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Abstract: A new phosphine ligand bearing a thiophene moiety, C4H3SNHCOCH2CH2PPh2

(L), has been prepared by reaction of the aminophosphine Ph2PCH2CH2NH2 with
thiophenecarbonylchloride in the presence of triethylamine. The coordination behavior towards
gold(I), gold(III) and silver(I) species has been studied and several metal compounds of
different stoichiometry have been achieved, such as [AuL2]OTf, [AuXL] (X = Cl, C6F5),
[Au(C6F5)3L], [AgL2]OTf or [Ag(OTf)L]. Additionally, the reactivity of the chloride gold(I)
species with biologically relevant thiolates was explored, thus obtaining the neutral thiolate
compounds [AuL(SR)] (SR = 2-thiocitosine, 2-thiolpyridine, 2-thiouracil, 2-thionicotinic acid,
2,3,4,6-tetra-6-acetyl-1-thiol-β-D-glucopyranosato or thiopurine). The antitumor activity of the
compounds was measured by the MTT method in several cancer cells and the complexes exhibit
excellent cytotoxic activity.
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1. Introduction

Metal complexes have received increasing interest in the development of new chemotherapeutical
drugs after the great success of cisplatin and the second or third generation drugs Carboplatin,
Paraplatin and Oxaliplatin [1–3]. Platinum drugs are extensively used in cancer treatment, but the
side effects and the development of platinum drug resistance on several cancer cell lines have led
to research with other metallic complexes, as for example ruthenium compounds, which have been
entered into clinical trials with great success [4]. Gold derivatives have been known as antiarthritic
drugs for a long time, such as the well-known Auranofin. The discovery of the strong antiproliferative
activity of this compound prompted to deepen in further studies about its wide biological activity,
and nowadays is on clinical trials for ovarian cancer [5]. Many gold compounds, including gold(I) or
gold(III) derivatives [6–9], have revealed as promising cytotoxic agents, in many cases overcoming
cisplatin resistance to specific types of cancer. Additionally, they have exhibited a mechanism of action
very different from that of platinum drugs. Several targets have been identified for gold complexes
being the inhibition of Thioredoxin reductase one of the most important [10–12].

Five-membered aromatic rings are very important building blocks as may confer an
improvement in the pharmacokinetic and pharmacodynamic drug properties. In particular, thiophene,
a five-membered aromatic sulfur-containing heterocycle, is encountered in many therapeutically active
agent [13], which show a number of pharmacological properties, such as antipsychotic, antidepressive,
antithrombolytic, antifungal, antiviral, antiallergic, prostaglandin, dopamine receptor antagonist,
and 5-lipoxygenase inhibitor [14–16]. Examples of some drugs containing a thiophene ring are
tiagabine (Gabitril), raloxifene (Evista), olanzapine (Zyprexa) or clopidogrel (Plavix) (Figure 1). These
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compounds are widely used in the treatment of several diseases, the first is an anticonvulsant,
the second is an oral selective estrogen receptor modulator with estrogenic actions on bone (prevention
of osteoporosis) [17], the third is an antipsychotic [18] and the latter is one of the most successful
platelet aggregation inhibitors [19].
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Within our research line in gold and silver compounds as antitumoral agents [20–24], here we 
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carried out, showing excellent activities in all of them.  

2. Results and Discussion 

2.1. Synthesis and Characterization 

The synthesis of the new ligand containing the thiophene moiety was achieved by reaction of 
thiophenecarbonylchloride with the aminophosphine Ph2PCH2CH2NH2 in a 1:1 ratio in the presence 
of triethylamine, which results in the formation of the ligand C4H3SNHCOCH2CH2PPh2 (L) in good 
yield (see Scheme 1). In the 1H NMR spectrum of L the signals of the protons H3 and H5 of the 
thiophene group are overlapped with the resonances due to the phenyl protons. The resonance for 
the H4 of the thiophene appears at 7.02 ppm as a triplet, and the NH proton of the amide group is 
observed at 6.25 as a broad doublet. The protons of the methylene groups appear at 3.61 and 2.42 
ppm. The 13C{1H} APT presents the expected resonances for all functional groups, the carbon of the 
CO group appears at 161.76 ppm, the carbon atoms of the thiophene at 138.99, 129.98, 128.01 and 
127.64 ppm and the methylene carbons at 37.56 and 28.63 ppm. The 31P{1H} spectrum presents only 
one resonance for the free phosphorus atom at −20.6 ppm. 
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The coordination behavior of L with several gold and silver complexes has been studied. In first 
place the reaction of the complex [Au(tht)2]OTf (tht = tetrahydrothiophene; OTf = 
trifluoromethanesulphonate) with L in a 1:2 ratio in dichloromethane results in the formation of 
complex [AuL2]OTf (1) with good yields (see Scheme 2). The 31P{1H} NMR spectrum showed a signal 
at 37.0 ppm, which confirms a low field shift of 57 ppm relative to the free ligand, due to the 
coordination of the metal fragment to the phosphorus atom of the ligand. All resonances of the 
ligand were observed in the proton NMR spectrum and, as expected, the methylene groups near the 
phosphine move slightly to a low field due to the coordination of the metal. The proton of the amide 
group –NH– undergoes a low field shift of 1.54 ppm, probably due to the formation of 
intermolecular hydrogen bonds with the carbonyl group of another molecule.  

Figure 1. Drugs containing the thiophene ring.

Within our research line in gold and silver compounds as antitumoral agents [20–24], here we
report on the synthesis of a thiophene-substituted phosphine ligand and the studies of coordination
to gold or silver complexes. The cytotoxicity of these derivatives in several cancer cell lines has been
carried out, showing excellent activities in all of them.

