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Abstract: The practice of spatial econometrics revolves around a weighting matrix, which is
often supplied by the user on previous knowledge. This is the so-called W issue. Probably, the
aprioristic approach is not the best solution although, presently, there are few alternatives for the user.
Our contribution focuses on the problem of selecting a W matrix from among a finite set of matrices,
all of them considered appropriate for the case. We develop a new and simple method based on the
entropy corresponding to the distribution of probability estimated for the data. Other alternatives,
which are common in current applied work, are also reviewed. The paper includes a large study of
Monte Carlo to calibrate the effectiveness of our approach compared to others. A well-known case
study is also included.

Keywords: weights matrix; model selection; entropy; Monte Carlo

1. Introduction

Let us begin with a mantra: the weighting matrix, usually denoted by W, is the most characteristic
element in a spatial model. Most scholars agree with this commonplace. In fact, spatial models deal
primarily with phenomena such as spillovers, trans-boundary competition or cooperation, flows of
trade, migration, knowledge, etc. in complex networks. Rarely does the user know about how these
events operate in practice. Indeed, they are mostly unobservable phenomena which are, however,
required to build the model. Traditionally the gap has been solved by providing externally this
information, in the form of a weighting matrix. As an additional remark, we should note that W is not
the unique solution to deal with such kind of unobservables ([1]; for example, develop a latent-variables
approach that does not need W), but is the simplest.

Hays et al. [2] give a sensible explanation about the preference for a predefined W. Network
analysts are more interested in the formation of networks, taking units attributes and behaviors as
given. This is spatial dependence due to selection, where relations of homophily and heterophily are
crucial. The spatial econometricians are more interested in what they call “computing the effects of alters
actions on ego’s actions through the network”; in this case, the patterns of connectivity are taken as given.
This form of spatial dependence is due to the influence between the individuals, and the notions of
contagion and interdependence are capital. Therefore, if the network is predefined, why not supply
it externally?

However, beyond this point, the W issue has been frequent cause of dispute. In the early stages,
terms such as “join” or “link” were very common (for instance, in [3], or [4]). The focus at that time was
mainly on testing for the presence of spatial effects, for which is not so important the specification of a
very detailed weighting matrix; contiguity, nearness, rough measures of separation may be appropriate
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notions for that purpose. The work of Ord [5] is a milestone in the evolution of this issue because
of its strong emphasis on the task of modelling spatial relationships. It is evident that the weights
matrix needs more attention if we want to avoid estimation biases and wrong inference. Anselin [6]
and Anselin [7] puts the W matrix in the center of the debate about specification of spatial models, but,
after decades of practicing, the question remains unclear.

The purpose of the so-called W is to “determine which ... units in the spatial system have an influence on
the particular unit under consideration ... expressed in notions of neighborhood and nearest-neighbor” relations,
in words of Anselin [6] (p.16) or “to define for any set of points or area objects the spatial relationships that
exist between them” as stated by Haining [8] (p. 74). The problem is how should it be done.

Roughly speaking, we may distinguish two approaches: (i) specifying W exogenously; (ii)
estimating W from data. The exogenous approach is by far the most popular and includes, for
example, use of a binary contiguity criterion, k-nearest neighbors, kernel functions based on distance,
etc. The second approach uses the topology of the space and the nature of the data, and takes many
forms. We find ad-hoc procedures in which a predefined objective guides the search such as the
maximization of Moran’s I in Kooijman [9] or the local statistical model of Getis and Aldstadt [10].
Benjanuvatra and Burridge [11] develop a quasi-maximum-likelihood, QML, algorithm to estimate
the weights in W assuming partial knowledge about the form of the weights. More flexible approaches
are possible if we have panel information such as in Bhattacharjee and Jensen-Butler [12] or Beenstock
and Felsenstein [13]. Endogeneity of the weight matrix is another topic introduced recently in the field
(i.e., [14]), which connects with the concept of coevolution put forward by Snijders et al. [15] and based
on the assumption that in the long run, network connectivity must evolve endogenously with the
model. Indeed, much of the recent literature on spatial econometrics revolves around endogeneity, but
our contribution pertains to the exogenous approach where remains most part of the applied research.

Before continuing, we may wonder if the W issue, even in our context of pure exogeneity, is really
a problem to worry for or it is the biggest myth of the discipline as claimed by LeSage and Pace [16].
Their argument is that only dramatic different choices for W would lead to significant differences in the
estimates or in the inference. We partly agree with them in the sense that is a bit silly to argue whether
it is better the 5 or the 6 nearest-neighbor matrix; surely there will be almost no difference between
the two. However, there is consistent evidence, obtained mainly by studies of Monte Carlo [17–20]
showing that the misspecification of W has a non-negligible impact on the inference of the coefficients
of spatial dependence and other terms in the model. Moreover, the magnitude of the bias increases for
the estimates of the marginal direct/indirect effects. Therefore, we disagree with the notion that ’far
too much effort has gone into fine-tuning spatial weight matrices’ as stated by LeSage and Pace [16]. Our
impression is that any useful result should be welcomed in this field and, especially, we need practical,
clear guides to approach the problem.

Another question of concern are the criticisms of Gibbons and Overman [21]. As said, it is
common in spatial econometrics to assume that the weighting matrix is known, which is the cause of
identification problems; this flaw extends to the instruments, moment conditions, etc. There is little
to say in relation to this point. In fact, spatial parameters (i.e., ρ) and weighting matrix, W, are only
jointly identified (we do estimate ρW). Hays et al. [2] and Bhattacharjee and Jensen-Butler [12] agree
on this point.

Bavaud [22] (p. 153), given this controversial debate, was very skeptical, “there is no such thing as
“true”, “universal” spatial weights, optimal in all situations’ and continues by stating that the weighting
matrix ’must reflect the properties of the particular phenomena, properties which are bound to differ from field to
field”. We share his skepticism; perhaps it would suffice with a “reasonable” weighting matrix, the
best among those considered. In practical terms, this means that the problem of selecting a weighting
matrix can be interpreted as a problem of model selection. In fact, different weighting matrices result
in different spatial lags of the variables included in the model and different equations with different
regressors amounts to a model selection problem.
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As said, our intention is to offer new evidence to help the user to select the most appropriate W
matrix for the specification. Section 2 revises four selection criteria that fit well into the problem of
selecting a weighting matrix from among a finite set of them. Section 3 presents the main features of
the Monte Carlo experiment solved in the fourth section. Section 5 includes a well-known case study
which is revised in the light of our findings. The sixth section concludes.

2. Criteria to Select a W Matrix from among A Finite Set

A general spatial panel data econometric model, can be expressed as:

yt = ρ1Wyt + xtβ + Wxtθ + ut,
ut = ρ2Mut + εt,

}
(1)

yt is a (N × 1) vector of data for the explained variable in period t, t = 1, 2, ..., T; xt is a (N × k)
matrix of observed data for the explicative variables, assumed exogenous, in period t; ut is a (N × 1)
vector of error terms in period t and εt a vector of random terms, assumed to be normally distributed
(this assumption can be relaxed). β, θ, ρ1 and ρ2 are unknown parameters; the last two parameters
are called spatial correlation parameters. Finally, W and M are two weighting matrices, specified
exogenously, that channel the corresponding spill-over effects. Usually, the two matrices are forced to
be equal. The model of (1) is called a Cliff-Ord specification. A Spatial Durbin Model, SDM, results
from ρ2 = 0; a Spatial Lag Model, SLM, requires that θ = 0 and ρ2 = 0; a Spatial Durbin Error Model,
SDEM, ρ1 = 0 and a Spatial Error Model, SEM, that θ = 0 and ρ1 = 0.

In view of model (1), it is clear the critical importance played by the weighting matrices. We really
need these matrices but there are few clues to build them in applied research; this results in the
so-called W issue, partly review in the first section. In recent decades, a very interesting literature
has appeared that examines the problem of choosing a matrix among a finite set of them, which is
the target of this paper. First, we review the literature devoted to the J test and then we move to the
selection criteria, Bayesian methods and a new procedure based on entropy.

We should recognize that there are other interesting procedures in the literature, like, for example,
the model boosting approach of Kostov [23] and the model averaging of Zhang and Yu [24], which are
not used in our study for reasons of space or computational burden.

Anselin [25] was the first to raise, formally, the W issue, suggesting a Cox statistic in a framework
of non-nested models. Leenders [26], on this basis, elaborates a J-test using classical augmented
regressions. Later, Kelejian [27] extends the approach of [26] to a SAC model, with spatial lags of the
endogenous variable and in the error terms, using Generalized Method of Moments, GMM, estimates.
Piras and Lozano [28] confirm the adequacy of the J-test to compare different weighting matrices
stressing that we should make use of a full set of instruments to increase GMM accuracy. Burridge and
Fingleton [29] show that the Chi-square asymptotic approximations for the J-tests produces irregular
results, excessively liberal or conservative in a series of leading cases; they suggest a bootstrap
resampling approach. Burridge [30] focuses on the propensity of the spatial GMM algorithm to deliver
spatial parameter estimates lying outside the invertibility region which, in turn, affects the bootstrap;
he suggests the use of a QML algorithm to remove the problem. Kelejian and Piras [31] extended the
original version of [27] to account for all the available information, according to the findings of [28].
Finally, Kelejian and Piras [32] adapt the J test to a panel data setting with unobserved fixed effects
and additional endogenous variables which reinforces the adequacy of the GMM framework. Another
milestone in the J test literature is Hagemann [33], who copes with the reversion problem originated
by the lack of a well-defined null hypothesis in the test. He introduces the minimum J test, MJ. His
approach is based on the idea that if there is a finite set of competing models, only the model with the
smallest J statistic can be the correct one. In this case, the J statistic will converge to the Chi-square
distribution but will diverge if none of the models is correct. The author proposes a wild bootstrap to
test if the model with the minimum J is correct. This approach has been applied by Debarsy and Ertur
[20] to a spatial setting with good results.
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In the Monte Carlo experiment that follows, we know that there is a correct model so are going
to use only the first part of the procedure of [33]. Assuming a collection of M different weighting
matrices, such as: W = {W1; W2; ...; WM}, the MJ approach works as follows:

1. We need the estimates of the m models; in each case, the same equation is employed but with a
different weighting matrix belonging toW . Following Burridge [30] and given that our interest
lies on the small sample case, the models are estimated by ML.

2. For each model, we obtain the battery of J statistics as usual, after estimating, also by ML, the
corresponding extended equations.

3. The chosen matrix is the one associated with the minimum J statistic. As said, we stop the
procedure here, thus avoiding the wild bootstrap to test if this matrix is, indeed, the correct one.

