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ABSTRACT

IfG is a group and if the upper hypercenter, Z, ofG is such thatG/Z is �nite then
a recent theorem shows that G contains a �nite normal subgroup L such that
G/L is hypercentral. The purpose of the current paper is to obtain a version
of this result for subgroups G of GL(F,A), when A is an in�nite dimensional
F-vector space.
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Introduction

Let G be a group, R a ring, and A an RG-module. Then the set

ζRG(A) = {a ∈ A | a(g − 1) = 0 for each element g ∈ G} = CA(G)

is an RG-submodule of A called the RG-center of A, analogous to the center of a group. The submodule
analogous to the derived subgroup of a group is constructed as follows. Let ωRG be the augmentation
ideal of the group ring RG, that is, the two-sided ideal generated by all elements of the form g− 1, g ∈ G.
The submodule A(ωRG) is said to be the derived submodule of A.

This paper is concerned with obtaining a linear version of the main theorem of the papers [3, 12]. To
describe our work, we need some more terminology and notation.

The upper RG-central series of A,

〈0〉 = ζRG,0(A) ≤ ζRG,1(A) ≤ · · · ≤ ζRG,α(A) ≤ ζRG,α+1(A) ≤ · · · ≤ ζRG,γ (A)

is the series ofRG-submodules de�ned by ζRG,1(A) = ζRG(A), ζRG,α+1(A)/ζRG,α(A) = ζRG(A/ζRG,α(A))

for every ordinal α, ζRG,λ(A) =
⋃

µ<λ ζRG,µ(A) for every limit ordinal λ, and ζRG(A/ζRG,γ (A)) = {0}.
The last term ζRG,γ (A) = ζRG,∞(A) of this series is called the upper RG-hypercenter of A. The ordinal γ
is said to be the RG-central length of A and will be denoted by zlRG(A). We note that ζRG,α+1(A)(ωRG) ≤

ζRG,α(A) for every ordinal α < γ . We say thatA is RG-hypercentral if ζRG,γ (A) = A, for some γ , and the
RG-hypercentral module A is said to be RG-nilpotent if zlRG(A) is �nite. Also, A is RG-locally nilpotent
if the FH-submoduleM(FH) is FH-nilpotent for every �nite subsetM of A and every �nitely generated
subgroup H of G.
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If X is a class of RG-modules and if A is an RG-module, we put

ResX(A) = {B |B is an RG-submodule of A such that A/B ∈ X}.

Then the intersection AX of all members of the family ResX(A) is called theX-residual of A. If ResX(A)

has a least element L, then L = AX and A/AX ∈ X, but this does not hold in general. If X is the class of
all RG-nilpotent modules, this de�nition gives us the RG-nilpotent residual of A, and if X is the class of
all RG-hypercentral modules, we obtain the RG-hypercentral residual of A. Likewise, whenX is the class
of locally RG-nilpotent modules, then we obtain the locally RG-nilpotent residual of A.

Let F be a �eld. Our main results concern the relationship between the quotient module A/ζFG,∞(A)

and the locally FG-nilpotent residual of A, for certain types of subgroup G of GL(F,A), the group of all
F-automorphisms of A.

We recall that a group G has �nite special rank r if every �nitely generated subgroup of G can be
generated by r elements and r is the least positive integer with this property. This rank is one of the most
important numerical invariants of a group. We shall be concerned with certain other ranks here which
we now discuss.

Let p be a prime. We say that a group G has �nite section p-rank srp(G) = r if every elementary
Abelian p-section U/V of G is �nite of order at most pr and there is an elementary Abelian p-section
A/B of G such that |A/B| = pr . Similarly, we say that a group G has �nite section 0-rank sr0(G) = r if
every torsion-free Abelian sectionU/V ofG satis�es srZ(U/V) ≤ r and there exists an Abelian torsion-
free section A/B such that srZ(U/V) = r. Here srZ(A) is the Z-rank of the Abelian group A, the rank of
A as a Z-module. We note that if a group G has �nite section p-rank for some prime p, then G has �nite
section 0-rank and sr0(G) ≤ srp(G). For, given a torsion-free Abelian sectionU/V ofG, let S/V be a free
Abelian subgroup of U/V such that U/S is periodic. Then srZ(U/V) = rZ(S/V). If S/V = Drλ∈3〈dλ〉

say, then (S/V)p = Drλ∈3〈d
p
λ〉 and so

(S/V)/(S/V)p = (Drλ∈3〈dλ〉)/(Drλ∈3〈d
p
λ〉)

∼= Drλ∈3〈dλ〉/〈d
p
λ〉.

Since srp(G) = r is �nite, (S/V)/(S/V)p is a �nite group that has order at most pr . On the other hand, we
have |(S/V)/(S/V)p| = p|3| and so srZ(U/V) = rZ(S/V) = |3| ≤ r. It readily follows that sr0(G) ≤

srp(G) as claimed.
It was proved in [12] that if G is a group, Z is the upper hypercenter of G and if G/Z is �nite of order

t, then G has a �nite normal subgroup L, of order bounded in terms of t, such that G/L is hypercentral.
A nonquantitative version of this result had earlier appeared in [3]. The main results of our paper are as
follows. As will be evident, the two results are similar, but their proofs have some di�erences.