2. Results and Discussion

2.1. Synthesis and Characterization

The synthesis of the new ligand containing the thiophene moiety was achieved by reaction of
thiophenecarbonylchloride with the aminophosphine Ph2PCH2CH2NH2 in a 1:1 ratio in the presence
of triethylamine, which results in the formation of the ligand C4H3SNHCOCH2CH2PPh2 (L) in good
yield (see Scheme 1). In the 1H NMR spectrum of L the signals of the protons H3 and H5 of the
thiophene group are overlapped with the resonances due to the phenyl protons. The resonance for
the H4 of the thiophene appears at 7.02 ppm as a triplet, and the NH proton of the amide group
is observed at 6.25 as a broad doublet. The protons of the methylene groups appear at 3.61 and
2.42 ppm. The 13C{1H} APT presents the expected resonances for all functional groups, the carbon of
the CO group appears at 161.76 ppm, the carbon atoms of the thiophene at 138.99, 129.98, 128.01 and
127.64 ppm and the methylene carbons at 37.56 and 28.63 ppm. The 31P{1H} spectrum presents only
one resonance for the free phosphorus atom at −20.6 ppm.
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Scheme 1. Synthesis of the ligand L.

The coordination behavior of L with several gold and silver complexes has been
studied. In first place the reaction of the complex [Au(tht)2]OTf (tht = tetrahydrothiophene;
OTf = trifluoromethanesulphonate) with L in a 1:2 ratio in dichloromethane results in the formation
of complex [AuL2]OTf (1) with good yields (see Scheme 2). The 31P{1H} NMR spectrum showed
a signal at 37.0 ppm, which confirms a low field shift of 57 ppm relative to the free ligand, due to
the coordination of the metal fragment to the phosphorus atom of the ligand. All resonances of the
ligand were observed in the proton NMR spectrum and, as expected, the methylene groups near the
phosphine move slightly to a low field due to the coordination of the metal. The proton of the amide
group –NH– undergoes a low field shift of 1.54 ppm, probably due to the formation of intermolecular
hydrogen bonds with the carbonyl group of another molecule.
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The reaction of L with the gold(I) species [AuCl(tht)] or [Au(C6F5)(tht)] or the gold(III) derivative
[Au(C6F5)3(tht)] in dichloromethane in a 1:1 molar ratio afforded the mononuclear linear gold(I)
complexes [AuX(L)] (X = Cl (2), C6F5 (3)) or the square planar gold(III) compound [Au(C6F5)3(L)]
in good yields (see Scheme 2). The complexes have been characterized by IR, NMR spectroscopy
and mass spectrometry. In the IR spectra the absorptions for the ν(Au–Cl) in complex 2 and the
vibrations due to the pentafluorophenyl rings bonded to gold(I) or gold(III) for compounds 3 or 4 were
observed. In the 31P{1H} NMR spectra a downfield displacement for the phosphorus atoms is observed
as a consequence of the coordination to the gold center, with resonances at 24 ppm for the gold(I)
species and at 11 ppm for the gold(III) derivative. The 19F spectra for compounds 3 and 4 are also
characteristic of the coordination of the ligand to the AuC6F5 or the Au(C6F5)3 fragments, with three
or six resonances for the ortho, meta and para fluorine of the pentafluorophenyl groups, respectively.
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(ii) [AuCl(tht)] or [Au(C6F5)(tht)]; (iii) [Au(C6F5)3(tht)]; (iv) 1/2 Ag(OTf); (v) Ag(OTf).

The reaction of the chloro-gold derivative 2 with different thiols derived from DNA-bases
or related species, such as 2-thiocitosine, 2-thiolpyridine, 2-thiouracil, 2-thionicotinic acid,
2,3,4,6-tetra-6-acetyl-1-thiol-µ-D-glucopyranosato or thiopurine were carried out in dichloromethane
in the presence of potassium carbonate to afford the phosphine-thiolate gold derivatives 7–12
(see Scheme 3).
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Scheme 3. Synthesis of the thiolate–gold(I) derivatives.

The NMR data for these complexes are in accordance with the substitution of the chlorine ligand
for the corresponding thiolate. The resonances in the 1H and 13C NMR spectra corroborate the
presence of both the amide-phosphine and the thiolate ligand. In the 31P{1H} NMR the resonances for
the phosphorus atom are displaced downfield.

2.2. X-ray Diffraction Studies

Molecular structures of complexes 3, 6 and 7 were confirmed by an X-ray crystallographic study.
Complexes 3 and 6 crystallized in the monoclinic space group P21/n with two or one molecules by
an asymmetric unit, respectively. Compound 7 crystallized in the triclinic space group P−1 with two
molecules by asymmetric unit. Figure 2 collects the molecular structures for the pentafluorophenyl
and thiolate gold(I) derivatives.
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Figure 2. Molecular structure of the gold compounds 3 and 7, with the atom labelling scheme (some of
the hydrogen atoms are omitted for clarity).

The gold(I) atoms in complexes 3 and 7 lie in an almost linear geometry, as expected for gold(I)
derivatives, defined by the P atom and the C of the pentafluorophenyl (3) or the S atom of the thiolate
ligand (7). The P–Au–C bond angles in 3 are 175.9(3)◦ and 170.6(3)◦, and the P–Au–S bond angles
are 176.02(7)◦ and 173.55(8)◦ in 7. The Au–P, Au–C, and Au–S bond distances are unexceptional for
both complexes and compared well with most of the distances found in related complexes with the
same C6F5–Au–P or S–Au–P core [25,26]. The longer Au–P bond distances in the pentafluorophenyl
derivative 3 (2.276(3) Å, 2.273(3) Å) compared with those in complex 7 (2.256(2) Å, 2.256(2) Å) and
are in agreement with the higher trans influence of the pentafluorophenyl ligand compared with the
thiolate ligand.
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In the crystal of 3 the molecules are associated into chains parallel to the crystallographic b-axis
via short hydrogen bonds between the amide NH proton and the oxygen atom of the CO group of
neighbouring molecules as a proton acceptor (Figure 3). The distances and angles of the D···A moieties
are N2–H2···O1_$1 ($1 x − 1/2, y + 1/2, z − 1/2) 2.897(11) Å and 167(9)◦ and N1–H1···O2_$2 ($2 −x +
1, −y + 1, −z + 1) 2.918(11) Å and 148.1◦.
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(Figure 5). In addition, each triflate anion is bonded to two silver atoms of different chains that lead 
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Figure 3. Association of molecules in 3 via hydrogen bonding.