Another popular method for choosing between models deals with the so-called Information Criteria.
Most are developed around a loss function, such as the Kullback-Leibler, KL, quantity of information
which measures the closeness of two density functions. One of them corresponds to the true probability
distribution that generated the data, obviously not known, the other is the distribution estimated
from the data. The criteria differ in the role assigned to the aprioris and in the way of solving the
approximation to the unknown true density function [34]. The two most common procedures are the
AIC [35] and the Bayesian BIC criteria [36]. The first compares the models on equal basis whereas
the second incorporates the notion of model of the null. Both criteria are characterized by their lack
of specificity in the sense that the selected model is the closest to the true model, as measured by
KL. We should note that as indicated by Potscher [37], a good global fit does not necessarily mean
that the model be the best alternative to estimate the parameters of interest. AIC and BIC lead to
simple expressions that depend on the accuracy of the ML estimation plus a penalty term related to
the number of parameters entering the model; that is:

AIC(k) : −2l(γ̃) + 2k,
BIC(k) : −2l(γ̃) + k log(n),

}
(2)

where l(γ̃) means the estimated log-likelihood at the ML estimates, γ̃, k is the number of non-zero
parameters in the model and n the number of observations. For the case that we are considering the
models only differ in the weighting matrix, so k and n are the same in every case. This means that
the decision depends on the estimated log-likelihood or, what is the same, on the balance between
the estimated variance and the Jacobian term. Please note that for a standard SLM, we can write:
l(γ̃) ∝ log

[
1

σ̃n |I − ρ̃W|
]
, being σ the standard deviation and ρ the corresponding spatial dependence

coefficient. To minimize any of the two statistics in (2) the objective is to maximize the concentrated
estimated log-likelihood, l(γ̃). In sum, the Information Criteria approach implies:

1. Estimate by ML of the M models corresponding to each weighting matrix inW .
2. For each model, we obtain the corresponding AIC statistic (BIC produces the same results).
3. The matrix in the model with minimum AIC statistic should be chosen.

An important part of the recent literature on spatial econometrics has Bayesian grounds, which
extends also to the topic of choosing a weighting matrix. The Bayesian framework is well equipped to
cope with these types of problems using the concept of posterior probability as the basis for taking a
decision. There are excellent reviews in [38–40], Besag and Higdon [41] and especially, [42–44]. For the
sake of completeness, let us highlight the main points in this approach.

The analysis is made conditional to a model, which is not under discussion. Moreover, we have a
collection of M weighting matrices inW , a set of k parameter in γ, some of which are of dispersion,
σ, others of position, β, and others of spatial dependence, ρ and θ, and a panel data set with nT
observations in y. The point of departure is the joint probability of data, parameters and matrices:

p (Wm; γ; y) = π (Wm)π (γ |Wm) L (y | γ; Wm) , (3)
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where Wm ∈ W ; π (·) are the prior distributions and L (y | γ; Wm) the likelihood for y conditional
on the parameters and the matrix. Bayes’ rule leads to the posterior joint probability for matrices
and parameters:

p (Wm; γ | y) =
π (Wm)π (γ |Wm) L (y | γ; Wm)

L (y)
, (4)

whose integration over the space of parameters, γ ∈ Υ, produces the posterior probability for
matrix Wm:

p (Wm | y) =
∫
Υ

p (Wm; γ | y) dγ. (5)

The presence of spatial structures in the model complicates the resolution of (5) which requires
of numerical integration. The priors are always a point of concern and, usually, practitioners prefer
diffuse priors. LeSage and Pace [42] (Section 6.3) suggest π (Wm) =

1
M ∀m, a NIG conjugate prior

for β and σ where πβ (β | σ) ∼ N
(

β0; σ2 (κX′X)−1
)

, being X the matrix of the exogenous variables
in the model, and π (σ) an inverse gamma, IG(a, b). For the parameter of spatial dependence, they
suggest a Beta(d, d) distribution, being d the amplitude of the sampling space of ρ. The defaults in the
MATLAB R© codes of LeSage [45] are β0 = 0, κ = 10−12 and a = b = 0. In brief, the Bayesian approach
implies the following:

1. Specify the priors for all the terms appearing in the equation. In this point, we have followed the
suggestions of [42].

2. For each matrix, obtain the corresponding posterior probability of (5) for which we need (i) solve
the ML estimation of the corresponding model and (ii) solve the numerical integration of (5).

3. The matrix chosen will be that associated with the highest posterior probability.

This paper advocates for a selection procedure based on the notion of entropy, which is used as
a measure of the information contained in a distribution of probability. Let us assume a univariate
continuous variable, y, whose probability density function is p(y); then, entropy is defined as:

h(y) = −
∫

I
p(y) log p(y)dy, (6)

being I the domain of the random variable y. As known, higher entropy means less information and
more uncertainty about y. Our case fits with Shannon’s framework [46]: we observe a random variable,
y, and there is a finite set of rival distribution functions capable of having generated the data. Our
decision problem is well defined because each distribution function differs from the others only in the
weighting matrix; the other elements are the same. However, we are not interested in the Laplacian
principle of indifference (select the density with maximum entropy, less informative, to avoid uncertain
information). Quite the opposite: in our case there is no uncertain information and we are looking for
the more informative probability distribution, so our objective is to minimize entropy.

As with the other three cases, the application of this principle requires the complete specification
of the distribution function, which means that the user knows the form of the model (Equations (8)–(10)
below, except the W matrix); additionally we add a Gaussian distribution. Next, we should remind
that for the case of a (n × 1) multivariate normal random variable, y ∼ N(µ; Σ), the entropy is:
h(y) = 1

2
[
n + log

(
(2π)n |Σ|

)]
. This measure does not depend, directly, on first order moments

(parameters of position of the model) but on second order moments (dependence and dispersion
parameters). For example, in the case of the SLM of (10) below, the entropy is:

h(y)SDM =
1
2

(
nT + log((2πσ2

)nT ∣∣∣(B′B)−1
∣∣∣)) (7)

where B = (I − ρW). Please note that the covariance matrix for y in the SDM is V(y) = B−1V(u)B
′−1.

If u is indeed a white noise random term with variance σ2, the covariance matrix of y is simply
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V(y) = σ2 (B′B)−1. Let us note that the covariance matrix of y in the SDM of (8) coincides with that
of the SLM case. The covariance matrix for the SDEM equation is V(y) = σ2 (B′B), everything else
remains the same.

To apply the Entropy criterion we must go through the following steps:

1. Estimate each one of the M versions of the model that we are considering. As said, each model
differs only in the weighting matrix. We obtain the ML estimates for reasons given above.

2. For each model, we obtain the corresponding value of the entropy, in the hm; m =

1, 2, ..., M statistic.
3. The decision criterion consists in choosing the weighting matrix corresponding to the model with

minimum value of entropy.

3. Description of the Monte Carlo Study

This part of the paper is devoted to the design of the Monte Carlo experiment conducted to
calibrate the performance of the four criteria presented so far for selecting W: the MJ procedure,
the Bayesian approach, the AIC criterion and the entropy measure. The objective of the analysis is to
identify the most reliable method to select the most adequate weighting matrix for a spatial model,
given the data of the variables and the form of the model itself. The parameters are also unknown
for the user and must be estimated. In this context, if the matrix is misspecified, and the estimated
parameters will be biased, which will impact the four criteria described in Section 2 in different ways.
Our Monte Carlo study generates sequences of data of the explained and explicative variables, for
different scenarios, and applies the four criteria to select the (unknown) W. Moreover, our focus is on
small sample sizes. As will be clear soon, the four criteria have good behavior even in small samples,
so it is not necessary to employ very large sample sizes.

We are going to simulate a panel setting, with three of the most common Data Generating
Processes, DGPs in what follows, in the applied literature on spatial econometrics; namely, the spatial
Durbin Model, SDM of (8), the Spatial Durbin Error Model, SDEM in expression (9) and the Spatial
Lag Model of (10), SLM. Main conclusions can be extended to other processes such as the Spatial Error
Model, which are not replicated here (details on request from the authors).

yit = β0 + ρ
n

∑
j=1

ωijyjt + xitβ1 + θ
n

∑
j=1

ωijxjt + εit, (8)

yit = β0 + xitβ1 + θ
n

∑
j=1

ωijxjt + uit, uit = ρ
n

∑
j=1

ωijujt + εit. (9)

yit = β0 + ρ
n

∑
j=1

ωijyjt + xitβ1 + εit, (10)

Only one exogenous regressor, x variable, appears in the right hand side of the equations whose
observations are obtained from a normal distribution, xit ∼ i.i.d.N

(
0; σ2

x
)
, where σ2

x = 1; the same
applies with respect to the error terms: εit ∼ i.i.d.N

(
0; σ2

ε

)
, where σ2

ε = 1. The two variables are not
related, E (xitεit) = 0. Our space is made of hexagonal pieces which are arranged regularly, one next
to the others without discontinuities nor empty spaces.

A weighting matrix appears in the three equations, which is not observable, and the user must
take decisions to continue with the analysis. The problem consists in choosing one matrix from among
a finite set of alternatives which in our simulation are composed by three candidates: W1 is built using
the traditional contiguity criterion between spatial units; the weights in W2 are the inverse of the
distance between the centroids of the spatial units, W2 =

{
ωij =

1
dij

; i 6= j
}

; whereas W3 incorporates

a cut-off point to the connections in W2, so that W3 =
{

ωij =
1

dij
; i 6= j i f j ∈ N4(i); 0 otherwise

}
being

N4(i) the set of 4 nearest neighbors to i. To keep things simple, the same weighting matrix appears
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with the endogenous and exogenous variables in (8) and with the exogenous and error terms in (9).
Following usual practice, every matrix has been row-standardized, which implies that the three
matrices are non-nested. In what follows we will use W3 as the true matrix.

Three different small cross-sectional sample sizes, n, have been used n ∈ {25, 49, 100}; that
is enough because higher values of this parameter only improve marginally the results. For the
same reason, the number of cross-sections in the panel, T, are limited to only three, T ∈ {1, 5, 10}.
The values for the coefficient of spatial dependence, ρ, ranges from negatives to positives, ρ =

{−0.8,−0.5,−0.2, 0.2, 0.5, 0.8}. Other global parameters are those associated with the constant term,
β0 = 1, the x variable, β1 ∈ {1, 5}, and its spatial lag, θ ∈ {1, 5}.

In sum, each case consists in:

• Generate the data using a given weighting matrix, Wm, m = 1, 2, 3 and a spatial equation, SLM,
SDM, or SDEM. There are 216 cases of interest for each equation (6 values in ρ, 3 values in n, 3
values in T, 2 values in β1 and 2 values in θ).

• The spatial equation is assumed to be known so the model can be estimated by maximum
likelihood, ML, once the user supplies a W matrix.

• Compute the four selection criteria, MJ, Posterior probability, entropy and AIC for the three
alternative weighting matrices for each draw.

• Select the corresponding matrix according to each criterion and compare the result with the true
matrix (W3) in the DGP.

• The process has been replicated 1000 times.

