

@2H

@k1k3
@2H

@⇡1k2

@2H

@⇡2k2

@2H

@⇡3k2

@2H

@k1k2

@2H

@k22

@2H

@k2k3
@2H

@⇡1k3

@2H

@⇡2k3

@2H

@⇡3k3

@2H

@k1k3

@2H

@k2k3

@2H

@k23

3

7777777777777777775

· v,

where the full Hessian matrix is evaluated at E3. In this way, we arrive to

Hess|W⇥W =

2

666666664

cos2 '

I1
+

sin2 '

I3
0 H13 0

0
1

I2
0 �!

H13 0
{
I3

0

0 �! 0 I1!2

3

777777775

,

where

H13 =
�I3! cos3 '� l3 sin

2 '+ (I1 � 2I3)! cos' sin2 '

I3
and

{ = I1I3!2 cos4 '+ l23 sin
2 '� 2(I1 � 2I3)l3! cos' sin2 '

+(I21 � 3I1I3 + 3I23 )!
2 cos2 ' sin2 '.

Now, we apply the Sylvester criterion to determine the definiteness of the matrix,
computing the principal minors. They are given by

�1 =
cos2 '

I1
+

sin2 '

I3
, �2 =

�1

I2
,

�3 =
l23 � (I3 � I1)(I1w2 � 4l3! cos'+ 3(I1 � I3)!2 cos2 ')

4I1I2I3
sin2 2',

�4 = (I1 � I2)!2�3.

It is clear that �1 and �2 are always positive, despite the value of the parameter
' 2 (0, 2⇡). The other two minors are positive if the following inequalities are
satisfied

l23 � (I3 � I1)(I1w
2 � 4l3! cos'+ 3(I1 � I3)!

2 cos2 ') > 0, I1 > I2. (11)
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In the special case cos' = 0, we can obtain ! from the relation satisfied by !
and ' for the existence of the equilibrium E3. That is,

w2(I3 � I1) cos'+ !l3 � gmz0 = 0.

As cos' = 0 it follows

! =
gmz0
l3

and (11) reduces to

l43 > I1(I3 � I1)m
2g2z20 , I1 > I2.

Remark 2. It is worth noticing that if I1 > I3 the first condition in (11) is
always satisfied.

Indeed, taking into account the existence relation for the family E3

!2(I3 � I1) cos'+ !l3 � gmz0 = 0 (12)

we obtain that
l3 = (I1 � I3)! +

gmz0
!

.

Substituting this relation in (11) we arrive to the equivalent inequality

I1(I1 � I3)!
4 � 2gmz0I1 � I3)!

2 cos'+ g2m2z20 > 0.

However, the left hand side of the inequality is a biquadratic polynomial in !,
with roots

!2 = gmz0
(I1 � I3) cos'±

q
(I3 � I1)(I1 sin

2 '+ I3 cos2 ')

I1(I1 � I3)
.

It is clear that there are no real roots if I1 > I3. Taking into account that the
coe�cient of the leading term is I1(I1 � I3) > 0, the first inequality is satisfied.
In this way, we obtain the weak stability conditions

I1 > I2, I1 > I3.

Thus, if I1 is the biggest moment of inertia, it does not matter the value of
the gyrostatic moment l3, the equilibrium position E3 is always stable. This
is precisely the conclusion in [14]. However, the first inequality in (11) is more
general and we can obtain stability in di↵erent situations, when I1 is not the
biggest moment of inertia.

It is also remarkable that, in the case I1 > I2, the su�cient condition estab-
lished in Theorem 5 is also a necessary condition. Indeed, we have the following
result.

12



Theorem 6. A necessary condition for the equilibrium E3 to be stable is

(I1 � I2)(l
2
3 � (I3 � I1)(I1!

2 � 4l3! cos'+ 3(I1 � I3)!
2 cos2 ')) > 0.

Proof. Linear stability is necessary to have Lyapunov stability. In this way, as
the system is Hamiltonian, eigenvalues of the linearized system come in quadru-
plets of the form ±a± bi and linear stability takes place if the real part of the
eigenvalues are equal to zero.

The eigenvalues are the roots of the polynomial equation

det(JE3 � �I6) = 0, (13)

where I6 is the 6 ⇥ 6 identity matrix and JE3 is the Jacobian matrix of the
linearized system at E3. This matrix results to be

JE3 =

2

66666666666666664

0 J12 0 0 mgz0 0

J21 0 J23 �mgz0 0 0

0 J32 0 0 0 0

0 �cos'

I2
0 0 ! cos' 0

cos'

I1
0 � sin'

I3
�! cos' 0 ! sin'

0
sin'

I2
0 0 �! sin' 0

3

77777777777777775

,

where

J12 =
�l3 + (I2 � I3)! cos'

I2
, J21 =

l3 � (I1 � I3)! cos'

I1
,

J23 = � (I1 � I3)! sin'

I3
, J32 =

(I1 � I2)! sin'

I2
.