In the crystal of 7 the molecules are organized into dimers though classical H-bonds (N–H···N)
between the thiocytosine groups of neighbouring molecules, with D···A distances of 3.103(9) Å for
N3–H3b···N5 with an angle of 147.5◦ and a distance of 3.059(9) Å for N3–H3a···N2_$1 ($1 −x + 1,
−y + 2, −z + 1) with an angle of 169.1 C. Moreover, dimers are organized in a 3D array through
additional H-bond (N–H··N), N7–H7a···N6_$2 ($2 −x + 2, −y + 1, −z − 1) distance of 3.124(10) Å
with an angle of 170.3◦ (Figure 4).

Inorganics 2019, 7, x FOR PEER REVIEW 5 of 13 

 

In the crystal of 3 the molecules are associated into chains parallel to the crystallographic b-axis 
via short hydrogen bonds between the amide NH proton and the oxygen atom of the CO group of 
neighbouring molecules as a proton acceptor (Figure 3). The distances and angles of the D···A 
moieties are N2–H2···O1_$1 ($1 x − 1/2, y + 1/2, z − 1/2) 2.897(11) Å and 167(9)° and N1–H1···O2_$2 
($2 −x + 1, −y + 1, −z + 1) 2.918(11) Å and 148.1°.  

 
Figure 3. Association of molecules in 3 via hydrogen bonding. 

In the crystal of 7 the molecules are organized into dimers though classical H-bonds (N–H···N) 
between the thiocytosine groups of neighbouring molecules, with D···A distances of 3.103(9) Å for 
N3–H3b···N5 with an angle of 147.5° and a distance of 3.059(9) Å for N3–H3a···N2_$1 ($1 −x + 1, −y + 
2, −z + 1) with an angle of 169.1 C. Moreover, dimers are organized in a 3D array through additional 
H-bond (N–H··N), N7–H7a···N6_$2 ($2 −x + 2, −y + 1, −z − 1) distance of 3.124(10) Å with an angle of 
170.3° (Figure 4).  

 
Figure 4. Association of molecules in complex 7 via hydrogen bonding. Phenyl rings are omitted for 
clarity, only ipso carbon is maintained. 

Complex 6 can be seen as chains of silver atoms in which the thiophene-phosphine group is 
acting as a bidentate bridging ligand through the P atom and the O of the carboxamide group atom 
(Figure 5). In addition, each triflate anion is bonded to two silver atoms of different chains that lead 
to a 3D array. The silver atom is in a highly distorted tetrahedral geometry. The angles around the 
silver center range from 77.4(2)° to 155.0(1)°. The bond lenghts are normal in tetra-coordinated silver 
compounds, with Ag–P distance of 2.380(2) Å and Ag–O carboxamide distance of 2.265(4) Å, 
whereas the Ag–O triflate bonds (2.444(4) Å and 2.574(4) Å) are longer than the carboxamide 

Figure 4. Association of molecules in complex 7 via hydrogen bonding. Phenyl rings are omitted for
clarity, only ipso carbon is maintained.

Complex 6 can be seen as chains of silver atoms in which the thiophene-phosphine group is acting
as a bidentate bridging ligand through the P atom and the O of the carboxamide group atom (Figure 5).
In addition, each triflate anion is bonded to two silver atoms of different chains that lead to a 3D array.
The silver atom is in a highly distorted tetrahedral geometry. The angles around the silver center range
from 77.4(2)◦ to 155.0(1)◦. The bond lenghts are normal in tetra-coordinated silver compounds, with
Ag–P distance of 2.380(2) Å and Ag–O carboxamide distance of 2.265(4) Å, whereas the Ag–O triflate
bonds (2.444(4) Å and 2.574(4) Å) are longer than the carboxamide oxygen. However, these Ag–O
distances are shorter than the usually found in silver-triflate complexes with weak bonds [27,28].
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2.3. Biological Studies

The cytotoxic activity of ligand L and the gold and silver complexes 1–12 were tested against four
different tumor cell lines: A-549 (human lung carcinoma), Hep-G2 (human liver cancer), NIH-3T3
(mouse embryonic fibroblast) or PC12 (pheochromocytoma of the rat adrenal medulla) and comparison
with that of cisplatin has been performed [29–31].

Compounds L and 1–10 are not water-soluble, but they are soluble in DMSO and
in the DMSO/water mixtures used in to perform the tests, containing a small amount of
DMSO, concentrations up to 100 µM. No precipitation of the compounds, or metallic gold or
silver was observed while performing the tests. Their DMSO-d6 solutions are stable at room
temperature, according to the 1H NMR spectra in which the same resonances were present
for more than two weeks. Cells were exposed to various concentrations of each compound for
a total of 48 h. The IC50 values were calculated using the colorimetric MTT viability assay,
(MTT = 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide). The final concentration of
DMSO was <0.1%. IC50 values are necessary concentrations of a drug to inhibit tumor cell proliferation
by 50%, compared to the control cells treated with DMSO alone. The IC50 values for L and complexes
1–12 are collected in Table 1.

Table 1. IC50 of L and complexes 1–12 at 48 h (µM).