Please note that the selection of the matrix is made conditional on a correct specification of the
equation. We are perfectly aware that this dichotomy is artificial; in fact, both decisions are intimately
related because the same matrix, but in different equations, plays different roles and bears different
information. However, this point is not further developed in the present paper. To give some intuition,
we include the results corresponding to the case of a wrong specification (i.e., estimate a SDM model
whereas the true model in the DGP is a SDEM). MATLAB R©codes to replicate these simulations are
freely downloadable from https://sites.google.com/site/mherreragomez/principal/Codes.

4. Results of the Monte Carlo Study

This section summarizes the results obtained in the Monte Carlo simulation described previously
and, we must admit, they are a bit surprising: in strictly quantitative terms, the AIC and the entropy
measures are the best criteria. What is more striking, according to our results the Bayesian approach,
although it does well in general, it is clearly the third criterion. Finally, the MJ approach is the
worst alternative among the four candidates. The last two observations are puzzling given the strong
support that the two procedures have received in recent decades. Table 1 presents the percentage of
correct selections attained by each criterion after aggregating all the cases in our simulation. Each
percentage accumulates 126,000 items. A number in bold indicates that the respective criterion reaches
the maximum rate of correct selections.

Table 1. Percentage of correct selections. Aggregated results.

ρ h(y) Bayes M J AIC

−0.8 91.52 86.81 65.91 91.50
−0.5 81.37 75.62 65.71 82.58
−0.2 65.38 56.59 61.69 66.44

0.2 68.82 61.25 65.40 71.31
0.5 80.25 75.97 65.67 80.68
0.8 88.27 86.95 62.04 84.83

AVERAGE 79.27 73.86 64.40 79.56

https://sites.google.com/site/mherreragomez/principal/Codes


Entropy 2019, 21, 160 8 of 29

Entropy dominates at the extremes of the range of values for the spatial dependence coefficient,
whereas AIC is the best for medium to low values of ρ. The differences between the two are always
lower to 3.5 percentage points (in fact, the average proportion of correct selections is statistically equal
with a confidence of 99%). Bayes is a good criterion for medium to large values of ρ but its performance
weakens for small values of this parameter (in fact, is fourth in ±0.2). Finally, the curve of correct
selections of the MJ is too flat.

Figure 1 disaggregates the accumulated percentages by number of spatial units, left, or number
of cross-sections, right. Please note that in each case, the data represent aggregated percentages (i.e.,
in the case n = 25 we aggregate the three cross-sections corresponding to T = 1, T = 5 and T = 10).
These Figures ratify the ordering set out above. The behavior of the MJ criterion is striking: its curves
of correct selections are very flat, with unexpected drops at the extremes of the interval for ρ when
the sample size (n or T) increases. The other three criteria, as expected, react positively to the sample
size or to higher values of ρ. Apparently, the improvement is more relevant for the time dimension, T,
than for the cross-sectional size n, especially for high values of the spatial coefficient. Finally, there is a
certain asymmetry in all the curves.

CASE : n = 25 CASE : T = 1

CASE : n = 49 CASE : T = 5

CASE : n = 100 CASE : T = 10

Figure 1. Percentages of correct selections, disaggregated by n and T.
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Tables 2–5 present the details by type of DGP. A quick look at the Tables reveals that bold
percentages are concentrated, mainly, in the entropy and AIC columns.

The prevalence of both criteria is quite regular for the four cases shown in the Tables.
The preference extends to the case of correctly specified models, as in Tables 2–4, and also for
misspecified equations, as in Table 5, for negative and especially for positive values of the spatial
coefficient, for small and large number of individuals in the sample (n) and for simple to large panels
(T). Overall, entropy attains the highest rate in 46% of the 144 cases in Tables 2–5, followed by AIC,
35%, Bayes, 12%, and MJ, 7%.

Table 2. Average percentage of correct selections. DGP: SDM. Equation estimated: SDM.

Aggregated by Cross-Section, Sample Size (n) Aggregated by Time Series, Sample Size (T)

ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 90.40 84.32 68.28 90.36

T = 1

−0.8 87.84 80.77 68.46 87.33
−0.5 79.08 67.93 65.73 78.85 −0.5 73.13 53.77 62.86 71.98
−0.2 62.18 44.87 62.68 59.53 −0.2 56.88 29.17 60.19 54.78

0.2 74.18 58.46 74.13 73.74 0.2 64.84 33.33 66.28 63.67
0.5 84.46 71.64 77.42 84.91 0.5 79.90 58.01 69.93 81.14
0.8 91.81 85.32 78.24 93.11 0.8 88.94 81.32 70.91 91.20

n = 49

−0.8 96.01 94.85 78.65 95.70

T = 5

−0.8 99.38 99.46 79.33 99.30
−0.5 90.50 83.31 81.11 89.71 −0.5 94.38 93.56 78.13 94.05
−0.2 75.32 61.16 72.32 73.45 −0.2 76.32 67.28 71.34 74.22

0.2 84.07 72.08 82.32 83.95 0.2 88.48 85.89 86.36 88.97
0.5 89.83 80.58 76.65 90.43 0.5 96.16 96.20 89.93 96.72
0.8 96.97 95.98 87.03 97.87 0.8 99.09 99.13 89.76 99.38

n = 100

−0.8 99.29 99.28 85.22 99.15

T = 10

−0.8 98.46 98.22 84.35 98.58
−0.5 96.74 94.76 88.09 96.17 −0.5 98.81 98.67 93.94 98.69
−0.2 84.68 75.48 78.26 83.59 −0.2 88.98 85.07 81.72 87.57

0.2 91.76 84.64 89.62 91.89 0.2 96.68 95.97 93.42 96.95
0.5 96.09 94.14 84.30 96.63 0.5 94.33 92.16 78.52 94.12
0.8 99.08 99.01 92.22 99.52 0.8 99.83 99.86 96.82 99.91

Table 3. Average percentage of correct selections. DGP: SDEM. Equation estimated: SDEM.

Aggregated by Cross-Section, Sample Size (n) Aggregated by Time Series, Sample Size (T)

ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 80.33 79.19 57.23 80.91

T = 1

−0.8 74.32 71.68 46.25 74.80
−0.5 68.56 66.58 56.45 67.95 −0.5 63.12 60.62 46.43 65.18
−0.2 59.53 54.35 57.35 57.24 −0.2 49.71 44.53 45.89 49.98

0.2 56.63 51.63 55.81 55.34 0.2 45.94 36.60 47.39 43.81
0.5 66.25 63.64 56.66 64.05 0.5 54.96 48.89 49.19 52.76
0.8 77.18 75.99 54.48 68.94 0.8 65.64 64.66 51.28 58.78

n = 49

−0.8 91.19 90.30 67.18 91.93

T = 5

−0.8 94.32 94.76 71.17 95.35
−0.5 81.77 80.88 67.14 82.93 −0.5 84.92 85.15 71.55 85.44
−0.2 68.18 63.65 67.10 66.62 −0.2 72.32 67.68 72.23 69.79

0.2 67.90 62.95 66.42 66.66 0.2 72.97 68.88 70.24 72.23
0.5 78.96 76.93 65.26 76.23 0.5 84.98 85.15 67.63 82.88
0.8 87.78 87.93 62.95 79.50 0.8 94.68 94.83 64.07 85.83

n = 100

−0.8 95.14 95.05 71.12 95.69

T = 10

−0.8 98.03 98.10 78.11 98.38
−0.5 89.04 89.13 72.64 90.53 −0.5 91.33 90.82 78.24 90.79
−0.2 75.08 70.90 72.44 73.80 −0.2 80.76 76.69 78.78 77.89

0.2 75.79 70.69 71.91 74.96 0.2 81.41 79.79 76.50 80.93
0.5 88.23 87.20 70.23 86.56 0.5 93.50 93.73 75.33 91.21
0.8 94.44 94.72 67.50 89.46 0.8 99.08 99.15 69.58 93.29
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Table 4. Average percentage of correct selections. DGP: SLM. Equation estimated: SLM.

Aggregated by Cross-Section, Sample Size (n) Aggregated by Time Series, Sample Size (T)

ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 92.07 92.43 74.40 91.87

T = 1

−0.8 89.88 89.30 67.97 89.03
−0.5 77.87 77.35 60.05 77.50 −0.5 69.30 58.70 53.77 67.97
−0.2 43.62 36.25 39.27 41.48 −0.2 34.02 10.78 38.20 33.15

0.2 54.87 44.84 39.96 55.07 0.2 42.77 10.72 40.27 42.17
0.5 79.00 76.67 53.85 80.23 0.5 70.63 54.45 51.55 73.13
0.8 89.25 89.05 60.03 89.80 0.8 84.33 82.18 59.18 86.90

n = 49

−0.8 97.55 96.80 78.28 96.93

T = 5

−0.8 99.48 99.65 84.55 99.38
−0.5 87.87 81.28 67.02 87.07 −0.5 93.65 93.95 71.55 93.12
−0.2 53.60 34.68 48.25 50.17 −0.2 60.38 44.75 52.08 56.87

0.2 60.25 41.60 47.08 61.28 0.2 68.10 55.50 46.28 69.88
0.5 86.40 76.72 61.67 88.70 0.5 91.55 91.85 62.23 93.55
0.8 94.68 92.98 66.73 96.47 0.8 98.00 98.05 67.20 98.52

n = 100

−0.8 99.67 99.65 87.55 99.52

T = 10

−0.8 99.92 99.93 87.72 99.90
−0.5 95.45 92.50 76.88 94.52 −0.5 98.23 98.48 78.63 98.00
−0.2 70.98 51.47 57.78 69.10 −0.2 73.80 66.87 55.02 70.73

0.2 74.12 54.75 52.66 75.32 0.2 78.38 74.98 53.15 79.62
0.5 93.45 89.95 68.63 95.08 0.5 96.67 97.03 70.37 97.33
0.8 97.98 97.77 71.70 98.87 0.8 99.58 99.57 72.08 99.72

Table 5. Average percentage of correct selections. DGP: SDEM. Equation estimated: SDM.