Theorem A. Let F be a �eld of prime characteristic p, A an F-vector space and G a subgroup of GL(F,A).
If dimF(A/ζFG,∞(A)) = d and srp(G) = r are �nite, then the locally FG-nilpotent residual L of A has �nite
dimension and A/L is FG-hypercentral. Moreover, there exists a function κ4 such that dimF(L) ≤ κ4(r, d).

Theorem B. Let F be a �eld of prime characteristic 0, A an F-vector space and G a subgroup of GL(F,A).
If dimF(A/ζFG,∞(A)) = d and sr0(G) = r are �nite, then the locally FG-nilpotent residual L of A has �nite
dimension and A/L is FG-hypercentral. Moreover, there exists a function κ9 such that dimF(L) ≤ κ9(r, d).

The layout of the paper is as follows. In Section 1, we gather together some preliminary results. In
Section 2, we discuss the positive characteristic case of our results and prove Theorem A. In Section 3,
we discuss the characteristic zero case and prove Theorem B. Finally, in Section 4, we give an example
of a subgroup G of GL(F,A) of in�nite 0-rank, for which dimF(A/ζFG,∞(A)) is �nite but in which the
locally nilpotent FG-nilpotent residual is in�nite dimensional.
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1. Hypercentral and Nilpotent modules

The following properties are immediate.

Lemma 1.1. Let R be a ring, G a group, and A an RG-module. Suppose that A is RG-hypercentral
(respectively, RG-nilpotent). Then we have
(i) If B is an RG-submodule of A, then B is RG-hypercentral (respectively, RG-nilpotent).
(ii) If H is a subgroup of G, then A is RH-hypercentral (respectively, RH-nilpotent).
(iii) If H is a subgroup of G and B is an RH-submodule of A, then B is RH-hypercentral (respectively,

RH-nilpotent).

An easy consequence of Lemma 1.1 is the following result.

Corollary 1.2. Let R be a ring, G a group and A an RG-module. Suppose that A is locally RG-nilpotent.
Then we have
(i) If B is an RG-submodule of A, then B is locally RG-nilpotent.
(ii) If H is a subgroup of G, then A is locally RH-nilpotent.
(iii) If H is a subgroup of G and B is an RH-submodule of A, then B is locally RH-nilpotent.

From now on, we focus on the case in which the underlying ring R = F is a �eld and will assume this
notation from now on. The proof of our �rst result is analogous to the proof of [2, Lemma 2].

Lemma 1.3. Let G be a �nitely generated group and A a �nitely generated FG-module. If B is an
FG-submodule of A such that dimF(A/B) is �nite, then B is �nitely generated as an FG-submodule.

Proof. Let M = {g1, · · · , gt} be a subset of G such that G = 〈M〉. Without loss of generality, we can
assume that g−1

j ∈ M for each 1 ≤ j ≤ t. Choose a subset V = {a1, · · · , an} of A such that A =

a1FG+· · ·+anFG. There exists a �nite dimensionalF-subspaceC such thatA = B⊕C and let {c1, · · · , ck}
be a basis of C. Denote by pB and pC the canonical projections of A on B and C, respectively, and let E
be the FG-submodule generated by the set

{pB(aj), pB(cmgs) | 1 ≤ j ≤ n, 1 ≤ m ≤ k, 1 ≤ s ≤ t}.

By construction, E ≤ B. If d ∈ E + C, then d = u + c, where u ∈ E and c ∈ C. We may write

c = α1c1 + · · · + αkck

for suitable elements α1, · · · ,αk ∈ F. For each 1 ≤ j ≤ t, we have

cgj = (α1c1 + · · · + αkck)gj = α1(c1gj) + · · · + αk(ckgj)

= α1(pB(c1gj) + pC(c1gj)) + · · · + αk(pB(ckgj) + pC(ckgj))

= α1pB(c1gj) + · · · + αkpB(ckgj) + α1pC(c1gj) + · · · + αkpC(ckgj)) ∈ E + C.

It follows that E + C is an FG-submodule of A. Since

aj = pB(aj) + pC(aj) ∈ E + C, for all 1 ≤ j ≤ n,

we have E + C = A = B + C. However, E ≤ B and B ∩ C = 〈0〉 so that B = E. Thus, B is �nitely
generated as an FG-submodule.

Lemma 1.4. Let G be a �nitely generated group and A a �nitely generated FG-module. If A/ζFG,∞(A) has
�nite dimension, then zlFG(A) is �nite.
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Proof. Let

〈0〉 = Z0 ≤ Z1 ≤ · · · ≤ Zα ≤ Zα+1 ≤ · · ·Zγ = ζFG,∞(A) ≤ A

be the upper FG-central series of A. First, we remark that if Zα is a �nitely generated FG-module, then
α cannot be a limit ordinal.

Since dimF(A/ζFG,∞(A)) is �nite, Lemma 1.3 implies that ζFG,∞(A) is �nitely generated as an FG-
submodule. Thus γ is not a limit ordinal, by our initial remark. Suppose that γ is in�nite, so that γ =

τ + n for some limit ordinal τ and positive integer n. Let V = {v1, · · · , vn} be a �nite subset of A such
that

Zγ = v1FG + · · · + vnFG.