IC50 (µM)

Complex A-549 Hep-G2 NIH-3T3 PC-12

L >100 >100 >100 >100
1 48.9 ± 2.1 17.1 ± 1.1 1.4 ± 0.09 0.5 ± 0.1
2 >100 16.9 ± 1.2 2.8 ± 0.9 1.6 ± 0.8
3 10.6 ± 1.4 56 ± 3.5 39.37 ± 2.2 1.6 ± 0.7
4 >100 >100 >100 >100
5 20.8 ± 2.1 10.0 ± 1.1 4.0 ± 0.8 1.1 ± 0.6
6 12.5 ± 1.2 78.9 ± 2.4 20.8 ± 1.8 6.9 ± 1.0
7 45.1 ± 2.7 5.9 ± 1.7 3.0 ± 1.2 1.0 ± 0.5
8 24.5 ± 1.8 6.7 ± 2.3 2.1 ± 0.4 0.5 ± 0.2
9 >100 14.1 ± 2.5 6.1 ± 1.9 1.3 ± 0.4

10 >100 15.8 ± 2.4 6.3 ± 1.7 2.7 ± 1.0
11 9.9 ± 1.4 5.9 ± 1.1 2.9 ± 0.9 -
12 65.7 ± 3.4 >100 13.7 ± 2.4 -

Cisplatin 64 25 ± 3.1 145 ± 13 -
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The IC50 values listed in Table 1 showed that the tested thiophene amidophosphine ligand
(L) did not show significant antiproliferative activity and neither the gold(III) complex bearing
pentafluorophenyl groups (4). However, the rest of the compounds were quite effective as cytotoxic
agents against in vitro growth of the tested cancer cell lines. They showed certain selectivity in their
cytotoxic action, being the A549 and the Hep-G2 cell lines the more resistant and the PC-12 the most
sensitive in all the tested compounds.

The bis(amidophosphine) gold (1) or silver (5) complexes exhibited excellent activities
with low IC50 values in all the cell lines, especially the silver species 5 showed IC50 values
ranging from 1.1 to 20.8 cells. The chloro-gold derivative 2 did not show significant activity
in A549 cancer cells, whereas presented excellent results in the other cell lines. Surprisingly,
the gold(I) species with a pentafluorophenyl moiety 3 showed very good activity in A549 cancer
cells, in contrast to the lower activity observed in our group for other gold complexes with
pentafluorophenyl ligands. The best results in the thiolate gold derivatives were achieved with
the 2,3,4,6-tetra-6-acetyl-1-thiol-β-D-glucopyranosato ligand, complex 11, for which excellent activities
were obtained in all the cancer cell lines.

With these results is possible to get some interesting structure activity relationships.
The tested thiophene amidophosphine derivatives showed excellent activities in PC-12 and
NIH-3T3 cell lines. Interestingly, the gold complexes exhibited slightly better activity than the
silver compounds with the exception of the A549 cell line for which the silver species are more
active. The best results were obtained for the thiolate-gold derivatives, specifically with the
2,3,4,6-tetra-6-acetyl-1-thiol-β-D-glucopyranosato ligand, although in general the other thiolate gold
complexes presented dissimilar IC50 values depending on the cell line. Excellent values were also
achieved with the bis(phosphine) gold and silver complexes, probably because of their cationic
character. Practically in most of the cases the antiproliferative activity was superior to that presented
by cisplatin.

3. Experimental Section

3.1. Instrumentation

Mass spectra were recorded on a BRUKER ESQUIRE 3000 PLUS (Bruker, Bremen, Germany),
with the electrospray (ESI) technique and on a BRUKER MICROFLEX (MALDI-TOF) (Bruker, Bremen,
Germany), using Dithranol or a T-2-(3-(4-tbutyl-phenyl)-2-methyl-2-propenylidene)malononitrile as a
matrix. NMR spectra were recorded with a Bruker ARX 400 spectrometer (Bruker, Bremen, Germany)
(1H, 400 MHz and 19F, 376.5 MHz). Chemical shifts are reported in ppm relative to the residual solvent
peak [1H (CD3)2CO: 2.05] and CFCl3, respectively.

3.2. Starting Materials

[AuCl(tht)], [Au(C6F5)(tht)] [32], [Au(tht)2]OTf [33,34] and [Au(C6F5)3(tht)] [32], were prepared
according to literature procedures. Other starting materials and solvents are commercially available.

3.3. General Procedure for the Synthesis of Ligand L and Complexes 1–6

Synthesis of 2-(diphenylphosphino)ethylamine-2-carbonylthiophene (L): To a solution of
2-(diphenylphosphino)ethylamine (46 µL, 0.2 mmol) in CH2Cl2 (20 mL) was added triethylamine
(60 µL, 0.43 mmol). After stirring the solution for 10 min at room temperature, it was poured onto an
ice bath and a solution of 2-chlorocarbonylthiophene in CH2Cl2 (20 mL) was added dropwise and
stirred overnight. An aqueous solution of NaHCO3 (30 mL) was added and the two phases were
separated. The organic phase was dried with anhydrous Na2SO4. The solvent was evaporated to ca.
5 mL and hexane (20 mL) was added to obtain a white solid. 80% yield. 1H NMR (CDCl3) δ (ppm):
7.45 (m, 6H, Ph, H3, H5), 7.34 (m, 6H, Ph), 7.02 (dd, J = 4.8 Hz, 3.6 Hz, 1H, H4), 6.25 (m, br, 1H, NH),
3.61 (m, 2H, –CH2N–), 2.42 (t, J = 7.2 Hz, 2H, –CH2P–). 13C{1H} NMR (CDCl3) δ (ppm): 161.76 (C=O),
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138.99 (C2), 137.70 (d, 1JPC = 11.7 Hz, ipso-C6H5), 132.87 (d, 2JPC = 18.8 Hz, o-C6H5), 129.98 (C3), 129.04
(p-C6H5), 128.79 (d, 3JPC = 6.9 Hz, m-C6H5), 128.01 (C5), 127.64 (C4), 37.56 (d, 2JC–P = 19.9 Hz, –CH2N–),
28.63 (d, 1JC–P = 13.3 Hz, –CH2P–). 31P{1H} NMR (CDCl3) δ (ppm): −20.64.