The polynomial equation (13) turns to be of the form

�2(�4 + b�2 + c) = 0, (14)

with b and c real numbers. It is clear that if all the roots of equation (14) have
zero real part, then c > 0. However,

c =
!2 sin2 '

I1I2I3
(I1 � I2)[l

2
3 � (I3 � I1)(I1!

2 � 4l3! cos'+ 3(I1 � I3)!
2 cos2 ')],

and the result follows immediately, by taking into account that the moments of
inertia are always positive.

Theorems 5 and 6 give us a complete characterization of the stability prop-
erties of E3 if I1 > I2. Now, we are in position to obtain a picture of the
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stability regions in terms of the relevant parameters of the problem: ' and l3,
the gyrostatic moment. The rest of the parameters stands for the geometry of
the gyrostat and the position of the center of mass. For a prescribed geometry,
the equilibrium E3 exists if ! is a real number. Solving (12) to obtain !, we
find that E3 exists if

l23 � 4gmz0(I1 � I3) cos' � 0. (15)

When the inequality is transformed in an equality, it defines a curve in the plane
(', l3) dividing it into two regions, one of them for the region of existence of
E3 and the other one for the region where E3 does not exist. We note that the
existence region depends on the sign of (I1 � I3)z0. In the same way, there is
a curve that separates the stability and instability regions. To describe these
regions is su�cient to study the case I1 < I3 because, if I1 > I3, the stability
conditions are always satisfied (Remark 2) and, therefore, the stability region
is the same as the existence region. For the case I1 < I3, we have to proceed
carefully as, once l3 and ' are fixed, two di↵erent values of ! are obtained

!± =
�l3 ±

p
l23 + 4(I3 � I1)gmz0 cos'

2(I3 � I1) cos'
(16)

and, therefore, also two equilibrium points we name E3+ and E3�, corresponding
to the values !+ and !� respectively. Substituting these two expressions into
the first inequality in (11) we arrive to the limiting curve

I1(l43 + g2m2z20I1(I1 � I3))

�6 gmz0I1l23(I1 � I3) cos'+ 6 g2m2z20I1(I1 � I3)2 cos2 '

�2 gmz0l23(I1 � I3)2 cos3 '+ 9 g2m2z20(I1 � I3)3 cos4 ' = 0,

(17)

that separates the stability and instability regions.
It is worth noting that Eqs. (15) and (17) do not depend on I2, but only on

I1 and I3. Moreover, (I1 � I3) appears as a relevant quantity. For this reason
we introduce the quantities

a = I3 � I1, b =
I3 � I1

I1
,

as the parameters to describe the geometry of the gyrostat. In terms of a and
b, the curves delimiting (15) and (17) become respectively

f1(l3,'; a, b, gmz0) ⌘ l23 + 4agmz0 cos' = 0,

f2(l3,'; a, b, gmz0) ⌘ �b l43 + a2g2m2z20 � 6 abgmz0l23 cos'

�6 a2bg2m2z20 cos
2 '+ 2 ab2gmz0l23 cos

3 '+ 9 a2b2g2m2z20 cos
4 ' = 0.

(18)

The two curves are double symmetric since for i = 1, 2,

fi(l3,'; a, b, gmz0) = fi(�l3,'; a, b, gmz0),

fi(l3,⇡ + '; a, b, gmz0) = fi(l3,⇡ � '; a, b, gmz0).
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Figure 3: The two branches of the curve defined f2 = 0 for di↵erent values of b and z0 > 0.

The red branch comes from w+, and the blue one from !�. The area inside the black curve

corresponds to the region where the family of equilibrium points E3 does not exist.

We also note that ab > 0 and that, for a < 0 and b < 0, the curve defined by f2
does not exist because, as it was proven in Remark 2, when I1 > I3 equilibrium
E3 is stable and, consequently, f2 6= 0.

We stress that, in fact, f2 is a two branched curve, one of its branches coming
from !+ and the other one from !� and these branches are di↵erent depending
on the sign of z0. For the case z0 > 0, the two branches intersect each other at
the points

✓
' = arccos

1p
3b

, l3 = 0

◆
,

✓
' = 2⇡ � arccos

1p
3b

, l3 = 0

◆
,

provided b � 1/3. For b < 1/3 the two branches do not cross. The aspect of the
branches for di↵erent values of b is depicted in Figure 3. The red branch stands
for the value !+ and the blue one for the value of !�. When the red branch is
crossed the corresponding equilibrium point E3+ changes its stability character.
In this way, it is easy to check that E3+ is stable above the red branch and
unstable below it. For E3� the situation is the opposite, the equilibrium point
is stable below the blue branch and unstable above it.

The previous considerations show that for each equilibrium point of the
family E3 there is a critical value of the gyrostatic moment in such a way that
if it is crossed, the stability changes. Some members of the family E3+ require
positive values of the gyrostatic moment to be stable and the other ones, E3�,
negative values. Nevertheless, the geometry of the gyrostat is also important.
Indeed, if b > 1/3, small absolute values of l3 give rise to stable points if the
angle ' verifies cos' > 1/

p
3b. On the other hand, if b > 1/3 and

l23 < agmz0

✓
�3 + b+

(1 + b)3/2p
b

◆
,

every member of the family E3 is unstable, regardless the value of the angle '.
Figure 4 summarizes this. There, the stability regions for the two equilibrium
points associated to a pair (', l3) are shown. The light green area indicates
stability for the equilibrium E3+ and instability for the other. The dark green
area stands for the stable region for E3� and instability for the other. The red
zone indicates instability for both equilibrium points and the blue one stability
for the two.