Since Zγ /Zγ−1 = ζFG(A/Zγ−1), we have

Zγ /Zγ−1 = (v1F + · · · + vnF)Zγ−1/Zγ−1,

and, in particular, Zγ /Zγ−1 has �nite dimension at most n. Again by Lemma 1.3, Zγ−1 is �nitely
generated as an FG-submodule. Proceeding in this way, a�er �nitely many steps, we deduce that the
FG-submodule Zτ is �nitely generated. By our initial remark, we see that τ is not a limit ordinal, which
is a contradiction. Hence γ must be �nite, as required.

This has an obvious consequence.

Corollary 1.5. Let G be a �nitely generated group and A a �nitely generated FG-module. If A is
FG-hypercentral, then A is FG-nilpotent.

We need some more de�nitions. For the group G, the ring R and RG-module A the factor C/B of A
are said to be G-central if G = CG(C/B); otherwise C/B is said to be G-eccentric. Also, A is said to be
G-hypereccentric, if A has an ascending series of RG-submodules

〈0〉 = A0 ≤ A1 ≤ · · · ≤ Aα ≤ Aα+1 ≤ · · · ≤ Aα = A

whose factors Aα+1/Aα are G-eccentric simple FG-modules. We say that the RG-module A has the
Z-decomposition if there is a direct decomposition

A = C ⊕ E,

where C is the upper RG-hypercenter of A and E is a G-hypereccentric RG-submodule. We remark that
if such decomposition exists then it is unique. We refer the reader to [11, Chapter 10] for further details.

We need a further lemma.

Lemma 1.6. Let G be a group and suppose that A is a locally FG-nilpotent FG-module. If B is a �nite
dimensional FG-submodule of A, then there exists some k ≥ 1 such that B ≤ ζRG,k(A).

Proof. Let

〈0〉 = Z0 ≤ Z1 ≤ · · · ≤ Zα ≤ Zα+1 ≤ · · · ≤ Zγ = A

be the upper FG-central series of A. We proceed by induction on dimF(B), the case k = 1 is being clear.
Since B1 = B ∩ Z1 6= 〈0〉, dimF(B/B1) < dimF(B). We have

(B + Z1)/Z1 ∼= B/(B ∩ Z1) = B/B1.

In particular, dimF((B+Z1)/Z1) = dimF(B/B1) < dimF(B). By induction, there exists a positive integer
k such that (B + Z1)/Z1 ≤ Zk/Z1 and then B ≤ Zk as required.

Our next result generalizes [5, Corollary 2.3].



238 M. R. DIXON ET AL.

Lemma 1.7. Let G be a group of �nite special rank k and let A be an FG-module such that zlFG(A) is �nite.
If dimF(A/ζFG,∞(A)) = d, then the FG-nilpotent residual L of A has �nite dimension at most d(k + 1).
Moreover, the factor-module A/L is FG-nilpotent.

Proof. Let

〈0〉 = ζFG,0(A) ≤ ζFG,1(A) ≤ ζFG,2(A) ≤ · · · ≤ ζFG,t(A) = Z

be the upper FG-central series of A. By Kaluzhnin’s theorem [8], G/CG(Z) is nilpotent.
Let C = CG(Z) and B = A(ωFC). Then Z ≤ ζFC(A) so dimF(A/ζFC(A)) ≤ d and, by [5, Corollary

2.3], dimFB ≤ dk. Note that C ≤ CG(A/B) so that G/CG(A/B) is a nilpotent group. The factor-module
(A/B)/(ZB/B) has �nite dimension over F, and so has a �nite FG-composition series. By [9, Corollary
2.6], A/B has the Z-decomposition, that is

A/B = Y/B ⊕ E/B,

where Y/B is the upper FG-hypercenter of A/B and E/B is an FG-hypereccentric FG-submodule. Since
ZB/B ≤ Y/B, E/B has �nite dimension and dimF(E/B) ≤ d. It follows that E has �nite dimension and
dimF(E) ≤ dk+ d = d(k+ 1). Since A/E is FG-nilpotent, L ≤ E. Hence dimF(L) ≤ k(d + 1). Also L is
the intersection of all the FG-submodulesX such thatA/X is FG-nilpotent. Since E is �nite dimensional,
it is easy to see that

L = ∩r
i=1{Ei|A/Ei is FG-nilpotent},

for certain FG-submodules Ei. It follows that there is an embedding,

A/L −→
r
Dr
i=1

A/Ei,

and from this, we deduce that A/L is FG-nilpotent, as required.

Corollary 1.8. Let G be a �nitely generated group of �nite special rank k. If A is a �nitely generated
FG-module such that dimF(A/ζFG,∞(A)) = d is �nite, then the FG-nilpotent residual L of A has �nite
dimension at most d(k + 1). Moreover, A/L is FG-nilpotent.

Proof. By Lemma 1.4, zlFG(A) is �nite and it su�ces to apply Lemma 1.7.

Corollary 1.9. Let G be a �nitely generated group of �nite special rank k and let A be an FG-module. If
dimF(A/ζFG,∞(A)) = d, then the locally FG-nilpotent residual L of A has �nite dimension atmost d(k+1).
Moreover, A/L is locally FG-nilpotent.