Synthesis [AuL2]OTf (1): To a solution of L (0.1018 g, 0.30 mmol) in CH2Cl2 (20 mL), [Au(tht)2]OTf
(0.0783 g, 0.15 mmol) was added and the solution was stirred for 1 h. Evaporation of the solvent to ca.
5 mL and addition of hexane (15 mL) gave a white solid of 1. 73% yield. 1H NMR (CDCl3) δ (ppm):
7.79 (m, 2H, NH), 7.53 (m, 10H, Ph, H3), 7.39 (m, 14H, Ph, H5), 6.92 (dd, J = 4.9, 3.9 Hz, 2H, H4), 3.70
(m, 4H, –CH2N–), 2.82 (t, J = 6.4 Hz, 4H, –CH2P–). 13C{1H} NMR (CDCl3) δ (ppm): 162.96 (C=O),
138.84 (C2), 133.08 (o-C5H4), 131.28 (p-C5H4), 130.37 (C3), 129.47 (m-C5H4), 128.66 (C5), 127.96 (C4),
36.83 (–CH2N–), 27.70 (–CH2P–). 31P{1H} NMR (CDCl3) δ (ppm): 36.99. 19F NMR (CDCl3) δ (ppm):
−78.4. MS (ESI+) m/z: [M]+ 875.3 (100%). C39H36AuF3N2O5P2S3 (1024.8) calcd. C 45.70, H 3.54, N 2.73,
S 9.37; found C 45.48, H 3.35, N 2.73, S 8.97.

Synthesis of [AuClL] (2): To a solution of L (0.15 mmol) in CH2Cl2 (20 mL), [AuCl(tht)] (0.15 mmol)
was added and the mixture was stirred for 1 h. Then, the solution was evaporated to ca. 5 mL and
addition of hexane (15 mL) afforded a white solid of 2. 94% yield. 1H NMR (CDCl3) δ (ppm): 7.69 (m,
4H, Ph), 7.45 (m, 8H, Ph, H3, H5), 7.03 (dd, J = 4.7, 4.0 Hz, 1H, H4), 6.69 (m, 1H, NH), 3.74 (m, 2H,
–CH2N–), 2.91 (dt, J = 10.9 Hz, 7.1 Hz, 2H, –CH2P–). 13C{1H} NMR (CDCl3) δ (ppm): 162.44 (C=O),
138.22 (C2), 133.30 (d, 2JPC = 13.3 Hz, o-C6H5), 132.28 (p-C6H5), 130.62 (C3), 129.55 (d, 3JPC = 11.8 Hz,
m-C6H5), 128.84 (d, 1JPC = 42.2 Hz, ipso-C6H5), 128.44 (C5), 127.90 (C4), 36.98 (d, 2JC–P = 5.6 Hz,
–CH2N–), 28.35 (d, 1JC–P = 39.1 Hz, –CH2P–). 31P{1H} NMR (CDCl3) δ (ppm): 24.55. C19H18AuClNOPS
(571.8) calcd. C 39.91, H 3.17, N 2.45, S 5.61; found C 39.61, H 3.08, N 2.60, S 5.39.

Synthesis of [Au(C6F5)L] (3): To a solution of L (0.15 mmol) in CH2Cl2 (20 mL), [Au(C6F5)(tht)]
(0.15 mmol) was added and the solution was stirred for 1 h. Evaporation of the solvent to ca. 5
mL and addition of hexane (15 mL) gave a white solid of 3. 75% yield. 1H NMR (CDCl3) δ (ppm):
7.66 (m, 4H, Ph), 7.51 (d, J = 3.3 Hz, 1H, H3), 7.40 (m, 7H, Ph, H5), 7.07 (t, J = 5.5 Hz, 1H, NH), 7.0
(m, 1H, H4), 3.70 (m, 1H, –CH2N–), 2.89 (m, 1H, –CH2P–). 13C{1H} NMR (CDCl3) δ (ppm): 162.36
(C=O), 137.15 (C2), 133.48 (d, 2JPC = 13.4 Hz, o-C6H5), 132.01 (d, 4JPC = 2.1 Hz, p-C6H5), 130.55 (C3),
130.06 (d, 1JPC = 53.8 Hz, ipso-C6H5), 129.61 (d, 3JPC = 11.2 Hz, m-C6H5), 128.36 (C5), 127.67 (C4), 36.88
(d, 2JC–P = 6.2 Hz, –CH2N–), 28.57 (d, 1JC–P = 33.3 Hz, –CH2P–). 31P{1H}-NMR (CDCl3) δ (ppm): 24.24.
19F NMR (CDCl3) δ (ppm): −116.13 (m, 2F, o-C6F5), −157.81 (t, JF–F = 19.96 Hz, 1F, p-C6F5), −161.97
(m, 2F, m-C6F5). C25H18AuF5NOPS (703.4) calcd. C 42.68, H 2.58, N 1.99, S 4.56; found C 42.65, H 2.84,
N 2.01, S 4.73.

