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Abstract: The Precise consistency consensus matrix (PCCM) is a consensus matrix for AHP-group
decision making in which the value of each entry belongs, simultaneously, to all the individual
consistency stability intervals. This new consensus matrix has shown significantly better behaviour
with regards to consistency than other group consensus matrices, but it is slightly worse in terms
of compatibility, understood as the discrepancy between the individual positions and the collective
position that synthesises them. This paper includes an iterative algorithm for improving the
compatibility of the PCCM. The sequence followed to modify the judgments of the PCCM is given by
the entries that most contribute to the overall compatibility of the group. The procedure is illustrated
by means of its application to a real-life situation (a local context) with three decision makers and four
alternatives. The paper also offers, for the first time in the scientific literature, a detailed explanation
of the process followed to solve the optimisation problem proposed for the consideration of different
weights for the decision makers in the calculation of the PCCM.

Keywords: Analytic Hierarchy Process (AHP); group decision making; consistency; compatibility

1. Introduction

One of the multicriteria decision making techniques that best responds to the challenges and needs
of the Knowledge Society [1], especially the consideration of intangible aspects and decision-making
with multiple actors, is the Analytical Hierarchy Process (AHP). AHP was proposed by Thomas L. Saaty
in the early 1970s (20th century) [2]. This multicriteria technique incorporates the intangible aspects
associated with the human factor through the use of pairwise comparisons. In group decision-making,
where all the actors work as a single unit, AHP usually follows one of the two most traditional
approaches [3-5]: the Aggregation of Individual Judgements (Al]) and the Aggregation of Individual
Priorities (AIP).

Both methods present two important limitations that have been addressed in some of
the most recent proposals: the certainty of the data and the use of the geometric mean as
the synthesising procedure of the considered values (judgments in Al] and priorities in AIP).
Escobar and Moreno-Jiménez [6] consider the principle of certainty and incorporate the context
effect through the procedure called the Aggregation of Individual Preference Structures (AIPS).
Altuzarra et al. [7] advance a Bayesian approach as a prioritisation procedure and a group
decision-making aggregation procedure.

The concept of consistency [2] is one of the characteristics that distinguishes AHP from the other
multicriteria techniques and gives coherence to the method; Moreno-Jiménez et al. [8-10] used this to
design a new procedure for group decision making: the Consistency Consensus Matrix (CCM). Under
certain conditions, the CCM automatically provides an interval judgement matrix where each entry
reflects the range of values in which all decision makers would simultaneously be consistent in their
initial matrices.
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One limitation of this new decision-making tool is that the CCM is sometimes incomplete.
The Precise Consistency Consensus Matrix (PCCM) has been proposed [11,12] to respond to this
limitation by including more judgments in the group consensus matrix and allowing decision makers
to have different weights assigned in the resolution of the problem. This new consensus matrix has,
by construction, demonstrated good behaviour with respect to consistency, but it can be improved
with respect to compatibility, understood as the discrepancy between the individual positions and the
collective position that synthesises them.

This work presents a procedure to improve the compatibility of the PCCM guaranteeing that the
consistency does not exceed a predetermined level. Compatibility is improved by modifying those
judgments of the PCCM that most contribute to the global compatibility, with the idea of reducing this
contribution. The combination of what happens to the consistency and the compatibility will allow
selecting, as the preferred option, the one that most improves the cumulative relative changes of the
two criteria (consistency and compatibility).

The paper is structured as follows: Section 2 gives the background to the developments; Section 3
describes the PCCM and the algorithm that solves the optimisation problem that aims to find the
precise value that maximises the slack of consistency that remains free for the following steps when the
actors have different weights; Section 4 explains the proposal for improving the compatibility of the
PCCM and applies it to a case study; Section 5 highlights the most important conclusions of the study.

2. Background

2.1. Multiactor Decision Making (MADM)

As previously mentioned, consistency (coherence of decision makers in eliciting their judgments)
and a good behaviour in the decision-making with multiple actors are two of the most important
properties for multicriteria decision making techniques. [6,13] distinguish three areas in multi-actor
decision-making: (i) Group Decision Making (GDM); (ii) Negotiated Decision Making (NDM); and (iii)
Systemic Decision Making (SDM).

In GDM, individuals work together in pursuit of a common goal under the principle of consensus.
Consensus refers to the approach, model, tools, and procedures for deriving the collective position or
final group priority vector.