Proof. Put Z = ζFG,∞(A). Since A/Z has �nite dimension, there exists a �nite subsetM such that A =

MF + Z. LetD be the family of all �nitely generated FG-submodules of A containingM. If B ∈ D, then
Z ∩ B ≤ ζFG,∞(B) and so dimF(B/ζFG,∞(B)) ≤ d. By Corollary 1.8, the FG-nilpotent residual L(B) of
B has �nite dimension at most d(k+ 1) and B/L(B) is FG-nilpotent. Pick C ∈ D such that B ≤ C. Since
C/L(C) is FG-nilpotent,B/(B∩L(C)) is FG-nilpotent, so L(B) ≤ B∩L(C), whence L(B) ≤ L(C). Choose
an FG-submodule K ∈ D such that dimFL(K) is maximal. If C ∈ D and K ≤ C, we have L(K) ≤ L(C),
and the choice of K implies that L(K) = L(C).

Let S be an arbitrary �nite subset of A and put

T = {M, S}FG + K.

It follows that T ∈ D, K ≤ T and L(T) = L(K), so T/L(K) is FG-nilpotent. Then A/L(K) is locally
FG-nilpotent and hence L ≤ L(K). It follows that L has �nite dimension at most d(k + 1). As in the last
part of the proof of Lemma 1.7, we deduce that A/L is locally FG-nilpotent.
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We now obtain the conclusion of our theorems in the case when our groups are of �nite special rank.
This key result will be very useful later.

Proposition 1.10. LetGbe a group of �nite special rank k and let A be anFG-module. If dimF(A/ζFG,∞(A))

= d is �nite, then the locally FG-nilpotent residual L of A has �nite dimension at most d(k+ 1). Moreover,
A/L is locally FG-nilpotent.

Proof. Let S be the family of all �nitely generated subgroups of G. If H ∈ S , the locally FH-nilpotent
residual LH of A has �nite dimension at most d(k + 1), by Corollary 1.9. Pick K ∈ S such that H ≤ K.
Since LK is an FK-submodule of A, it is also an FH-submodule of A. By Corollary 1.9, A/LK is locally
FK-nilpotent, and Corollary 1.2 implies thatA/LK is also locally FH-nilpotent. Hence LH ≤ LK . Choose
a subgroup T ∈ S such that dimFLT is maximal. If V ∈ S and T ≤ V , we have LT ≤ LV , and the choice
of T implies that LT = LV . In particular, LT is an FV-submodule. If U is an arbitrary �nitely generated
subgroup ofG, we have that LT is F〈T,U〉-invariant. Thus LT is an FU-submodule of A. Since this holds
for every �nitely generated subgroup of G, LT is in fact an FG-submodule.

Let H be an arbitrary �nitely generated subgroup of G. Put W = 〈H,T〉. Since LT = LW , A/LT is
locally FW-nilpotent. Thus, A/LT is locally FG-nilpotent and it follows that L ≤ LT which means that L
has �nite dimension at most d(k + 1). As in the last part of the proof of Lemma 1.7, it follows that A/L
is locally FG-nilpotent.

2. The positive characteristic case

Lemma 2.1. Let p be a prime and G a group. If G has �nite section p-rank or �nite section 0-rank, then no
section of G contains a non-Abelian free group.

Proof. Suppose the contrary, let V/U be a section of G that contains a non-Abelian free subgroup, say
F/U. If the free rank of F/U is in�nite, then F/U has a normal subgroup E/U such that F/E is a free
Abelian group of in�nite 0-rank. In this case, F/U has an in�nite elementary Abelian p-factor-group,
so that F/U must have in�nite section p-rank. This gives us a contradiction. If F/U has �nite free rank,
K/U = [F/U, F/U] is a free subgroup of countably in�nite free rank [13, Section 36], and we again
arrive at a contradiction.

Let G be a �nite group and suppose that

|G| = n = pk11 · · · pkmm .

IfH is a subgroup of G, then |H| = pt11 · · · p
tm
m , where tj ≤ kj, for 1 ≤ j ≤ m. If Pj is a Sylow pj-subgroup

of H, then Pj has a subnormal series whose factors have order p, and it follows that Pj has at most tj
generators. Then H has at most t1 + · · · + tm generators. Since

t1 + · · · + tm = logp1(p
t1
1 ) + · · · + logpm(ptmm ) ≤ logp1(p

k1
1 ) + · · · + logpm(pkmm )

≤ log2(p
k1
1 ) + · · · + log2(p

km
m ) = log2n,

it follows that G has �nite special rank at most log2|G|.
In the remainder of this section, we will assume throughout that F is a �eld of prime characteristic p.

The next result is presumably well known.

Lemma 2.2. Let G be a q-subgroup of GLn(F) for some prime q 6= p and some positive integer n. Then G
is almost Abelian and there exists a function κ1 such that the special rank of G is at most κ1(n).
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Proof. Since q 6= p, G contains an Abelian normal subgroup H such that |G/H| ≤ β(n) for some
function β [19, Corollary 9.4]. As we have seen above, G/H has special rank at most log2β(n). By [5,
Lemma 2.9],H has special rank at most n. Hence G has special rank at most n+ log2β(n) := κ1(n).

If α is a real number, then let ι(α) denotes the greatest integer that is at most α.

Corollary 2.3. Let G be a periodic subgroup of GLn(F) for some positive integer n and suppose that
srp(G) = r is �nite. Then G is almost Abelian and there exists a function κ2 such that the special rank
of G is at most κ2(r, n).