Synthesis of [Au(C6F5)3L] (4): To a solution of L (0.15 mmol) in CH2Cl2 (20 mL), [Au(C6F5)3(tht)]
(0.15 mmol) was added and the mixture stirred for 1 h. Then the solution was evaporated to ca. 5 mL
and added hexane (15 mL) to obtain a white solid of 4. 72% yield. 1H NMR (CDCl3) δ (ppm): 7.53
(m, 11H, Ph, H3), 7.41 (dd, J = 3.7, 1.0 Hz, 1H, H5), 7.08 (dd, J = 4.9, 3.8 Hz, 1H, H4), 6.14 (t, J = 5.9 Hz,
1H, NH), 3.50 (m, 2H, –CH2N–), 2.90 (m, 2H, –CH2P–). 13C{1H} NMR (CDCl3) δ (ppm): 162.35 (C=O),
137.62 (C2), 133.11 (d, 4JPC = 2.7 Hz, p-C6H5), 132.76 (d, 2JPC = 10.4 Hz, o-C6H5), 130.94 (C3), 129.53 (d,
3JPC = 11.6 Hz, m-C6H5), 128.77 (C5), 128.01 (C4), 123.18 (d, 1JPC = 57.7 Hz, ipso-C6H5), 35.93 (–CH2N–),
25.59 (d, 1JC–P = 29.6 Hz, –CH2P–). 31P{1H} NMR (CDCl3) δ (ppm): 11.26 (q, JP–F = 11.10 Hz). 19F NMR
(CDCl3) δ (ppm): −120.34 (m, 4F, o-C6F5), −121.51 (m, 2F, o-C6F5), −155.95 (t, JF–F = 19.92 Hz, 2F,
p-C6F5), −156.80 (t, JF–F = 19.85 Hz, 1F, p-C6F5), −159.94 (m, 4F, m-C6F5), −160.79 (m, 2F, m-C6F5). MS
(ESI+) m/z: [M−C6F5]+ 870.1 (25.8%). C37H18AuF15NOPS (1037.5) calcd. C 42.83, H 1.75, N 1.35, S 3.09;
found C 43.01, H 1.79, N 1.38, S 3.16.

Synthesis of [Ag(L)2]OTf (5): To a solution of L (0.30 mmol) in CH2Cl2 (20 mL), Ag(OTf) (0.15 mmol)
was added and the mixture stirred for 1 h. The solution was evaporated to ca. 5 mL and addition of
hexane (15 mL) afforded a white solid of 5. 77% yield. 1H NMR (CDCl3) δ (ppm): 8.35 (t, J = 5.5 Hz, 2H,
NH), 7.67 (m, 8H, Ph), 7.48 (m, 14H, Ph, H3), 7.36 (d, J = 4.9 Hz, 2H, H5), 6.96 (dd, J = 4.8, 3.9 Hz, 2H,
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H4), 3.82 (m, 4H, –CH2N–), 3.12 (m, br, 4H, –CH2P–). 13C{1H} NMR (CDCl3) δ (ppm): 163.05 (C=O),
139.04 (C2), 133.37 (d, 2JPC = 6.9 Hz, o-C6H5), 132.39 (p-C6H5), 130.37 (C3), 129.87 (d, 3JPC = 5.4 Hz,
m-C6H5), 128.89 (C5), 128.19 (d, 1JPC = 28.8 Hz, ipso-C6H5), 128.14 (C4), 36.20 (–CH2N–), 27.82 (2d,
JC–P= 16.9 Hz, –CH2P–). 31P{1H} NMR (CD2Cl2, −85 ◦C) δ (ppm): 6.44 (d, JP–Ag = 527.1 Hz). 19F NMR
(CDCl3) δ (ppm): −77.75. MS (MALDI+) m/z: [M]+ 787.2 (100%). C39H36AgF5N2O5P2S3 (935.7) calcd.
C 50.06, H 3.88, N 2.99, S 10.28; found C 49.98, H 4.01, N 2.92, S 9.90.

Synthesis of [Ag(OTf)L] (6): To a solution of L (0.15 mmol) in CH2Cl2 (20 mL), Ag(OTf) (0.15 mmol)
was added and the solution was stirred for 1 h. Then the solution was evaporated to ca. 5 mL and
addition of hexane (15 mL) led to a white solid. 62% yield. 1H NMR (CDCl3) δ (ppm): 7.82 (m,
br, 1H, NH), 7.55 (m, br, 4H, Ph), 7.46 (m, br, 1H, H3), 7.35 (m, br, 7H, H5), 6.90 (m, 1H, H4), 3.76
(m, br, 2H, –CH2N–), 2.80 (m, br, 2H, –CH2P–). 31P{1H} NMR (Acetone-d6, −85 ◦C) δ (ppm): 3.27
(d, JP–Ag = 708.8 Hz). 19F NMR (CDCl3) δ (ppm): −77.49. C20H18AgF5NO4PS2 (596.31) calcd. C 40.28,
H 3.04, N 2.35, S 10.75; found C 40.15, H 3.16, N 2.42, S 11.04.

3.4. General Procedure for the Synthesis of Phosphinegold(I) Thionucleobase Analogues 7–12

A suspension of thionucleobase (0.2 mmol) and K2CO3 (1 mmol) in CH2Cl2 (15 mL) was stirred
for 30 minutes. Then, the chlorophosphinegold(I) complex (0.2 mmol) was added and the suspension
was stirred overnight. The solution was filtrated and the solvent was evaporated until ca. 5 mL and
added hexane (15 mL) to obtain a solid of the corresponding complex.

[Au(2-thiocytosine)L] (7): White solid, 60% yield. 1H NMR (Acetone-d6) δ (ppm): 8.70 (m, br, 1H,
NH), 7.92 (m, 4H, Ph), 7.76 (d, J = 5.77 Hz, 1H, H6), 7.60 (m, 2H, H3’,H5’), 7.53 (m, 6H, Ph), 7.02 (dd,
J = 5.0, 3.8 Hz, 1H, H4’), 6.13 (d, J = 5.79 Hz, 1H, H5), 5.93 (m, br, 2H, NH2), 3.79 (m, 2H, –CH2N–), 3.08
(m, 2H, –CH2P–). 13C{1H} NMR (Acetone-d6) δ (ppm): 163.89 (C4), 162.58 (C=O), 155.36 (C6), 140.64
(C2’), 134.29 (d, 2JPC = 13.6 Hz, o-C6H5), 132.47 (d, 4JPC = 2.3 Hz, p-C6H5), 131.85 (d, 1JPC = 55.1 Hz,
ipso-C6H5), 131.05 (C3’), 130.12 (d, 3JPC = 11.3 Hz, m-C6H5), 128.86 (C5’), 128.35 (C4’), 100.70 (C5), 37.37
(d, J = 7.8 Hz, –CH2N–), 28.85 (d, J = 35.2 Hz, –CH2P–). 31P{1H} NMR (Acetone-d6) δ (ppm): 31.03. MS
(ESI+) m/z: [M]+ 663 (100%). C23H22AuN4OPS2 (662.5) calcd. C 41.69, H 3.35, N 8.46, S 9.68; found C
41.55, H 3.13, N 8.42, S 10.15.