Aggregated by Cross-Section, Sample Size (n) Aggregated by Time Series, Sample Size (T)

ρ h(y) Bayes MJ AIC ρ h(y) Bayes MJ AIC

n = 25

−0.8 77.12 62.97 50.41 77.46

T = 1

−0.8 71.73 49.09 44.37 74.00
−0.5 64.53 47.93 53.44 60.80 −0.5 60.23 32.04 45.41 62.12
−0.2 56.47 40.20 55.94 52.30 −0.2 48.33 19.76 48.22 47.94

0.2 55.91 42.99 56.79 54.41 0.2 45.56 16.46 50.05 43.22
0.5 62.99 54.76 55.11 59.56 0.5 52.08 31.15 50.93 48.84
0.8 73.98 68.31 42.84 61.81 0.8 60.96 53.97 46.86 53.86

n = 49

−0.8 88.31 79.64 60.95 89.76

T = 5

−0.8 91.93 89.32 63.69 92.90
−0.5 77.69 64.33 62.45 78.06 −0.5 80.93 73.92 65.91 80.01
−0.2 63.09 46.98 64.23 60.24 −0.2 66.81 56.01 68.20 62.62

0.2 65.28 51.30 65.67 63.33 0.2 70.52 63.42 68.43 69.30
0.5 75.63 68.70 62.52 70.78 0.5 82.70 83.06 64.04 78.24
0.8 84.84 83.62 48.60 72.95 0.8 93.18 93.96 45.78 79.33

n = 100

−0.8 94.48 90.80 67.81 95.63

T = 10

−0.8 96.24 95.00 71.11 95.94
−0.5 88.48 79.73 69.66 89.80 −0.5 89.53 86.03 74.23 86.54
−0.2 73.88 59.86 72.84 72.03 −0.2 78.29 71.27 76.59 74.02

0.2 76.56 64.72 73.28 75.44 0.2 81.68 79.13 77.26 80.66
0.5 88.05 83.40 69.83 84.76 0.5 91.89 92.65 72.48 88.02
0.8 93.79 94.76 38.97 85.73 0.8 98.48 98.76 37.78 87.29

The complete relation of results for the 756 different experiments in the study of Monte Carlo
(3 ns, 3 Ts, 6 ρs, 2 βs, 2 θs and four configurations for the DGP/estimated equation pair; note that
the parameter θ does not intervene in the SLM equation) appear in Tables A1–A12 in the Appendix.
We want to stress the good results attained in the case of small samples (n = 25 and T = 1) where
the average rate of correct selections for entropy and AIC is usually above 30% (a little worse for the
other two criteria). Very often, the percentage exceeds 70% at the extremes of the spatial parameter
interval, ±0.8. The average rate increases up to 75–80%, for the case of n = 25 and T = 5 and continues
improving when T = 10, where most cases have a rate of correct selections above 90%. In general, the
rate of correct selections is nearly 100%, using 5 to 10 cross-sections.
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In a similar vein, the increase in the cross-sectional size, n, when the number of cross-sections, T,
remains constant also has positive effects in the four criteria. The rate of correct selections for the case
of a hundred of spatial units is above 70%, on average, for the case of a single cross-section (T = 1).
These percentages improve quickly once the time dimension of the panel increases; it is also clear that
the improvement depends on the type of DGP (stronger for SDM or SLM models and weaker for the
SDEM and for the misspecified equation case).

The value of parameter β1, as expected, has only a slight impact in the four criteria; on the
contrary, the signal of θ1 plays a crucial role in the SDEM and SDM cases. Another interesting feature
is the asymmetry of the selection curves that tends to be diluted with T. Negative spatial dependence
helps to better detect the correct weighting matrix, especially when the number of time cross-sections
is small. The asymmetry is evident in entropy, Bayes and AIC, but it is more diffused in the MJ case
which remains highly inelastic to the value of ρ.

To complete the picture, we estimate a response-surface for each DGP/Estimated equation
combination, with the aim of modelling the empirical probability of choosing the correct weighting
matrix for each criterion, pi. As usual, a logit transformation of the empirical probabilities is carried
out, so the estimated equation is:

log

(
pi + (2r)−1

1− pi + (2r)−1

)
= p∗i = η + zi ϕ + εi, (11)

where p∗i is the logit transformation, often known as the logit, r the number of replications of each
experiment (1000 in all the cases); (2r)−1 assures that the logit is defined even when the probability
of correct selection is 0 or 1 [47]; η is an intercept term, zi the design matrix whose columns reflect
the conditions of each experiment, ϕ is a vector of parameters and εi the error term assumed to be
independent and identically distributed (this assumption is reasonable if all experiments come from
the same study, as ours, and are obtained under identical circumstances; [48]). Recall that the number
of observations in the response-surface equations is 216 (so i = 1, 2, ..., 216), except for the SLM case
where the number of observations is 108. Table 6 shows the results for the four DGP/Estimated
equation combinations.

In general, the estimates confirm previous facts. The main factor influencing the empirical
probability of choosing the correct weights matrix is the spatial parameter, absolute value of ρ in
Table 6. Its contribution is crucial in all the cases, without exceptions, and occurs in the expected
direction: higher values of |ρ| facilitate the selection of the correct weighting matrix. The second more
influential factor is the parameter θ, associated with spatial spillovers. Also, its impact is beneficial
for all the cases though it appears to be more important for the Bayesian and MJ criteria. Sample
size is crucial and T has a relatively higher impact than n. Finally, as said before, parameter β1 is not
significant in any circumstance, except for the SLM case; this means that the signal-to-noise ratio should
not be a major factor to consider when the problem is selecting the best weighting matrix.

Table 7 completes the response-surface analysis with the F tests of equality in the coefficients of
the estimates of Table 6. According to the sequence of F tests, the most dissimilar method is the MJ
approach, and then Bayes. On the other hand, entropy and AIC emerge as quasi-similar strategies to
compare weighting matrices, almost indistinguishable in the four types of DGPs.
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Table 6. Estimated response surfaces.

SDEM case constant n T β1 θ |ρ| R2 FAV

Entropy
−4.9179 0.0308 0.4218 −0.0103 0.6617 2.9688

0.81
183.15

(0.0000) (0.0000) (0.0000) (0.7924) (0.0000) (0.0000) (0.0000)

Bayes
−5.376 0.032 0.442 −0.0107 0.6783 3.3122

0.81
184.23

(0.0000) (0.0000) (0.0000) (0.7921) (0.0000) (0.0000) (0.0000)

MJ test
−5.2726 0.0309 0.4322 −0.0089 0.7447 2.5502

0.81
185.08

(0.0000) (0.0000) (0.0000) (0.8267) (0.0000) (0.0000) (0.0000)

AIC
−5.1540 0.0316 0.4311 −0.0079 0.6669 3.0933

0.80
176.77

(0.0000) (0.0000) (0.0000) (0.5407) (0.0000) (0.0000) (0.0000)

SDM case constant n T β1 θ |ρ| R2 FAV

Entropy
−3.6764 0.0338 0.4569 0.0585 0.5613 3.0354

0.69
98.47

(0.0000) (0.0000) (0.0000) (0.2814) (0.0000) (0.0000) (0.0000)

Bayes
−5.5876 0.0384 0.5720 0.0530 0.6044 4.0518

0.71
106.48

(0.0000) (0.0000) (0.0000) (0.3984) (0.0000) (0.0000) (0.0000)

MJ test
−4.5043 0.0353 0.5130 0.0680 0.5880 3.0846

0.69
95.05

(0.0000) (0.0004) (0.0000) (0.0813) (0.0000) (0.0000) (0.0000)

AIC
−4.3524 0.0351 0.5113 0.0494 0.5509 3.3920

0.69
97.12

(0.0000) (0.0000) (0.0000) (0.4001) (0.0000) (0.0000) (0.0000)

SLM case constant n T β1 |ρ| R2 FAV

Entropy
−5.3523 0.0297 0.3636 0.2549 7.5807

0.86
159.69

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Bayes
−6.8012 0.0266 0.4475 0.2748 9.1257

0.87
180.30

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

MJtest
−6.2131 0.0277 0.3779 0.3469 8.0125

0.83
126.07

(0.0000) (0.0000) (0.0006) (0.0000) (0.0004) (0.0000)

AIC
−5.8124 0.0278 0.3909 0.2495 8.2025

0.85
154.59

(0.0000) (0.0000) (0.0000) (0.0003) (0.0000) (0.0000)

MISSPE case constant n T β1 θ |ρ| R2 FAV

Entropy
−4.5467 0.0328 0.3768 0.0001 0.4651 2.6832

0.78
153.03

(0.0000) (0.0000) (0.0000) (0.9591) (0.0000) (0.0000) (0.0000)

Bayes
−6.6864 0.0372 0.5024 0.0070 0.5351 3.6498

0.82
203.30

(0.0000) (0.0000) (0.0000) (0.8627) (0.0000) (0.0000) (0.0000)

MJ test
−4.9274 0.0325 0.4019 0.0079 0.5097 2.0232

0.75
131.92

(0.0000) (0.0000) (0.0000) (0.8494) (0.0000) (0.0000) (0.0000)

AIC
−5.2308 0.0346 0.4190 0.0071 0.4671 2.8932

0.78
152.08

(0.0000) (0.0000) (0.0000) (0.8593) (0.0000) (0.0000) (0.0000)

Note: p-value appears in parenthesis. FAV means F test of the null that all coefficients are zero except the
constant. MISSPE means that the model in the DGP is a SDEM but we estimate an SDM equation.
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Table 7. F test for the equality of coefficients in the response-surface estimates.

SDEM case Bayes MJ test AIC

Entropy 0.551 (0.773) 2.593 (0.019) 0.161 (0.988)
Bayes – 2.043 (0.062) 0.551 (0.773)
MJ test – – 1.993 (0.069)

SDM case Bayes MJ test AIC
Entropy 4.652 (0.000) 1.682 (0.126) 1.066 (0.386)
Bayes – 1.467 (0.193) 1.762 (0.109)
MJ test – – 0.312 (0.934)

SLM case Bayes MJ test AIC
Entropy 8.093 (0.001) 3.124 (0.011) 0.913 (0.476)
Bayes – 2.386 (0.043) 2.544 (0.033)
MJ test – – 1.743 (0.132)

MISS case Bayes MJ test AIC
Entropy 14.085 (0.000) 5.743 (0.000) 2.086 (0.056)
Bayes – 7.901 (0.000) 5.907 (0.000)
MJ test – – 2.592 (0.019)

Note: p-value appears in parenthesis.

5. Empirical Application: Ertur and Koch (2007)

The case study in this section is based on a well-known economic growth model estimated by
Ertur and Koch (2007) using a cross-section of 91 countries for the period 1960–1995. The purpose of
this section is to illustrate the use of the selection procedures discussed before.

Ertur and Koch [49] build a growth equation to model technological interdependence between
countries using spatial externalities. The main hypotheses of interaction are that the stock of
knowledge in one country produces externalities that cross-national borders and spill over into
neighboring countries, with an intensity which decreases with distance. The authors use a geographical
distance measure.

The benchmark model assumes an aggregated Cobb-Douglas production function with constant
returns to scale in labor and physical capital:

Yi(t) = Ai(t)Kα
i (t)L1−α

i (t), (12)

where Yi(t) is output, Ki(t) is the level of reproducible physical capital, Li(t) is the level of labor in the
period t, and Ai(t) is the aggregate level of technology specified as:

Ai(t) = Ω(t)kφ
i (t)

n

∏
j 6=i

A
δωij
i (t). (13)

The aggregate level of technology Ai(t) in a country i depends on three elements. First, a certain
proportion of technological progress is exogenous and identical in all countries: Ω(t) = Ω(0)eµt, where
µ is a constant rate of technological growth. Second, each country’s aggregate level of technology
increases with the aggregate level of physical capital per worker kφ

i (t) = (Ki(t)/Li(t))
φ with parameter

φ ∈ [0; 1] capturing the strength of home externalities by physical capital accumulation. Finally, the
third term captures the external effects of knowledge embodied in capital located in a different country,
whose impact crosses national borders at a diminishing intensity, δ ∈ [0; 1]. The terms ωij represent
the connectivity between country i and its neighbors; these weights are assumed to be exogenous,
non-negative, and finite.