Proof. We note that G is locally �nite by [19, Corollary 4.9]. Let P be a Sylow p-subgroup of G. The
�niteness of srp(P) yields that P has �nite special rank r, by [1, Corollary 2.3], so P is Chernikov, by [13,
Section 64]. On the other hand, P is a nilpotent group of �nite exponent [19, 9.1]. It follows that P is
�nite, and hence G is almost Abelian, by [19, Corollary 9.7]. If q ∈ 5(G) and q 6= p, then we may apply
Lemma 2.2 to deduce that every Sylow q-subgroup of G has special rank at most κ1(n).

Now letH be an arbitrary �nite subgroup ofG. If q ∈ 5(H) and q 6= p, then the Sylow q-subgroups of
H have at most κ1(n) generators, whereas the Sylow p-subgroups ofH have at most r generators. Hence
H has at most max{r, ι(κ1(n))} + 1 generators, by [14, Theorem 1] and it follows that G has special rank
at most

max{r, ι(κ1(n))} + 1 ≤ r + κ1(n) = r + n + log2β(n) := κ2(r, n),

as required.

We next require information concerning the subgroups G of GLn(F) in the case when srp(G is �nite.
Such information is readily obtained using [1].

Corollary 2.4. Let G be a subgroup of GLn(F) for some positive integer n and suppose that srp(G) = r is
�nite. Then G has a �nite series of normal subgroups

T ≤ L ≤ V

such that
(i) T is a periodic almost Abelian subgroup of �nite special rank at most κ2(r, n), with �nite Sylow

p-subgroups;
(ii) L/T is a torsion-free nilpotent group;
(iii) V/L is a free Abelian group;
(iv) G/V is �nite.
Moreover, r(T) ≤ κ2(r, n), sr0(L/T) ≤ r, sr0(V/L) ≤ r, and there exists a function κ such that |G/V| ≤

κ(r). In particular, there exists a function κ3 such that G has �nite special rank at most κ3(r, n).

Proof. By Lemma 2.1, G has no non-Abelian free subgroups. It follows that G has a soluble normal
subgroup S such that G/S is locally �nite, by [19, Corollary 10.17], and we can apply [1, Theorem 2.15]
directly to G. Then G has a series of normal subgroups

T ≤ L ≤ V

such thatT is locally �nite, L/T is torsion-free nilpotent,V/L is free Abelian andG/V is �nite.Moreover,
sr0(L/T) ≤ r, sr0(V/L) ≤ r, and there exists a function κ such that |G/V| ≤ κ(r). By Corollary 2.3, T
is almost Abelian, the Sylow p-subgroups are �nite, and there exists a function κ2 such that the special
rank of T is at most κ2(r, n), where

κ2(r, n) = r + n + log2β(n).
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It follows that G has �nite special rank at most

r + n + log2β(n) + 2r + log2β(r) = 3r + n + log2(β(n)κ(r)) := κ3(r, n),

as required.

We now generalize Corollary 2.4 to in�nite dimensional spaces as follows.

Lemma 2.5. Let A be an FG-hypercentral vector space over F and let G be a subgroup of GL(F,A). If
srp(G) = r is �nite, then 5(G) = {p} and G has a �nite series of normal subgroups

T ≤ L ≤ V

such that
(i) T is a �nite p-subgroup;
(ii) L/T is a torsion-free nilpotent group;
(iii) V/L is a free Abelian group;
(iv) G/V is �nite.
Moreover, srp(T) = r(T) ≤ r, sr0(L/T) ≤ r, sr0(V/L) ≤ r, and there exists a function κ such that
|G/V| ≤ κ(r). In particular, G has �nite special rank at most 3r + log2κ(r).

Proof. Let

〈0〉 = Z0 ≤ Z1 ≤ · · · ≤ Zα ≤ Zα+1 ≤ · · · ≤ Zγ = A

be the upper FG-central series of A. Since F has characteristic p, it follows that G/CG(Zn) is a nilpotent
p-group of exponent pn−1, for every positive integer n. The section p-rank of G is �nite, so G/CG(Zn)
must be �nite. Moreover, srp(G/CG(Zn)) = r(G/CG(Zn)) by [1, Lemma 2.2]. Since ∩n≥1CG(Zn) =

CG(Zω), Remak’s theorem gives us the embedding

Gω := G/CG(Zω) →֒ Crn≥1G/CG(Zn).

As we remarked above, r(G/CG(Zn)) ≤ r for each n ≥ 1. By Lemma 2.1, Gω contains no non-Abelian
free subgroups, so it is locally almost soluble by [4, Theorem A]. It is not hard to see that the torsion
elements of this group are p-elements. It follows that the maximal normal torsion subgroup Tor(Gω) :=
Tω of Gω is a p-subgroup. Being locally �nite, it has �nite special rank, by [1, Corollary 2.3]. Then Tω

is Chernikov [13, Section 64], and being residually �nite, it is �nite. Applying [1, Theorem 2.15], we
deduce that Gω has a �nite series of normal subgroups Tω ≤ Lω ≤ Vω such that Tω is a �nite p-
group, Lω/Tω is a torsion-free nilpotent group, Vω/Lω is a free Abelian group, and Gω/Vω is �nite.
Moreover, srp(Tω) = r(Tω) ≤ r, sr0(Lω/Tω) ≤ r, sr0(Vω/Lω) ≤ r, and there exists a function κ such
that |Gω/Vω| ≤ κ(r). In particular, Gω has �nite special rank at most 3r + log2κ(r) := d.