[Au(2-thiopyridine)L] (8): Yellow solid, 55% yield. 1H NMR (Acetone-d6) δ (ppm): 8.59 (m, br, 1H,
NH), 8.18 (d, br, J = 5.0 Hz, 1H, H6), 7.93 (m, 4H, Ph), 7.60 (dd, J = 5.0, 1.1 Hz, 1H, H4), 7.57 (dd, J = 3.8,
1.1 Hz, 1H, H3), 7.53 (m, 6H, Ph), 7.38 (m, 2H, H5’, H3’), 7.00 (dd, J = 5.0, 3.8 Hz, 1H, H5), 6.88 (td,
J = 4.9, 3.6 Hz, 1H, H4’), 3.79 (m, 2H, –CH2N–), 3.11 (m, 2H, –CH2P–). 13C{1H} NMR (Acetone-d6)
δ (ppm): 169.33 (C2), 162.50 (C=O), 148.97 (C6), 140.65 (C2’), 136.46 (C4), 134.28 (d, 2JPC = 13.6 Hz,
o-C6H5), 132.52 (d, 4JPC = 2.3 Hz, p-C6H5), 131.69 (d, 1JPC = 55.4 Hz, ipso-C6H5), 131.03 (C3’), 130.13
(d, 3JPC = 11.3 Hz, m-C6H5), 128.79 (C5’), 128.30 (C4’), 127.06 (C5), 118.79 (C3), 37.32 (d, J = 7.4 Hz,
–CH2N–), 28.72 (d, J = 35.3 Hz, –CH2P–). 31P{1H} NMR (Acetone-d6) δ (ppm): 35.31. C24H22AuN2OPS2

(646.5) calcd. C 44.59, H 3.43, N 4.33, S 9.90; found C 44.65, H 3.28, N 4.34, S 9.93.

[Au(2-thiouracil)L] (9): White solid, 62% yield. 1H NMR (CDCl3) δ (ppm): 8.70 (m, br, 1H, NH), 7.63
(m, 4H, Ph), 7.50 (m, 2H, H6, H3’), 7.37 (m, 7H, Ph, H5’), 6.92 (dd, J = 5.0, 3.8 Hz, 1H, H4’), 6.05
(d, J = 5.6 Hz, 1H, H5), 3.69 (m, 2H, –CH2N–), 2.88 (m, 2H, –CH2P–). 13C{1H} NMR (CDCl3) δ (ppm):
162.84 (C=O), 138.84 (C2’), 133.24 (d, 2JPC = 13.4 Hz, o-C6H5), 131.85 (p-C6H5), 130.26 (C3’), 129.64
(d, 1JPC = 57.4 Hz, ipso-C6H5), 129.35 (d, 3JPC = 11.5 Hz, m-C6H5), 128.70 (C5’), 127.72 (C4’), 109.89 (C5),
36.95 (d, J = 3.5 Hz, –CH2N–), 28.72 (d, J = 36.8 Hz, –CH2P–). 31P{1H} NMR (CDCl3) δ (ppm): 30.59.
MS (ESI+) m/z: [M]+ 663.8 (38.34%). C23H21AuN3O2PS2 (663.5) calcd. C 41.63, H 3.19, N 6.33, S 9.67;
found C 41.55, H 3.18, N 6.50, S 10.11.

[Au(2-thionicotinic acid)L] (10): Yellow solid, 57% yield. 1H NMR (CDCl3) δ (ppm): 9.36 (m, br, 1H,
OH), 7.70–7.00 (m, 14H, Ph, H6, H4, H5, H3’, H5’), 6.72 (m, br, 1H, H4’), 6.31 (m, br, 1H, NH), 3.50–3.45
(m, 2H, –CH2N–), 2.56 (m, br, 2H, –CH2P–). 31P{1H} NMR (CDCl3) δ (ppm): 28.91. MS (ESI+) m/z: [M]+
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691 (100%). C25H22AuN2O3PS2 (690.1) calcd. C 43.48, H 3.21, N 4.06, S 9.27; found C 43.52, H 3.03, N
3.93, S 8.55.

[Au(thioglucose)L] (11): White solid, 65% yield. 1H NMR (Acetone-d6) δ (ppm): 7.94 (m, 5H, Ph, NH),
7.64 (dd, J = 5.0, 1.0 Hz, 1H, H3’), 7.55 (m, 7H, Ph, H5’), 7.07 (dd, J = 5.0, 3.8 Hz, 1H, H4’), 5.18 (t,
J = 9.4 Hz, 1H, H5), 5.07 (t, J = 9.7 Hz, 1H, H4), 5.00 (m, 2H, H6, H1), 4.24 (dd, J = 12.3, 4.8 Hz, 1H,
–CH2–), 4.09 (dd, J = 12.3, 2.2 Hz, 1H, –CH2–), 3.92 (m, br, 1H, H3), 3.77 (m, 2H, –CH2N–), 3.17 (m, 1H,
–CH2P–), 3.00 (m, 1H, –CH2P–), 1.98 (s, 6H, –COCH3), 1.91 (s, 6H, –COCH3). 13C{1H} NMR (CDCl3)
δ (ppm): 170.29, 169.69 (O–C=O), 162.50 (N–C=O), 138.80 (C3’), 133.49 (d, 2JPC = 13.6 Hz, o-C6H5),
133.11 (d, 2JPC = 13.4 Hz, o-C6H5), 131.73 (d, 4JPC = 2.5 Hz, p-C6H5), 131.65 (d, 4JPC = 2.5 Hz, p-C6H5),
130.37 (d, 1JPC = 55.4 Hz, ipso-C6H5), 130.21 (C3’), 130.04 (d, 1JPC = 55.6 Hz, ipso-C6H5), 129.43 (d,
3JPC = 5.9 Hz, o-C6H5), 129.28 (d, 3JPC = 5.9 Hz, m-C6H5), 128.24 (C5’), 127.43 (C4’), 76.16 (C3), 74.29
(C5, C6, C1), 68.84 (C4), 62.60 (–CH2–), 37.66 (d, J = 4.6 Hz, –CH2N–), 28.10 (d, J = 34.9 Hz, –CH2P–),
21.42, 20.77 (CH3–COOCH2). 31P{1H} NMR (Acetone-d6) δ (ppm): 31.49. MS (ESI+) m/z: [M]+ 900.3
(45.70%). C33H37AuNO10PS2 (899.7) calcd. C 44.04, H 4.15, N 1.56, S 7.13; found C 43.96, H 4.14, N 1.47,
S 6.99.