Following Solow, the authors assume that a constant fraction of output si, in every country i, is
saved and that labor grows exogenously at the rate li. Also, they assume a constant and identical
annual rate of depreciation of physical capital for all countries, denoted τ (assumed as a constant value
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equal 0.05 in the literature). The evolution of output per worker in country i is governed by the usual
fundamental dynamics of the Solow equation which, after some manipulations, lead to a steady-state
real income per worker [49] (p. 1038, Equation (9)):

y = Ω + (α + φ) k− αδWk + δWy. (14)

This is a spatially augmented Solow model and coincides with the predictor obtained by Solow
adding spill-over effects. In terms of spatial econometrics, we have a Spatial Durbin Model, SDM, which
can be expressed as:

y = xβ + ρWy + Wxθ + ε. (15)

Equation (15) is estimated using information on real income, investment and population growth
for a sample of 91 countries for the period 1960− 1995. Regarding the spatial weighting matrix, [49]
consider two geographical distance functions: the inverse of squared distance (which is the main
hypothesis) and the negative exponential of squared distance (to check robustness in the specification).
We also consider a third matrix based on the inverse of the distance.

Let us call the three weighting matrices as W1, W2 and W3 which are row-standardized: ωhij =

ω∗hij/
n
∑

j=1
ω∗hij; h = 1, 2, 3 where:

ω∗1ij =

{
0 i f i = j
d−2

ij otherwise ; ω∗2ij =

{
0 i f i = j
e−2dij otherwise

; ω∗3ij =

{
0 i f i = j
d−1

ij otherwise , (16)

with dij as the great-distance (i.e., the shortest distance between two points on the surface of a sphere)
between the capitals of countries i and j.

The authors analyze several specifications checking for different theoretical restrictions and
alternative spatial equations. We concentrate our revision in the so-called non-restricted equation, in
the sense that it includes more coefficients than advised by theory. Table 8 presents the SDM version of
this equation using the three alternative weighting matrices specified before (the first two columns
coincide with those in Table I, columns 3–4, pp. 1047, of [49]). The last four rows in the Table show the
value of the selection criteria corresponding to each case.

The preferred model by [49] is the SDM/W1 which coincides with the selection attained by
minimum entropy, the Bayesian posterior probability and AIC. The selection of the MJ approach is W2.

Other results in [49] refer to the Spatial Error Model version of the steady-state equation of (14),
or SEM model. The intention of the authors is to visualize the presence of spatial correlation in the
traditional non-spatial Solow equations; we use this case as an example of selection of weighting
matrices in misspecified models. The main results appear in Table 9 (which can be compared with
columns 2–3 of Table II, in [49] (p. 1048)).
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Table 8. Ertur & Koch case. Unrestricted SDM estimates.

Model/Weight Matrix SDM / W1 SDM / W2 SDM / W3

constant 0.967−(0.610) 0.499−(0.787) 5.197−(0.322)
log(s) 0.825−(0.000) 0.792−(0.000) 0.910−(0.000)
log(l + 0.05) −1.498−(0.008) −1.451−(0.008) −1.710−(0.008)
W× log(s) −0.326−(0.075) −0.378−(0.022) 0.500−(0.211)
W× log(l + 0.05) 0.574−(0.497) 0.141−(0.857) 2.150−(0.211)
W× log(y) 0.742 −(0.000) 0.661 −(0.000) 0.883 −(0.000)

Selection Criteria

Entropy 28.001∗∗∗ 29.615∗∗∗ 34.615∗∗∗

Bayesian 0.864∗∗∗ 0.133∗∗∗ 0.003∗∗∗

MJ 11.158∗∗∗ 9.388∗∗∗ 10.208∗∗∗

AIC 95.885∗∗∗ 99.100∗∗∗ 109.132∗∗∗

Note: p-values appear in parenthesis. Smaller values of Entropy, MJ and AIC criteria indicate a preferred W;
larger values of the Bayesian posterior probability indicate a preferred W.

Table 9. Ertur & Koch case. Unrestricted SEM estimates.

Model/Weight Matrix SEM / W1 SEM / W2 SEM / W3

constant 6.458−(0.000) 6.706−(0.000) 5.892−(0.002)
log(si) 0.828−(0.000) 0.804−(0.000) 0.992−(0.000)
log(li + 0.05) −1.702−(0.002) −1.553−(0.004) −2.269−(0.000)
W× εi 0.823−(0.000) 0.737−(0.000) 0.937−(0.000)
Selection Criteria
Entropy 30.973 31.734 42.049
Bayesian 0.690 0.310 0.000
MJ 0.171 × 10−12 0.043 × 10−12 0.085 × 10−12

AIC 97.870 99.391 120.021

Note: p-values appear in parenthesis. Smaller values of Entropy, MJ and AIC criteria indicate a preferred W;
larger values of the Bayesian posterior probability indicate a preferred W.

The selection of the most adequate W matrix does not change. Using the values of entropy criterion
we select the model in which intervenes the matrix W1, the same as with the Bayesian approach and
the AIC criterion; MJ continues selecting W2.

6. Conclusions

Much of the applied spatial econometrics literature seems to prefer an exogenous approximation
to the W matrix. Implicitly, it is assumed that the user has relevant knowledge with respect to the way
individuals in the sample interact. In recent years, new literature advocates for a more data driven
approach to the W issue. We strongly support this tendency, which should be dominant in the future;
however, our focus in this study is on the exogenous approach.

The problem posed in the paper is very frequent in applied work: the user has a finite collection
of weighting matrices, they all are coherent with the case of study, and one needs to select one of them.
Which is the best W? We can address this question using different proposals: the Bayesian posterior
probability, the J approach with all its variants, by means of simple model selection criteria, such as
AIC or BIC and several other alternatives not used in this study. We add a fourth one, based on the
entropy of the estimated distribution function. This new criterion h(y) is a measure of uncertainty, and
fits well with the W decision problem. The h(y) statistics depends on the estimated covariance matrix
of the corresponding model offering a more complete picture of the suitability of the distribution
function (related to a particular choice of W), to deal with the data at hand.

The conclusions of our Monte Carlo experiment are very illuminating. First, we can confirm that
it is possible to identify, with confidence, the true weighting matrix (if it really exists); in this sense, the
selection criteria do a good job. However, the four criteria should not be taken as indifferent, especially
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in samples of small size (n or T). The ordering is clear: entropy and AIC in first place and then Bayesian
posterior probability doing slightly worse; the MJ appears always in the last position. As shown in
the paper, the value of the spatial parameter has a great impact to guarantee a correct selection, but
this aspect is unobservable to the researcher. However, the user effectively controls the amount of
information involved in the exercise, and this is also a key factor. The advice is clear: use as much
information as you have because the quality of the decision improves with the amount of information.
Once again, the way the information accrues is not neutral: the length of the time series in the panel is
more relevant than the number of cross-sectional units in the sample.

Our final recommendation for applied researchers is to care for the adequacy of the weighting
matrix and, in case of having various candidates, take a decision using well-defined criteria such as
those examined in the paper. The case of study presented in Section 5 illustrates the procedure.

As avenues for future research, let us mention the possibility of combining different matrices into
a single one, as pursued in model averaging or in fuzzy logic, which offers new, flexible alternatives.
Moreover, this study assumes that the user knows the form of the equation which is, very often, an
unrealistic assumption. This constraint poses new challenges and can be solved by using a more
general framework where both the model and the matrix should be chosen. It is clear that not all the
four criteria are well equipped to work in the new scenarios.
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Appendix A

Table A1. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T = 1.

CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

1 −0.8 1 1 70.40 51.00 42.80 70.40 89.10 83.90 61.00 86.90 97.80 98.00 66.10 97.00
1 −0.5 1 1 45.30 17.50 37.30 46.40 64.60 34.90 48.60 62.60 83.00 69.80 54.70 81.80
1 −0.2 1 1 33.00 5.40 37.00 31.00 38.20 4.10 45.30 35.70 47.90 12.70 48.50 46.90
1 0.2 1 1 36.70 3.70 40.80 34.50 39.70 3.70 42.40 39.60 55.00 13.20 48.40 55.50
1 0.5 1 1 51.00 12.40 39.80 52.60 66.50 33.30 47.70 69.70 83.60 73.70 54.30 87.70
1 0.8 1 1 67.70 44.50 41.90 72.60 82.90 79.60 49.10 86.50 91.80 91.20 55.70 95.30

1 −0.8 1 5 81.20 61.60 62.60 81.30 96.60 95.50 85.80 95.90 99.90 100.00 98.20 99.60
1 −0.5 1 5 66.90 34.60 61.30 66.50 89.80 80.30 85.30 87.30 98.80 98.40 98.30 98.00
1 −0.2 1 5 59.20 19.60 64.10 56.30 80.70 53.40 83.80 77.70 97.90 96.20 97.80 96.60
1 0.2 1 5 62.70 16.00 65.50 60.50 79.40 46.10 81.10 77.50 96.20 92.60 96.30 96.20
1 0.5 1 5 70.33 29.17 62.74 70.53 88.00 69.60 79.60 90.00 98.20 97.30 96.20 98.50
1 0.8 1 5 79.00 58.40 57.10 81.20 93.20 89.80 75.10 95.50 99.40 99.40 92.10 99.80

1 −0.8 5 1 73.90 56.10 52.40 73.90 92.40 90.10 78.90 91.70 99.60 99.60 91.90 99.30
1 −0.5 5 1 50.00 19.50 42.50 50.70 69.60 42.40 57.60 68.00 88.00 80.90 69.70 85.60
1 −0.2 5 1 31.30 4.40 35.50 29.50 33.20 4.10 40.60 33.10 37.80 7.70 38.50 37.00
1 0.2 5 1 39.40 3.80 46.10 37.50 48.70 7.80 53.20 47.30 70.00 35.40 67.00 70.00
1 0.5 5 1 59.10 18.70 51.10 57.80 79.40 50.50 65.40 81.10 91.40 87.00 80.80 93.70
1 0.8 5 1 78.00 57.80 56.30 80.70 91.80 88.00 72.20 94.40 97.80 97.60 87.30 99.10

1 −0.8 5 5 67.70 50.40 44.30 67.80 87.60 84.90 64.50 86.80 97.90 98.10 73.00 97.40
1 −0.5 5 5 53.00 22.20 47.20 51.70 76.70 56.00 68.10 75.00 91.90 88.70 83.70 90.20
1 −0.2 5 5 53.90 12.80 59.10 49.70 75.70 41.30 77.60 71.90 93.80 88.30 94.50 92.00
1 0.2 5 5 66.00 20.60 68.90 62.70 86.20 60.90 88.00 84.40 98.10 96.10 97.70 98.30
1 0.5 5 5 76.30 42.30 71.40 76.10 95.30 82.60 90.50 96.10 99.70 99.50 99.60 99.90
1 0.8 5 5 88.00 73.30 73.60 90.70 97.70 96.30 91.10 98.60 100.00 99.90 99.40 100.00
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Table A2. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T = 5.