We now use trans�nite induction. Let Gα := G/CG(Zα),Tα = Tor(Gα) and suppose that we have
already proved, for all ordinals α < γ , that 5(Gα) = {p} and Gα is a locally almost soluble group of
�nite special rank at most d such that Tα is a �nite p-subgroup of special rank at most r. If γ is a limit
ordinal, then

∩α<γCG(Zα) = CG(Zγ ) = CG(A) = 〈1〉,

and then Remak’s theorem gives us the embedding

G →֒ Crα<γGα .

By trans�nite induction, r(Gα) ≤ d for each α < γ . Since G contains no non-Abelian free subgroups,
G is a locally almost soluble group by [4, Theorem A]. Since 5(Gα) = {p}, it is not hard to prove that
5(G) = {p}. It follows that Tor(G) := T is a p-subgroup and, reasoning as above, T is actually �nite.
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Again applying [1, Theorem 2.15], we deduce that G has a �nite series of normal subgroups

T ≤ L ≤ V

such that T is a �nite p-subgroup, L/T is a torsion-free nilpotent group,V/L is a free Abelian group, and
G/V is �nite. Moreover, srp(T) = r(T) ≤ r, sr0(L/T) ≤ r, sr0(V/L) ≤ r, and there exists a function κ

such that |G/V| ≤ κ(r). In particular, G has �nite special rank at most 3r + log2κ(r).
Suppose now that γ − 1 exists. Each x ∈ CG(Zα−1) acts trivially on the factors of the series

{0} ≤ Zγ−1 ≤ Zγ = A.

Since the additive group ofA is an elementary Abelian p-group, CG(Zγ−1) is also an elementary Abelian
p-group. By the induction hypothesis, Tγ−1 is a �nite p-group. If Tor(G) := T then CG(Zγ−1) ≤ T
and T/CG(Zγ−1) = Tγ−1 is a �nite p-group. Hence T is a �nite p-group and r(T) ≤ r. Since
5(G/CG(Zγ−1)) = {p}, we obtain that 5(G) = {p}. Finally, G/T ∼= Gγ−1/Tγ−1 and the induction
hypothesis applied to Gγ−1 gives the required result.

Corollary 2.6. Let A an F-vector space such that dimFA/ζFG,∞(A) = n is �nite. Suppose that G is a
subgroup of GL(F,A) such that srp(G) = r is �nite. Then G has a �nite series of normal subgroups

T ≤ L ≤ V

such that
(i) T is a periodic almost Abelian subgroup of �nite special rank at most κ2(r, n) whose Sylow

p-subgroups are �nite;
(ii) L/T is a torsion-free nilpotent group;
(iii) V/L is a free Abelian group;
(iv) G/V is �nite.
Moreover, r(T) ≤ κ2(r, n), sr0(L/T) ≤ r, sr0(V/L) ≤ r, and there exists a function κ such that |G/V| ≤

κ(r). In particular, there exists a function κ3 such that G has �nite special rank at most κ3(r, n).

Proof. Put Z = ζFG,∞(A). By Corollary 2.4, H := G/CG(A/Z) is almost soluble, Tor(H) is almost
Abelian with �nite Sylow p-subgroups, andH has �nite special rank. Moreover, every Sylow q-subgroup
of Tor(H), for every prime q 6= p has special rank at most log2β(n) + n.

Let C = CG(A/Z). Then the FC-module A is FC-hypercentral. By Lemma 2.5, Tor(C) is a �nite
p-subgroup and C/Tor(C) is an almost soluble group of �nite special rank. It follows that G is a
generalized radical group, T := Tor(G) is almost Abelian with �nite Sylow p-subgroups and whose
Sylow q-subgroups for primes q 6= p have special rank at most log2β(n)+n. As in Corollary 2.3, we can
prove that T has special rank at most κ2(r, n) = r + n + log2β(n).

Since the factor-group G/T is a generalized radical group of �nite section p-rank, we can apply [1,
Theorem 2.15] to this group. Proceeding as in the proof of Corollary 2.4, we obtain that G has �nite
special rank at most κ3(r, n), as required.

Here and elsewhere we recall that a group G is called generalized radical if it has an ascending series
whose factors are either locally nilpotent or locally �nite.

Proof of Theorem A. Put Z = ζFG,∞(A). By Corollary 2.6, G has �nite special rank and moreover there
exists a function κ3(r, d) such that r(G) ≤ κ3(r, d). Now we apply Proposition 1.10 to deduce that L has
�nite dimension at most κ4(r, d) = d(κ3(r, d) + 1), and A/L is locally FG-nilpotent.

Since the upper hypercenter ofA/L contains (Z+L)/L, (A/L)/ζFG,∞(A/L)has �nite dimension. Since
A/L is locally FG-nilpotent, (A/L)/ζFG,∞(A/L) is FG-nilpotent. Hence A/L is FG-hypercentral.
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3. The characteristic zero case

In this section, our �eld F will have characteristic 0. Our result analogous to Lemma 2.2 is as follows.