NDM is based on the principle of agreement and the assumption that all the actors follow the
same scientific approach. The individuals resolve the problem separately, the zones of agreement
and disagreement between the actors are identified and agreement paths (sometimes known as
consensus paths) are constructed by changing, in a personal, semiautomatic or automatic way, one or
several judgements.

SDM follows the principle of tolerance: the individual acts independently and the individual
preferences, expressed as probability distributions, are aggregated to form a collective one—the
tolerance distribution. This new approach integrates all the preferences, even if they are provided
from different ‘individual theoretical models’; the only requirement is that they must be expressed as
some kind of probability distribution.

The systemic situation for dealing with multiactor decision making allows capturing the holistic
vision of reality and the subjacent ideas of lateral thinking [14]. The information provided by the
tolerance distribution can be used to construct tolerance paths to produce a more democratic and
representative final decision. In other words, a decision will be accepted by a greater number of actors
or by a number of actors with greater weighting in the decisional process [15,16].

2.2. Analytic Hierarchy Process

The Analytic Hierarchy Process is one of the most widely utilised multicriteria decision making
techniques. Its methodology consists of three phases [2]: (a) modelling, (b) valuation, and, (c)
prioritisation and synthesis.
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(@) Modelling refers to the construction of a hierarchy of different levels that represent the relevant
aspects of the problem (scenarios, actors, criteria, alternatives). The mission or goal hangs on the
highest level. The subsequent levels contain the criteria, the first order subcriteria, the second
order, etc. This continues to the last order subcriteria or attributes (characteristics of the reality
that are susceptible to be measured for the alternatives); the alternatives hang from the lowest
subcriteria level (attributes).

(b) Valuation involves the incorporation of the preferences of the decision makers via pairwise
comparisons of the elements that hang from the nodes of the hierarchy in relation to the common
node. The judgements follow Saaty’s fundamental scale [2] and reflect the relative importance
of one element with respect to another with regards to the criterion that is considered. They are
expressed in reciprocal pairwise comparison matrices.

(c) Prioritisation and synthesis determines the local, global and total priorities. Local priorities
(priorities of the elements of the hierarchy with regards to the node from which they hang)
are obtained from the pairwise comparison matrices using any of the existing prioritisation
procedures. The Eigenvector (EGV) and the Row Geometric Mean (RGM) are the two most
commonly employed. Global priorities (the priorities of the elements of the hierarchy with
regards to the mission) are obtained through the principle of hierarchical composition, whilst
Total priorities (the priorities of the alternatives with regards to the mission) are obtained by a
multiadditive aggregation of the global priorities of each alternative.

In the AHP-group decision making context, the two techniques traditionally used are: (i) the
Aggregation of Individual Judgements (AIJ) and (ii) the Aggregation of Individual Priorities (AIP);
firstly, it is necessary to specify the notation that will be utilised. Given a local context (one criteria
in the hierarchy) with n alternatives (Aj,...,A,;) and r decision makers (D1,...,Dr), let A® (a ) be
the pairwise comparison matrix of decision-maker Dk (k =1,...,7; i, j = 1,...,n) and 7t} be the relatlve

importance in the group (71, > 0, Z T = 1).

The priorities following the two approaches AlJ and AIP are obtained as follows:

e Aggregation of Individual Judgements: The individual pairwise comparison matrices APk =

1,...7, are first aggregated to obtain a new judgement matrix for the group A(®) = (a ) Then,

the priority vector w(©/)) = (w; (/1) ) is derived from this new matrix using one of the existing
prioritisation methods.
e  Aggregation of Individual Priorities: The priority vectors are first obtained for each individual,

(k))

wh) = (w;"’) and k = 1,...,r, using one of the existing prioritisation methods and then aggregated to

obtain the priorities of the group w(/") = (wl(G/ P)).

Using the Weighted Geometric Mean Method (WGMM) as the aggregation procedure, the group
judgement matrix and the group priority vector are given by:

. A<G>( )w1th11 nkl( N =1,

o wG/D= ( G/P)w1thwG/P =TTy (w k))nk,izl,...,n

When the WGMM aggregation procedure is employed and the priorities are obtained using the
RGM, the two approaches, AlJ and AIP, provide the same solution [17,18].