Other Parameters CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC
5 −0.8 1 1 97.30 97.50 47.40 97.10 99.70 99.80 59.60 99.60 100.00 100.00 61.00 100.00
5 −0.5 1 1 76.10 69.30 41.80 75.60 100.00 100.00 99.50 100.00 100.00 100.00 100.00 100.00
5 −0.2 1 1 40.30 21.80 42.20 36.40 100.00 100.00 95.80 100.00 100.00 100.00 99.90 100.00
5 0.2 1 1 57.90 45.90 53.30 59.30 100.00 99.90 70.70 99.80 100.00 100.00 80.80 100.00
5 0.5 1 1 79.00 78.30 56.20 80.70 92.60 92.70 49.50 91.80 99.30 99.40 59.90 98.90
5 0.8 1 1 93.10 93.50 59.70 95.00 99.80 99.90 99.20 99.80 100.00 100.00 100.00 100.00

5 −0.8 1 5 99.90 99.90 95.00 99.90 94.71 95.20 75.02 94.51 100.00 100.00 91.71 99.80
5 −0.5 1 5 98.80 98.70 96.30 98.40 98.30 98.40 90.50 97.70 99.90 99.90 99.20 99.70
5 −0.2 1 5 97.00 96.70 96.50 95.80 60.30 45.20 57.00 56.30 80.80 68.10 65.60 77.40
5 0.2 1 5 96.70 96.70 97.00 96.60 99.40 99.40 99.30 99.30 100.00 100.00 100.00 100.00
5 0.5 1 5 96.80 97.00 95.60 97.40 49.40 31.10 34.80 45.50 66.60 43.40 38.70 63.50
5 0.8 1 5 99.20 99.30 96.10 99.30 97.60 97.60 97.70 97.10 100.00 100.00 100.00 100.00

5 −0.8 5 1 99.00 99.30 88.10 98.70 72.20 65.30 64.40 74.30 86.50 83.40 80.30 86.80
5 −0.5 5 1 82.80 79.60 57.00 82.40 99.50 99.50 99.60 99.50 100.00 100.00 100.00 100.00
5 −0.2 5 1 33.40 14.00 32.00 30.20 83.30 81.90 80.00 84.90 95.30 95.00 93.90 95.90
5 0.2 5 1 72.50 65.30 70.20 72.50 99.80 99.80 99.90 99.90 100.00 100.00 100.00 100.00
5 0.5 5 1 91.30 91.70 85.50 91.40 90.70 90.90 68.10 93.20 98.40 98.60 81.20 99.50
5 0.8 5 1 98.90 98.80 92.90 99.00 100.00 100.00 99.40 100.00 100.00 100.00 100.00 100.00

5 −0.8 5 5 96.60 97.10 54.20 96.50 98.30 98.50 94.10 99.00 100.00 100.00 99.20 100.00
5 −0.5 5 5 90.20 89.60 77.40 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
5 −0.2 5 5 91.00 90.00 92.30 89.10 98.30 98.20 63.30 99.40 100.00 100.00 72.80 100.00
5 0.2 5 5 98.00 97.90 97.70 97.90 100.00 100.00 97.60 100.00 100.00 100.00 99.90 100.00
5 0.5 5 5 99.40 99.40 99.80 99.40 99.70 99.80 95.90 100.00 100.00 100.00 99.40 100.00
5 0.8 5 5 99.90 99.90 99.50 99.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table A3. Percentage of correct selections. DGP: SDM; Estimated equation SDM. T = 10.

Other Parameters CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

10 −0.8 1 1 99.30 99.40 58.40 99.30 100.00 100.00 58.90 100.00 100.00 100.00 63.10 100.00
10 −0.5 1 1 91.60 89.70 49.90 91.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 −0.2 1 1 59.80 44.00 57.70 53.10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 0.2 1 1 74.10 67.70 66.50 76.40 100.00 100.00 79.20 100.00 100.00 100.00 91.80 100.00
10 0.5 1 1 91.80 92.30 70.30 94.10 98.80 99.10 55.10 98.30 100.00 100.00 68.10 99.90
10 0.8 1 1 98.00 98.40 65.50 98.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 −0.8 1 5 100.00 100.00 100.00 100.00 99.60 99.60 89.80 99.40 100.00 100.00 98.20 100.00
10 −0.5 1 5 100.00 100.00 100.00 100.00 99.90 99.90 99.50 99.80 100.00 100.00 99.90 100.00
10 −0.2 1 5 100.00 100.00 99.90 100.00 76.30 64.90 64.20 71.00 92.40 90.40 80.50 90.40
10 0.2 1 5 99.80 99.80 99.80 99.80 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 0.5 1 5 99.80 99.80 99.50 99.90 62.70 43.70 37.20 59.00 81.90 73.70 40.70 80.50
10 0.8 1 5 100.00 99.90 99.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 −0.8 5 1 100.00 100.00 99.50 100.00 87.20 84.60 79.70 88.40 96.00 95.60 90.40 96.50
10 −0.5 5 1 95.30 95.50 81.90 94.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 −0.2 5 1 48.40 30.70 36.50 44.20 93.10 92.80 92.60 93.80 99.00 99.00 98.70 99.30
10 0.2 5 1 86.30 84.10 83.70 87.20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 0.5 5 1 98.70 98.60 97.10 99.00 98.30 98.80 82.90 98.80 99.90 99.90 91.50 99.90
10 0.8 5 1 99.90 100.00 97.40 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

10 −0.8 5 5 99.50 99.50 74.60 99.40 99.90 99.90 99.60 99.90 100.00 100.00 100.00 100.00
10 −0.5 5 5 98.90 98.90 96.10 98.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 −0.2 5 5 98.90 99.00 99.30 99.00 99.90 100.00 74.90 100.00 100.00 100.00 76.30 100.00
10 0.2 5 5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 0.5 5 5 100.00 100.00 100.00 100.00 100.00 100.00 99.80 100.00 100.00 100.00 100.00 100.00
10 0.8 5 5 100.00 100.00 99.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table A4. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T=1.

CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

1 −0.8 1 1 54.30 50.70 31.00 54.50 67.40 64.50 30.50 68.60 80.30 80.50 28.20 82.80
1 −0.5 1 1 44.70 41.60 29.00 45.80 47.80 48.50 26.40 52.50 60.10 60.00 31.20 65.30
1 −0.2 1 1 36.40 32.50 27.50 37.20 32.50 28.80 28.70 33.70 33.00 26.60 31.00 34.90
1 0.2 1 1 32.70 25.30 30.80 30.40 26.60 17.40 31.60 24.80 35.10 17.90 35.90 34.10
1 0.5 1 1 34.20 26.30 37.90 32.10 44.10 35.90 43.00 42.20 60.30 55.80 37.10 58.80
1 0.8 1 1 42.80 40.50 42.90 39.50 61.60 63.30 47.80 53.90 78.10 79.40 44.00 67.70

1 −0.8 1 5 60.30 55.20 41.30 59.00 88.00 86.00 71.10 89.20 91.90 91.80 75.10 92.70
1 −0.5 1 5 56.20 52.20 44.80 56.60 80.10 77.80 73.70 80.10 85.20 85.20 77.60 86.20
1 −0.2 1 5 51.60 47.50 44.20 49.40 68.10 64.80 67.80 66.80 77.00 74.50 76.10 76.20
1 0.2 1 5 43.80 36.50 43.90 39.60 62.80 58.30 66.20 59.10 75.00 67.20 74.40 72.90
1 0.5 1 5 46.40 39.40 47.20 43.30 66.60 62.20 64.70 63.20 81.00 78.60 71.60 79.50
1 0.8 1 5 54.20 51.30 48.30 48.80 75.90 73.70 62.90 68.80 91.30 91.60 66.10 83.70

1 −0.8 5 1 55.20 50.90 31.90 54.40 70.60 67.50 27.80 71.70 83.80 83.10 27.90 84.60
1 −0.5 5 1 47.70 43.20 28.20 47.80 53.30 49.90 27.30 58.50 63.70 63.00 31.10 67.40
1 −0.2 5 1 35.30 28.80 29.10 36.40 34.10 29.50 27.80 36.20 34.50 24.40 28.90 35.80
1 0.2 5 1 28.10 19.20 29.80 27.60 29.20 17.90 34.70 28.40 34.00 16.20 35.90 32.40
1 0.5 5 1 32.50 23.80 34.50 29.60 38.40 30.00 36.10 37.50 62.90 56.10 39.40 61.10
1 0.8 5 1 39.40 35.60 37.50 35.90 57.70 59.10 46.70 49.40 79.60 80.70 42.90 69.10

1 −0.8 5 5 63.20 56.60 43.50 61.80 87.10 84.50 74.30 87.70 89.70 88.90 72.40 90.60
1 −0.5 5 5 56.00 49.30 41.80 55.30 78.50 73.50 71.40 79.70 84.10 83.20 74.70 86.90
1 −0.2 5 5 49.00 39.30 45.80 47.50 68.80 64.80 69.20 70.20 76.20 72.80 74.60 75.40
1 0.2 5 5 44.70 37.70 43.60 41.90 66.40 58.40 68.50 63.40 72.90 67.20 73.40 71.10
1 0.5 5 5 44.80 37.60 45.20 40.50 67.50 62.50 63.40 64.20 80.80 78.50 70.20 81.10
1 0.8 5 5 48.50 42.70 48.10 44.30 71.50 70.40 60.50 63.10 87.10 87.60 67.70 81.10
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Table A5. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T = 5.