Lemma 3.1. Let G be a periodic subgroup of GLn(F). Then G is almost Abelian and there exists a function
κ5 such that the special rank of G is at most κ5(n).

Proof. The group G has an Abelian normal subgroup H such that |G/H| ≤ β(n) for some function β ,
by [19, Corollary 9.4]. [5, Lemma 2.9] implies that every Abelian subgroup ofG has special rank at most
k ≤ n. Thus G has �nite rank, but we will obtain a di�erent bound for the rank as follows. Let p ∈ 5(G)

and let P be an arbitrary �nite p-subgroup of G. We choose a maximal Abelian normal subgroup C of P.
Certainly P is nilpotent, and thereforeC = CP(C). The factor-group P/CP(C) is known to be isomorphic
to a p-subgroup of some GLk(Z/pmZ). We recall that a Sylow p-subgroup of the latter has special rank
at most 1

2 (5k− 1)k [17, Lemma 7.44]. It follows that P/CP(C) has at most 1
2 (5k− 1)k generators. Hence

the subgroup P has at most

1

2
(5k − 1)k + k =

1

2
(5k + 1)k ≤

1

2
(5n + 1)n

generators.
Let H be an arbitrary �nite subgroup of G. If p ∈ 5(H), then by the above argument, the Sylow

p-subgroups ofH have at most 1
2 (5n+ 1)n generators. HenceH has at most 1

2 (5n+ 1)n+ 1 generators

by [14, Theorem 1]. It follows that G has special rank at most 1
2 (5n + 1)n + 1 := κ5(n).

We state our next result which is a special case of [6, Theorem E].

Proposition 3.2. Let G be a generalized radical group such that Tor(G) = 〈1〉. Suppose that sr0(G) = r is
�nite. Then G has �nite special rank and contains normal subgroups L ≤ V where
(i) L is a torsion-free nilpotent group;
(ii) V/L is a free Abelian group;
(iii) G/V is �nite.
Moreover, there are functions κ6(r) and κ7(r) such that r(G) ≤ κ7(r) and |G/V| ≤ κ6(r).

Corollary 3.3. Let G be a subgroup of GLn(F) for some positive integer n. Suppose that sr0(G) = r is �nite.
Then G contains a �nite series of normal subgroups

T ≤ L ≤ V

such that
(i) T is a periodic almost Abelian subgroup of �nite special rank at most κ5(n);
(ii) L/T is a torsion-free nilpotent group;
(iii) V/L is a free Abelian group;
(iv) G/V is �nite.
Moreover G/T has �nite special rank at most κ7(r), G has �nite special rank at most κ8(r, n) := κ5(n) +

κ7(r) and G/V has order at most κ6(r).

Proof. By Lemma 2.1, G contains no non-Abelian free subgroups. It follows that G has a soluble normal
subgroup S such thatG/S is �nite [19, Corollary 10.17] soG is a generalized radical group. Now it su�ces
to apply Lemma 3.1 to the subgroup T = Tor(G) and Proposition 3.2 to the factor-group G/T to obtain
the required result.

We recall that a group is called polyrational if it has a �nite series each of whose factors is isomorphic
with a subgroup ofQ.
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Lemma 3.4. Let A be an FG-hypercentral vector space over F and let G be a subgroup of GL(F,A). If
sr0(G) = r is �nite, then G is polyrational.

Proof. Let

〈0〉 = Z0 ≤ Z1 ≤ · · · ≤ Zα ≤ Zα+1 ≤ · · ·Zγ = A

be the upper FG-central series of A. Since char(F) = 0, an easy trans�nite induction shows that
G/CG(Zα) is torsion-free for each ordinal α ≤ γ . We next prove using trans�nite induction that G
has a polyrational series of length at most the maximum of κ7(r) and

1
2 r(r + 1). Denote this maximum

value by δ(r).
We �rst note that by Kaloujnine’s theorem [8], G/CG(Zn) is a nilpotent group for each n ∈ N. Using

[18, Theorem 7], we obtain that G/CG(Zn) has �nite special rank at most 1
2 r(r + 1) and nilpotency

class at most 2r. Being a torsion-free nilpotent group of �nite special rank, the factor-groupG/CG(Zn) is
polyrational. By Zaitsev theorem [20], the length of this series is at most 1

2 r(r + 1). It follows that there
exists a positive integer m such that CG(Zm) = CG(Zm+n) for every n ≥ 1. Then CG(Zm) = CG(Zω)

and G/CG(Zω) is polyrational of polyrational length at most 1
2 r(r + 1).

Suppose inductively that G/CG(Zα) has polyrational length at most δ(r) for ordinals α < β and
consider G/CG(Zβ). If β − 1 exists, then G/CG(Zβ−1) has polyrational length at most δ(r). Also
CG(Zβ−1)/CG(Zβ) is a torsion-free Abelian group, so G/CG(Zβ) has a polyrational series, and by
Proposition 3.2, it follows thatG/CG(Zβ) has �nite special rank at most κ7(r). By Zaitsev’s theorem [20],
G/CG(Zβ) has a polyrational series of length at most δ(r).

Suppose next that β is a limit ordinal. Choose the least ordinal λ < β such that G/CG(Zλ) has
maximal polyrational length δ(r). Then the polyrational length ofG/CG(Zρ) is also δ(r) for λ ≤ ρ < β .
However, CG(Zλ)/CG(Zρ) is torsion-free, so we must have CG(Zλ) = CG(Zρ), for all such ρ. Hence
CG(Zλ) = CG(Zβ) and it now follows that G/CG(Zβ) has a polyrational series of length at most δ(r).