2.3. Consistency and Compatibility in AHP

AHP allows for the evaluation of the consistency of the decision-maker when the judgements
are introduced into the pairwise comparison matrices. Saaty [2] defined consistency in AHP as the
cardinal transitivity of the judgements included in the pairwise comparison matrices, that is to say, the
reciprocal pairwise comparison matrix Auxn = (a;) is consistent if Vi jk = 1,...n satisfies a;;-aj = aj.
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Consistency is associated with the (internal) coherence of the decision makers when their
judgements are considered in the pairwise comparison matrices. Consistency is usually evaluated
—depending on the prioritisation procedure that is used— as the ‘representativeness’ of the local
priorities vector derived from the pairwise comparison matrices (a;j is an estimation of w;/ wj).

In the case of the EGV and RGM, the inconsistency indicators are given, respectively, by the
Consistency Index (CI) and the Geometric Consistency Index (GCI) [19]:

1 n

Cl=——— e;i—1 la

n(n_l) 1,12:1( 1] ) ( )

GCl = Y logPe;; (1b)
(n— 1 g & Cij

where ¢;; = a;i(w;/w;). Obviously, if the matrix is consistent, both indicators of inconsistency are null,
thus errors ¢;; = 1 (a;; = w;/w).

The Consistency Interval Judgement matrix for the group (GCIJA) is an interval matrix GCIJA =
([a; i ajj ) where the entries correspond to the range of values for which all the decision makers will not
exceed the maximum inconsistency allowed and will belong to the Saaty’s fundamental scale range of
values [1/9, 9].

The values that determine the limits of each entry of the GCIJA are given by a. = Max{ ;1/ 9}

and a;;= Min {ﬁ@ ; 9} where a(]k) and Eg() are the limits of the individual consistency stability interval

for a(]k) ([gg(), l(] )]) with A® = GCI* — GCI®, GCI* being the maximum inconsistency allowed for the
problem and GCI® the Geometric Consistency Index for the individual matrix A® [20].
Compatibility refers to the (internal) coherence of the group when selecting its priority vector
(@@ = @@, ... w, D)), that is to say, its representativeness in relation to the individual positions
(@® = @, ®, ... w,®)). To evaluate the compatibility of an individual k (w®), k=1, ... r with the
collective position or group priority vector(w(®)), it is sufficient to adapt the previous expression of
the GCI, taking eij = a( )( ]G) /w ) in local context or eij = (wlgk) /w](k) ) (w](G) /wEG)) in a global one.
The concept of compatlblhty reﬂects the distance between the individual and collective positions and
is calculated automatically, without the express intervention of the individual with the exception of the
emission of the initial judgements of the pairwise comparison matrices. [21] advanced the Geometric
Compatibility Index (GCOMPI) in order to evaluate the compatibility of the individual positions with
respect of the collective position provided by any of the existing procedures. The expression of the

GCOMPI for a decision maker k in a local context (one criterion) is given by:

w'®
(k G) _ wj
GCOMPI = 1 121 ] ZZH log*(a — G)) )
and in a global context (hierarchy) by:
_ ) .,,(G)
2 n w w.
kG - __ =
GCOMPI TR ; :2 w(c)) ®)

The GCOMPI for the group is given by:

(
— ZU

GCOMPI®) = Y nkGCOMPI(k'G):WZ 2 Z mlog*(a ]<>) @)
k=1,...r i= z
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In addition to the use of the GCI and the GCOMPI, two more indicators are used in the literature to
compare the behaviour of the different procedures with respect to consistency and compatibility [11,12]:
the Number of Violations in Consistency (CVN) for the consistency; and the Number of Violations in
Priorities (PVN) for the compatibility.

The CVN considers the mean number of entries of the group pairwise comparison matrix that do
not belong to the corresponding consistency stability interval judgement of each individual, calculated
for the inconsistency threshold considered in the problem. The Consistency Violation Number (CVN)
for the group is given by CVN© = £, i, CVN*®S), where

2 flij(cUA(k)/A(@) (5)

CYNKG) = =
n(n—1) i<

and

. G k) —(k
1 ifa) ¢ o)
0 otherwise

Ii]-(CI]A(k)/A(G)) = { (6)
The PVN measures the ordinal compatibility of each AHP-GDM procedure by means of the
minimum number of violations [22].
The Priority Violation Number (PVN) for the group is given by PVN(® = £, ; PVN®G), where