15



0 p

2
p 3 p

2
2 p

-4

-2

0

2

4

j

l3

b > 1ê3

0 p

2
p 3 p

2
2 p

-4

-2

0

2

4

j

l3

b < 1ê3

Figure 4: Stability regions for the two equilibrium points associated to a pair (', l3). The

green areas (light and dark) indicates stability for one of the equilibrium points and instability
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respectively.
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Figure 5: The two branches of the curve defined f2 = 0 for di↵erent values of b and z0 < 0.

The red branch comes from w+, and the blue one from !�. The area inside the black curve

corresponds to the region where the family of equilibrium points E3 does not exist.

A similar analysis can be made for z0 < 0 obtaining similar results. Indeed,
we obtain exactly the same but interchanging the intervals [0,⇡/2] [ [3⇡/2, 2⇡]
and [⇡/2, 3⇡/2]. Now the branches associated to the two values !± intersect at
the points

✓
' = arccos

�1p
3b

, l3 = 0

◆
,

✓
' = 2⇡ � arccos

�1p
3b

, l3 = 0

◆
,

provided b � 1/3, otherwise they do not intersect. Figure 5 shows the two
branches for di↵erent values of b. As in the case z0 > 0, when the red branch
is crossed from above to below the equilibrium point E3+ changes its character
from stable to unstable. When the blue branch is crossed from above to below,
the equilibrium point E3� changes from unstable to stable.

A di↵erent approach to the stability regions can be made if we consider as
the relevant parameters ' and !. Now, fixed a pair (',!), ! 6= 0, there is only
one l3 defining an equilibrium point. Thus, we do not have to face the analysis
of the branches and also we do not have to take care about the region where
the equilibrium exists. In this way, proceeding as above, we obtain l3 from (12),
then introduce its expression into the first inequality in (11) and we obtain that
the stability area is delimited by the curves defined by f3 = 0, where f3 is the
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Figure 6: The two branches of the curve defined by f3 = 0 for z0 > 0 and z0 < 0, a = b = 1.

Stability takes place in between them.

function
f3 ⌘ �a2!4 + bg2m2z20 + 2abgm!2z0 cos'.

This is a two branched curve, and the branches are di↵erent depending on the
sign of z0. In Figure 6 the two cases are depicted and stability takes place in
the bounded region between the two branches. To account for the e↵ect of l3,
we can fix its value and depict the corresponding line defined in the (',!) plane
by the existence condition (12). Di↵erent curves are shown in Figure 7, where
it can be seen what pairs of (',!) are stable for a prescribed value of l3. It is
worth noticing the pseudo symmetry for the positive and negative values of l3.
Indeed, the curves for l3 > 0 and l3 < 0 are symmetric with respect the axis
! = 0. That means that if a pair ('0,!0) is stabilized by l3, the pair ('0,�!0)
is stabilized by �l3. Furthermore, it can also be observed the behavior described
previously in Figure 4, that is, how for small values of |l3| and small '0 we can
find two values of ! for which the corresponding equilibrium is stable.

Remark 3. It is interesting to note that if I2 > I1 the above described stability
regions seem to change. That is to say, stability turns to be instability and vice
versa. However, a detailed study, using KAM theory must be performed, as
some instabilities can appear due to the presence of resonances.

5. Conclusions

The stability of the permanent rotations of a heavy gyrostat with a fixed
point, whose center of mass is located in one of the principal axis and the
gyrostatic moment acts along the same axis, has been studied by means of the
Energy-Casimir method. First of all, we have established the existence of three
families of permanent rotations. For the first family, we have obtained su�cient
and necessary stability conditions, and we have proved that they are the same in
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Figure 7: Di↵erent curves for the gyrostatic moment onto the stability plane in (',!) for

a = b = 1 and z0 > 0. The part of the curve inside the shaded region gives rise to a stable

equilibrium point, whereas the equilibrium is unstable in the outer part.

half the region where the necessary conditions are satisfied. Moreover, we have
stressed that these conditions does not approach, in the limit, to the classical
conditions for a axisymmetric gyrostat, due to the appearance of a conserved
quantity for the symmetric case. The other two families can be treated at once,
as they are, in some sense, symmetric. For these two families the vector defining
the permanent rotation lies in the plane of two of the principal axes and the
third one is orthogonal to it. For these families it is proved that the stability
conditions are independent of the value of the moment of inertia corresponding
to the orthogonal principal axis. Besides, if the other two moments of inertia
verify that the one corresponding to the principal axis where the center of mass
lies is not the biggest, then the permanent rotations are always stable, does
not matter the value of the gyrostatic moment. On the other hand, if it is
the biggest, then a minimum gyrostatic moment is necessary to stabilize the
rotations. This fact is analyzed in detail in a suitable parametric plane.
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