Setting β = γ and noting that CG(Zγ ) = 1, the result follows that G is polyrational of polyrational
length at most δ(r).

Corollary 3.5. Let A be an F-vector space such that dimFA/ζFG,∞(A) = n is �nite. Suppose that G is
a subgroup of GL(F,A) such that sr0(G) = r is �nite. Then T = Tor(G) is a periodic almost Abelian
subgroup of �nite special rank at most κ5(n) and G/T is an almost soluble group of �nite special rank at
most κ7(r). In particular, G has �nite special rank at most κ8(r, n) = κ5(n) + κ7(r).

Proof. Put Z = ζFG,∞(A). By Corollary 3.3, the factor-group H := G/CG(A/Z) is almost soluble and
Tor(H) is an almost Abelian subgroup of special rank at most κ5(n). Let C = CG(A/Z) so that the FC-
moduleA is FC-hypercentral. By Lemma 3.4,C is a torsion-free soluble group. In particular,T∩C = 〈1〉,
so

T = T/(T ∩ C) ∼= TC/C

is a subgroup of Tor(H). It follows that T is an almost Abelian subgroup, of special rank at most κ5(n).
SinceG is almost soluble,G/T has �nite special rank atmost κ7(r), by Proposition 3.2. The result follows.

We can now complete the proof of Theorem B.

Proof. Proof of Theorem B Put Z = ζFG,∞(A). By Corollary 3.5, G has �nite special rank and moreover
there exists a function κ8(r, d) such that r(G) ≤ κ8(r, d). By Proposition 1.10, L has �nite dimension at
most κ9(r, d) := d(κ8(r, d) + 1), and A/L is locally FG-nilpotent.

Since the upper hypercenter ofA/L contains (Z+L)/L, (A/L)/ζFG,∞(A/L)has �nite dimension. Since
A/L is locally FG-nilpotent, (A/L)/ζFG,∞(A/L) is FG-nilpotent. Hence A/L is FG-hypercentral.
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4. An example

In this �nal section, we give an example to illustrate the limitations of our work. Our example illustrates
that the rank conditions included in the hypotheses of our main theorems are necessary.

Let F be a �eld and let B be a vector space over F of F-dimension 3. Let {b1, b2, b3} be a basis of B. Let
β be the automorphism of B de�ned (and extended linearly) by

β(b1) = b2 + b3,β(b2) = −b1 − b2,β(b3) = b3.

Then CB(β) = Fb3 and it is easy to see that B/Fb3 is an irreducible F〈β〉-module.
Let A be an in�nite dimensional vector space over F with basis {an|n ∈ N} and let α be the

automorphism of A de�ned (and extended linearly) by

α(a1) = a1,α(an+1) = an+1 + an, for all n ∈ N.

It is clear that A is an F〈α〉-hypercentral module and that

Fa1 ≤ Fa1 + Fa2 ≤ · · · ≤ Fa1 + Fa2 + · · · Fan ≤ · · ·

is the upper F〈α〉-hypercentral series of A. Let C = A ⊕ B and de�ne an automorphism δ of C by

δ(a, b) = (α(a),β(b)), for all (a, b) ∈ A ⊕ B.

Let D = C/F(b3 − a1). Then D has a basis {dn|n ∈ N} and an automorphism γ such that

γ (d1) = d2 + d3, γ (d2) = −d1 − d2, γ (d3) = d3,

γ (dn+1) = dn+1 + dn, for all n ≥ 3.

Then γ has in�nite order, the upper F〈γ 〉-hypercenter Z of D coincides with the subspace generated by
{dn|n ≥ 3} and D/Z is an irreducible F〈γ 〉-module. Furthermore, the F〈γ 〉-submodule generated by d1
or d2 coincides with Fd1 + Fd2 + Fd3.

Let Dk, for k ∈ N, be a vector space with basis {dk,n|n ∈ N} and let γk be the automorphism of Dk

de�ned by

γk(dk,1) = dk,2 + dk,3, γk(dk,2) = −dk,1 − dk,2, γk(dk,3) = dk,3

γk(dk,n+1) = dk,n+1 + dk,n, for all n ≥ 3.

Let Zk denotes the F〈γk〉-hypercenter of Dk, so that Zk coincides with the subspace generated by
{dk,n|n≥ 3}.

Let W = Cr
k∈N

Dk denotes the Cartesian produce of the groups Dk and let Y =
r
Dr
k=1

N/Dk denotes

the corresponding direct product of these Dk. Then G = Dr
k∈N

〈γk〉 is a group of F-automorphisms ofW.

ClearlyG is freeAbelian of in�nite 0-rank. Letu1 = (dk,1)k∈N andu2 = (dk,2)k∈N. Consider the subspace
V = Y⊕ (Fu1+Fu2). ClearlyV is aG-invariant subspace ofW, whose upper FG-hypercenter coincides
withY andV/Y is an irreducible FG-module of dimension 2. However, the locally FG-nilpotent residual
of V coincides with (⊕k∈NFdk,3) ⊕ (Fu1 + Fu2), which is of in�nite dimension.
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