[Au(6-thiopurine)L] (12): White solid, 57% yield. 1H NMR (Acetone-d6) δ (ppm): 9.77 (m, br, 1H,
NH), 8.34 (s, 1H, H9), 8.03 (s, 1H, H5), 7.96 (m, 4H, Ph), 7.50 (m, 8H, Ph, H5’, NH, H3’), 6.79 (dd,
J = 4.9, 3.8 Hz, 1H, H4’), 3.84 (m, 2H, –CH2N–), 3.08 (m, 2H, –CH2P–). 13C{1H} NMR (Acetone-d6)
δ (ppm): 162.55 (C=O), 134.31 (d, 2JPC = 11.5 Hz, o-C6H5), 132.36 (s, p-C6H5), 130.23 (C3’), 130.06
(d, 3JPC = 9.4 Hz, m-C6H5), 129.91 (C5’), 128.51 (C4’). 31P{1H} NMR (Acetone-d6) δ (ppm): 26.82. MS
(ESI+) m/z: [M]+ 691 (100%). C24H21AuN5OPS2 (687.1) calcd. C 41.93, H 3.08, N 10.17, S 9.33; found C
42.24, H 3.12, N 9.71, S 8.55.

3.5. Cristallography

Crystals were mounted in inert oil on glass fibers and transferred to the cold gas stream of Xcalibur
Oxford Diffraction (3, 6) or a SMART Apex CCD (7) diffractometer equipped with a low-temperature
attachment. Data were collected using monochromated Mo Kα radiation (λ = 0.71073 Å). Scan typeω.
Absorption correction based on multiple scans was applied using spherical harmonics implemented in
SCALE3 ABSPACK [35] scaling algorithm or SADABS. The structures were solved by direct methods
and refined on F2 using the program SHELX [36]. All non-hydrogen atoms were refined anisotropically,
with the exception of some solvent atoms. Refinements were carried out by full-matrix least-squares
on F2 for all data. CCDC 1881668 (6), 1881669 (7) and 1881670 (3) contains the Supplementary
crystallographic data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3.6. Cell Culture

HEP-G2 cells (human hepatocellular carcinoma cells), NIH-3T3 cells (mouse fibroblasts), A-549
cells (human lung carcinoma cells), and PC12 (pheochromocytoma of the rat adrenal medulla). All cell
lines were cultivated in Dulbecco’s Modified Eagle’s medium (DMEM, D7777 Sigma-Aldrich, Madrid,
Spain) supplemented with with 10% fetal bovine serum (FBS) and 1% antibiotics (penicillin/ 100U/mL
and streptomycin/ 100µg/mL) in a humidified environment at 37 ◦C/5% CO2. After three to four
days the cells were then detached with trypsin and cultured in another cell culture flask. Wells of a
96 well plate were seeded with the cells and incubated for three days. At day 4 the medium of each
well was removed and 200 µL of the gold and silver complexes in different concentrations in the cell
culture medium were added to the wells (1–100 µM). The cells were cultivated for two additional days
and then, the viability of the cells was determined by the MTT-assay.
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3.7. Cytotoxicity MTT Assay

The MTT assay was used to calculate cell viability. Exponentially growing cells were seeded at
a density of ~4 × 105 cells/mL, in a 96-well microplate, and 48 h later they were incubated with the
complexes. The compounds were dissolved in DMSO and tested in concentrations ranging from 1 to
100 µM.

Cytotoxicity of tested compounds was evaluated by the MTT method [37]. The optical density
was measured at 570 nm using a 96-well multiscanner autoreader. The IC50 values were calculated by
non-linear regression analysis using Origin software (Origin Software, Electronic Arts, Redwood City,
CA, USA)

4. Conclusions

A new amidophosphine ligand bearing a thiophene moiety has been synthesized and the
coordination behaviour towards gold and silver complexes has been studied. The coordination
of the gold(I/III) or silver(I) fragments takes place through the phosphorus atom. In contrast
for the silver species coordination to the phosphorus atom together with the oxygen atoms of
the carbonyl and triflate groups is observed. The crystal structures of some of these derivatives
present supramolecular structures through hydrogen bonding. Cytotoxicity studies in several
cancer lines, such as A-549, Hep-G2 or NIH-3T3 and PC-12 have been performed for the ligand
and all the synthesized complexes, showing that whereas the thiophene amidophosphine lacks
activity, the gold and silver complexes exhibit moderate to excellent activities in all the cell lines.
From the structure activity relationship perspective is possible to conclude that the best activities
are achieved with the cationic bis(amidophosphine) species and with the thiolate derived from
the 2,3,4,6-tetra-6-acetyl-1-thiol-β-D-glucopyranosato ligand. In general, gold complexes are more
cytotoxic than the silver ones, with the exception of the A-549 cell line. The cytotoxicity values are
much better than those exhibited by cisplatin.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6740/7/2/13/s1,
CIF and checkCIF files.
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