Other Parameters CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

5 −0.8 1 1 79.40 81.40 35.80 82.80 92.70 92.60 45.90 94.20 98.40 98.50 53.90 99.20
5 −0.5 1 1 48.40 48.50 32.20 47.70 74.50 74.90 49.00 75.50 90.20 90.90 56.60 92.80
5 −0.2 1 1 34.50 27.30 37.10 30.30 51.00 41.00 50.40 46.60 60.70 52.20 56.80 57.80
5 0.2 1 1 37.30 28.60 38.70 36.20 53.50 44.10 48.70 52.00 63.70 58.80 52.40 64.00
5 0.5 1 1 58.40 59.30 37.60 59.50 78.70 78.00 42.60 74.20 91.10 92.70 50.90 86.50
5 0.8 1 1 83.20 83.30 42.50 71.30 94.80 95.50 41.10 78.90 99.00 98.90 48.50 90.60

5 −0.8 1 5 97.70 97.70 93.50 97.90 99.80 99.80 98.90 99.90 100.00 100.00 99.80 100.00
5 −0.5 1 5 94.30 95.10 91.40 93.90 98.90 98.90 98.20 99.10 99.90 99.90 100.00 99.90
5 −0.2 1 5 89.90 89.10 90.70 87.00 98.80 98.70 98.50 98.50 100.00 100.00 100.00 100.00
5 0.2 1 5 83.70 82.60 83.60 83.10 97.80 97.70 97.80 97.40 99.70 99.70 99.70 99.50
5 0.5 1 5 85.10 84.80 79.10 83.60 98.30 98.60 95.60 96.80 99.90 99.90 99.20 99.70
5 0.8 1 5 91.90 91.70 70.70 82.80 99.50 99.60 88.00 93.50 100.00 100.00 96.10 98.60

5 −0.8 5 1 76.00 78.90 34.90 79.80 92.30 92.70 44.80 94.20 98.00 98.10 54.70 98.60
5 −0.5 5 1 52.15 51.85 34.57 53.55 75.92 75.62 48.45 77.52 91.71 92.91 57.74 93.51
5 −0.2 5 1 35.40 26.90 36.70 30.90 46.00 37.00 48.30 42.00 62.30 51.80 59.40 57.70
5 0.2 5 1 38.00 29.80 38.20 36.30 51.00 42.20 45.70 49.40 69.20 62.10 56.10 68.10
5 0.5 5 1 60.60 59.10 40.30 59.10 76.10 77.20 42.90 72.30 90.00 91.10 49.30 85.90
5 0.8 5 1 83.40 83.50 41.70 69.90 95.10 95.80 40.30 77.10 98.40 98.60 46.80 90.70

5 −0.8 5 5 97.90 97.80 93.20 97.90 99.60 99.60 98.60 99.70 100.00 100.00 100.00 100.00
5 −0.5 5 5 94.20 94.20 92.10 92.50 99.00 99.10 98.40 99.30 99.90 99.90 99.90 100.00
5 −0.2 5 5 90.30 89.10 90.50 88.00 99.10 99.30 98.80 98.90 99.80 99.80 99.50 99.80
5 0.2 5 5 83.70 82.70 84.20 83.40 98.20 98.40 98.10 97.50 99.80 99.90 99.70 99.80
5 0.5 5 5 84.40 83.70 80.20 81.20 97.50 97.70 95.00 96.30 99.70 99.70 98.90 99.40
5 0.8 5 5 91.80 92.00 70.90 82.80 99.00 99.00 87.10 94.80 100.00 100.00 95.10 99.00
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Table A6. Percentage of correct selections. DGP: SDEM; Estimated equation SDEM. T = 10.

Other Parameters CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

10 −0.8 1 1 89.90 90.30 43.00 91.00 98.80 98.80 59.30 99.20 99.90 99.90 70.80 100.00
10 −0.5 1 1 66.50 63.40 43.00 63.50 85.60 85.30 56.30 85.80 97.10 97.70 72.10 97.60
10 −0.2 1 1 49.00 39.00 47.20 42.60 59.50 49.60 59.20 53.20 79.10 74.10 71.70 73.30
10 0.2 1 1 48.60 43.90 41.90 48.60 63.80 60.30 53.80 63.80 80.80 80.90 69.30 80.80
10 0.5 1 1 78.00 78.90 45.60 75.30 90.10 90.80 50.60 84.50 96.10 96.80 62.10 93.00
10 0.8 1 1 96.80 96.60 42.80 83.20 99.20 99.50 45.10 88.00 100.00 100.00 51.90 97.10

10 −0.8 1 5 99.60 99.70 98.50 99.70 100.00 100.00 99.90 100.00 100.00 100.00 100.00 100.00
10 −0.5 1 5 98.00 98.10 97.20 98.30 99.90 99.90 99.90 99.90 100.00 100.00 100.00 100.00
10 −0.2 1 5 97.50 97.50 97.30 97.40 100.00 100.00 99.80 100.00 100.00 100.00 100.00 100.00
10 0.2 1 5 95.30 95.20 95.50 95.70 99.70 99.70 99.70 99.70 100.00 100.00 100.00 100.00
10 0.5 1 5 97.30 97.30 93.00 96.60 99.40 99.40 99.30 99.20 100.00 100.00 100.00 100.00
10 0.8 1 5 98.90 98.70 83.90 92.90 100.00 99.90 95.20 99.00 100.00 100.00 99.80 100.00

10 −0.8 5 1 90.70 91.40 42.60 92.40 98.00 97.60 55.00 98.70 99.70 99.80 70.60 99.80
10 −0.5 5 1 65.80 62.60 45.50 61.30 87.80 87.20 56.70 87.30 96.60 96.80 70.70 96.80
10 −0.2 5 1 47.80 37.30 44.40 42.90 60.20 50.30 56.70 53.30 78.40 74.60 71.30 74.70
10 0.2 5 1 47.00 41.60 42.80 45.00 65.90 61.10 52.30 64.40 79.30 78.40 66.10 76.80
10 0.5 5 1 76.30 76.50 45.60 72.60 90.80 90.90 50.40 84.90 97.00 97.20 64.20 93.70
10 0.8 5 1 96.20 97.00 40.50 82.40 99.30 99.40 44.60 88.70 99.80 99.80 51.50 95.90

10 −0.8 5 5 99.70 99.70 97.60 99.70 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 −0.5 5 5 98.80 98.90 97.60 99.10 99.90 99.90 99.90 99.90 100.00 100.00 100.00 100.00
10 −0.2 5 5 97.60 97.90 97.70 97.30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
10 0.2 5 5 96.60 96.50 96.70 96.30 99.90 99.90 99.90 100.00 100.00 100.00 100.00 100.00
10 0.5 5 5 97.00 97.00 93.70 95.20 100.00 100.00 99.50 99.50 100.00 100.00 99.90 100.00
10 0.8 5 5 99.00 99.00 83.90 93.50 99.80 99.90 96.10 98.80 100.00 100.00 99.60 100.00
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Table A7. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T=1.

CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

1 −0.8 1 70.80 70.70 50.80 70.70 88.80 84.70 45.40 86.90 98.20 98.10 59.40 97.50
1 −0.5 1 45.00 41.70 42.90 46.50 63.70 39.40 40.20 62.90 81.80 67.80 46.60 79.30
1 −0.2 1 22.90 15.10 33.20 24.10 29.90 6.60 35.50 30.50 39.30 6.60 35.70 38.90
1 0.2 1 29.50 11.10 35.00 28.60 36.10 3.00 40.20 33.20 47.40 6.00 33.80 48.90
1 0.5 1 50.80 36.20 38.40 51.20 65.60 32.40 39.90 69.00 79.30 66.40 41.10 83.80
1 0.8 1 68.80 66.30 49.50 71.20 81.50 77.20 42.30 86.80 91.40 90.20 46.60 95.00

1 −0.8 5 85.20 86.40 73.70 84.70 96.50 96.10 84.30 94.80 99.80 99.80 94.20 99.60
1 −0.5 5 58.30 56.10 50.20 56.60 75.40 59.40 62.10 73.20 91.60 87.80 80.60 89.30
1 −0.2 5 26.20 14.40 30.60 23.40 35.40 7.30 42.10 33.30 50.40 14.70 52.10 48.70
1 0.2 5 50.80 27.70 43.10 49.90 39.60 5.80 40.90 39.30 53.20 10.70 48.60 53.10
1 0.5 5 70.60 67.90 62.20 70.20 71.60 46.40 57.20 75.40 85.90 77.40 70.50 89.20
1 0.8 5 79.40 80.00 71.30 77.50 88.30 83.00 62.80 92.70 96.60 96.40 82.60 98.20

Table A8. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T = 5.

CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

5 −0.8 1 97.10 98.10 57.20 96.70 100.00 100.00 69.60 99.90 100.00 100.00 81.80 100.00
5 −0.5 1 80.40 81.10 43.20 80.40 91.50 91.90 50.80 90.30 99.50 99.50 61.60 98.80
5 −0.2 1 39.30 29.10 39.40 37.80 48.90 27.70 37.70 45.20 69.80 42.40 43.70 67.60
5 0.2 1 50.10 40.70 32.00 51.60 59.70 39.70 34.80 63.20 77.40 57.60 33.40 80.60
5 0.5 1 79.80 80.80 35.20 82.90 89.10 88.50 40.40 92.30 96.10 96.40 44.30 97.80
5 0.8 1 92.10 92.80 38.40 93.80 98.60 98.10 50.90 99.40 99.90 100.00 48.10 100.00

5 −0.8 5 99.80 99.80 98.80 99.70 100.00 100.00 99.90 100.00 100.00 100.00 100.00 100.00
5 −0.5 5 91.90 92.60 79.20 90.90 98.60 98.60 94.80 98.30 100.00 100.00 99.70 100.00
5 −0.2 5 51.00 44.50 43.40 47.60 66.30 49.70 66.70 59.40 87.00 75.10 81.60 83.60
5 0.2 5 63.70 58.50 43.90 63.90 72.70 60.30 61.10 74.50 85.00 76.20 72.50 85.50
5 0.5 5 87.30 88.20 63.90 90.00 97.20 97.40 91.40 98.40 99.80 99.80 98.20 99.90
5 0.8 5 97.50 97.40 71.40 97.90 99.90 100.00 96.10 100.00 100.00 100.00 98.30 100.00
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Table A9. Percentage of correct selections. DGP: SLM; Estimated equation SLM. T = 10.

CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

1 −0.8 1 99.50 99.60 66.00 99.40 100.00 100.00 70.60 100.00 100.00 100.00 89.90 100.00
1 −0.5 1 93.00 93.80 50.10 92.70 98.20 98.60 56.00 98.10 99.80 99.90 72.80 99.70
1 −0.2 1 53.80 47.80 34.60 50.60 62.80 45.60 37.00 58.80 84.00 75.30 44.60 81.50
1 0.2 1 62.04 58.54 34.07 63.44 70.00 60.80 32.10 73.90 86.31 83.12 40.76 87.61
1 0.5 1 88.40 89.50 41.90 90.10 95.60 96.20 45.30 97.70 99.60 99.80 57.90 99.80
1 0.8 1 97.90 97.90 44.70 98.60 99.80 99.60 50.10 99.90 100.00 100.00 54.80 100.00

1 −0.8 5 100.00 100.00 99.90 100.00 100.00 100.00 99.90 100.00 100.00 100.00 100.00 100.00
1 −0.5 5 98.60 98.80 94.70 97.90 99.80 99.80 98.20 99.60 100.00 100.00 100.00 100.00
1 −0.2 5 68.50 66.60 54.40 65.40 78.30 71.20 70.50 73.80 95.40 94.70 89.00 94.30
1 0.2 5 73.10 72.50 51.70 73.00 83.40 80.00 73.40 83.60 95.40 94.90 86.90 96.20
1 0.5 5 97.10 97.40 81.50 97.00 99.30 99.40 95.80 99.40 100.00 99.90 99.80 100.00
1 0.8 5 99.80 99.90 84.90 99.80 100.00 100.00 98.20 100.00 100.00 100.00 99.80 100.00
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Table A10. Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T = 1.

CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

1 −0.8 1 1 58.70 23.40 30.80 59.10 67.00 40.90 37.60 66.90 79.80 66.70 34.10 81.80
1 −0.5 1 1 47.00 11.60 29.50 49.20 47.30 18.70 36.60 50.10 62.10 33.00 34.90 66.40
1 −0.2 1 1 37.50 6.60 28.30 39.10 32.80 6.70 35.30 33.50 37.00 6.60 39.60 38.70
1 0.2 1 1 26.50 4.20 32.20 26.80 26.70 3.70 40.10 24.10 36.80 3.50 38.50 36.40
1 0.5 1 1 25.50 6.10 35.30 24.00 38.40 16.20 43.70 35.90 61.80 39.30 41.30 59.70
1 0.8 1 1 34.90 17.50 36.80 32.70 57.40 50.50 47.50 50.60 77.30 80.20 46.00 66.10

1 −0.8 1 5 59.70 32.10 41.30 62.20 74.30 52.50 54.20 77.90 88.80 79.00 62.50 92.40
1 -0.5 1 5 54.90 25.80 44.10 55.80 64.00 40.40 55.30 63.70 82.80 62.00 69.70 83.70
1 −0.2 1 5 50.20 19.60 46.70 48.30 60.10 31.30 63.10 56.20 75.00 46.50 76.90 72.00
1 0.2 1 5 42.80 12.30 44.10 40.10 58.00 27.80 64.60 52.70 77.40 47.40 78.40 74.30
1 0.5 1 5 39.40 12.60 45.30 36.30 61.30 38.60 60.70 55.70 84.10 72.30 78.30 79.50
1 0.8 1 5 44.30 21.80 44.90 38.10 65.80 60.10 53.70 59.60 87.70 90.40 51.60 77.50

1 −0.8 5 1 58.10 20.50 35.50 58.10 67.40 39.50 41.00 70.60 80.90 69.40 36.30 84.70
1 −0.5 5 1 47.10 14.60 32.60 48.40 47.50 19.60 36.20 50.40 63.50 31.70 34.80 67.50
1 −0.2 5 1 38.70 8.20 32.10 39.80 30.70 7.10 36.60 32.10 37.40 7.30 37.50 37.80
1 0.2 5 1 26.70 4.90 32.10 26.80 29.40 3.00 41.10 26.60 43.80 4.40 43.20 40.90
1 0.5 5 1 28.50 5.50 34.40 26.30 39.10 17.80 43.80 36.90 59.80 42.40 46.20 56.10
1 0.8 5 1 33.90 17.80 37.10 31.60 57.20 53.70 48.40 49.90 78.00 81.10 46.20 67.80

1 −0.8 5 5 61.80 31.30 43.00 63.70 75.00 54.60 54.00 79.50 89.30 79.20 62.10 91.10
1 −0.5 5 5 57.40 24.30 42.40 58.50 69.70 42.20 59.10 70.30 79.50 60.60 69.70 81.40
1 −0.2 5 5 45.80 19.10 43.70 47.00 62.20 34.60 64.20 60.40 72.60 43.50 74.60 70.40
1 0.2 5 5 42.80 11.50 45.60 41.40 57.80 27.40 61.60 53.50 78.00 47.40 79.10 75.00
1 0.5 5 5 42.90 10.80 45.90 38.60 60.70 37.70 59.20 56.70 83.40 74.50 77.10 80.40
1 0.8 5 5 44.10 24.20 43.80 38.80 64.10 61.40 53.40 56.40 86.80 88.90 52.90 77.20
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Table A11. Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T = 5.

Other Parameters CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

5 −0.8 1 1 76.90 68.10 37.50 81.10 92.40 90.90 37.80 94.10 97.10 97.30 48.70 98.70
5 −0.5 1 1 48.90 34.50 36.40 49.60 71.00 55.30 39.00 73.20 90.70 89.40 52.70 92.40
5 −0.2 1 1 33.10 15.00 38.10 28.20 38.20 17.50 41.70 34.10 56.70 41.90 53.50 51.80
5 0.2 1 1 37.40 21.20 38.50 36.50 48.50 28.80 41.90 47.70 64.40 60.30 55.40 64.00
5 0.5 1 1 60.00 58.10 42.40 59.60 76.40 76.00 42.30 72.70 90.90 92.10 47.60 87.10
5 0.8 1 1 86.60 87.20 46.60 71.20 94.60 95.30 51.90 78.00 98.80 99.00 47.90 87.40

5 -0.8 1 5 87.50 83.70 74.30 86.30 98.30 96.50 83.60 98.90 100.00 100.00 99.70 100.00
5 −0.5 1 5 79.50 74.30 78.00 72.00 94.00 90.60 87.40 92.70 99.80 99.80 99.80 99.80
5 −0.2 1 5 81.80 77.10 85.20 75.40 89.50 84.30 90.20 84.50 99.70 99.70 99.70 99.70
5 0.2 1 5 82.10 79.40 83.70 78.00 92.80 90.90 92.60 90.20 99.20 99.20 99.30 98.40
5 0.5 1 5 81.20 81.40 76.70 75.90 91.20 92.70 83.30 83.20 97.80 98.00 90.20 94.80
5 0.8 1 5 85.30 88.80 50.10 69.30 93.60 94.70 57.50 75.80 99.00 99.10 20.50 90.60

5 −0.8 5 1 77.20 68.40 38.70 80.50 92.10 89.40 40.00 93.80 98.30 98.30 49.40 99.00
5 −0.5 5 1 49.35 33.97 37.66 48.55 73.23 54.85 40.36 73.63 89.31 87.41 50.25 91.51
5 −0.2 5 1 33.80 17.10 37.50 30.20 39.40 15.00 39.40 34.60 56.20 41.70 56.20 51.60
5 0.2 5 1 36.70 22.00 38.10 35.90 48.60 27.50 42.10 47.90 62.90 60.40 54.20 64.50
5 0.5 5 1 57.20 55.10 40.40 56.90 76.80 76.40 43.10 71.40 88.90 90.50 50.10 83.80
5 0.8 5 1 86.00 85.80 48.70 71.90 94.40 95.50 50.30 78.30 99.00 99.10 47.60 89.60

5 −0.8 5 5 85.90 82.50 72.40 84.40 97.50 96.70 83.00 98.00 100.00 100.00 99.20 100.00
5 −0.5 5 5 81.80 76.00 80.60 75.00 93.60 90.90 88.70 91.70 100.00 100.00 100.00 100.00
5 −0.2 5 5 82.60 77.10 84.50 75.60 90.90 85.90 92.60 85.90 99.80 99.80 99.80 99.80
5 0.2 5 5 84.20 82.40 85.30 81.80 90.60 89.80 90.80 88.60 98.80 99.10 99.30 98.10
5 0.5 5 5 84.70 86.60 77.30 78.80 89.10 91.30 83.30 81.30 98.20 98.50 91.80 93.40
5 0.8 5 5 88.00 89.20 50.00 73.20 93.50 94.40 57.90 75.70 99.30 99.40 20.30 91.00
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Table A12. Percentage of correct selections. DGP: SDEM; Estimated equation SDM. T = 10.

Other Parameters CASE n = 25 CASE n = 49 CASE n = 100

T ρ β1 θ Entropy Bayes MJ AIC Entropy Bayes MJ AIC Entropy Bayes MJ AIC

10 −0.8 1 1 89.10 84.50 40.40 90.90 97.90 97.40 49.90 98.70 99.90 99.90 58.90 99.90
10 −0.5 1 1 65.00 53.10 42.40 58.50 87.40 81.10 53.60 86.70 97.30 96.90 62.20 97.60
10 −0.2 1 1 41.50 29.40 42.40 37.00 56.80 39.80 54.50 50.80 75.90 66.70 69.60 71.80
10 0.2 1 1 49.40 41.80 43.50 48.00 66.40 59.90 55.70 66.20 77.90 76.20 66.70 76.00
10 0.5 1 1 74.60 75.20 42.60 72.50 87.40 88.60 51.10 82.80 96.30 97.00 58.50 92.00
10 0.8 1 1 96.60 96.40 42.80 78.90 99.00 99.20 48.00 88.30 99.90 100.00 47.00 95.10

10 −0.8 1 5 91.50 89.30 75.90 87.20 100.00 100.00 99.40 100.00 100.00 100.00 100.00 100.00
10 −0.5 1 5 89.20 87.00 87.10 77.60 99.90 99.90 100.00 99.90 100.00 100.00 100.00 100.00
10 −0.2 1 5 93.50 90.90 94.40 83.70 99.60 99.60 99.90 99.40 100.00 100.00 100.00 100.00
10 0.2 1 5 96.80 97.30 96.80 95.30 99.10 99.30 99.10 98.70 99.90 99.90 100.00 99.80
10 0.5 1 5 93.60 94.80 87.80 85.80 98.70 99.00 94.80 94.30 99.70 99.70 98.60 98.50
10 0.8 1 5 95.60 96.70 36.80 76.70 99.90 99.60 32.40 88.30 100.00 100.00 18.50 94.40

10 −0.8 5 1 88.60 83.60 41.40 89.50 97.90 97.40 52.00 98.70 99.70 99.80 62.80 99.90
10 -0.5 5 1 64.70 52.60 43.60 58.90 84.70 78.50 53.50 84.60 96.80 95.90 61.90 97.30
10 −0.2 5 1 45.50 31.00 44.50 38.40 57.20 42.20 53.40 51.90 76.20 64.60 66.70 70.80
10 0.2 5 1 50.10 43.30 45.60 48.70 66.00 57.80 58.70 64.30 79.60 78.80 65.30 78.00
10 0.5 5 1 74.70 75.50 45.20 72.30 89.80 91.30 50.40 84.30 96.10 96.80 59.30 93.10
10 0.8 5 1 97.00 97.10 43.50 83.10 99.30 99.60 48.20 86.20 100.00 100.00 51.00 96.10

10 −0.8 5 5 90.40 88.20 73.70 86.50 99.90 99.90 98.90 100.00 100.00 100.00 100.00 100.00
10 −0.5 5 5 89.50 87.40 86.90 77.60 99.90 99.90 99.60 99.80 100.00 100.00 100.00 100.00
10 −0.2 5 5 93.60 91.30 93.90 84.90 99.70 99.70 99.80 99.50 100.00 100.00 100.00 100.00
10 0.2 5 5 95.40 95.60 96.00 93.60 99.50 99.70 99.70 99.40 100.00 100.00 100.00 99.90
10 0.5 5 5 93.60 95.40 88.00 87.70 98.60 98.80 94.50 94.20 99.60 99.70 99.00 98.70
10 0.8 5 5 95.40 97.20 33.00 76.20 99.30 99.40 34.00 88.30 99.70 99.90 18.10 95.90
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