2

m—w-z)fbjw“‘)/A(G)) 7)

i<j

PVN*G) = PYN(AW /A©)) =

and
1 ifai(jk) > 1andw'® < w©

05 if a,.(jk) =land wi(c) # w]-(c) ®)
05 if a,(jk) # land wi(G) = ©

]
0 otherwise

(A% /A9 =

3. The Precise Consensus Consistency Matrix (PCCM)

Moreno-Jiménez et al. [9,10] proposed a decisional tool, the Consistency Consensus Matrix (CCM),
which identifies the core of consistency of the group decision using an interval matrix that may not be
complete or connected. In [12], the same authors refined this tool and introduced the PCCM, which
selects a precise value for each interval judgement in such a way that the quantity of slack that remains
free for successive algorithm iterations is the maximum possible.

Escobar et al. [11] extended the PCCM to allow the assignment of different weights to the decision
makers and to guarantee that the group consensus values were acceptable to the individuals in terms
of inconsistency. In the same work, these authors put forward a number of methods for completing
the PCCM matrix if it were incomplete.

The improved version of the algorithm for constructing the PCCM proposed in [11] starts by
calculating the variance of the logarithms of the corresponding judgements, taking into account the
fact that decision makers may have different weights. It also provides (Step 1) the initial Consistency
Stability Intervals [20] for the individuals and for the group (GCIJA). The judgement with least
variance (Step 2) that has a non-null intersection for the initial individual consistency stability intervals
is selected. The consistency stability intervals for each decision maker are calculated for this judgement
(Step 3) and the intersection of all these intervals is obtained (Step 4). In this common interval, it is
guaranteed that the individual judgements can oscillate without the GCI exceeding a previously fixed
level of inconsistency. The intersection of the previous interval with the range of values [1/9,9] and the
initial consistency stability intervals is then calculated (Step 5). This avoids taking a value distanced
from the initial judgements of all the decision makers more than the amount allowed for the fixed
inconsistency level. The algorithm determines a precise value that belongs to the common interval
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(Step 6). Any judgment in this interval will have an acceptable inconsistence. Some of the matrices will
be more inconsistent than others and they will therefore admit less slack for the following iterations.
In order to address this point, the algorithm selects the value that provides the greatest slack for the
most inconsistent matrix (the value that minimises the GCI of the most inconsistent matrix). Finally,
the value obtained is included as an entry of the PCCM and serves to update the initial individual
judgment matrices (Step 7). The detailed version of the algorithm can be seen in [11].

The consideration of different weights for the decision makers has notably increased the difficulty
of the optimisation model (9) solved in Step 6. This non-trivial optimisation problem is solved using
an iterative procedure which searches for the intersection points of the parabolas (the second order
equations associated with the GCI(A®) functions).

j W4 _ 2 _ g 2 ENOAW(D)
Mlnars Maxkﬂk (GCI + Tl(?’l — 1) |:(0‘rs Xrs ) + n_2 (“rs Xrs )8;'5 (9)

(k) (k) (k) (k)

with as € [logal,,logat,], where ays = log ays, ars’ = logays’ and &35 = log ey

When all decision makers have the same weight (initial version of the algorithm [12]), all the
parabolas have the same ‘width’ (the same coefficient of the quadratic term). In that situation, the
parabolas may intersect in one point or none. But when the decision makers have different weights [11],
the parabolas may have different coefficients for their respective quadratic terms. Each pair of parabolas
may intersect in one or two points, or none. Moreover, in this case, some parabolas can be tangential.
The resolution of the optimisation model (9) should consider all these possibilities and carefully
analyse each intersection point. A more detailed explanation of the procedure followed to solve this
optimisation model (9) can be seen in Appendix A.

4. Improving the PCCM'’s Compatibility

4.1. Iterative Procedure

The PCCM decisional tool has been applied to decisional problems [11,12] and the values of
consistency are significantly better than those obtained with other GDM approaches (Al], Dong
procedure [23]), but they are slightly worse in terms of compatibility.

This paper suggests an iterative procedure to improve compatibility without significantly
worsening consistency (keeping it below a preset threshold). If the PCCM is constructed by sequentially
considering the judgements from the least to the greatest variance, the proposed improvement of
compatibility will sequentially consider the judgments with the greatest contribution (participation) to
the global compatibility measure employed (4). This value corresponds to the entry p,s of the PCCM
for which:

r ¢
Maxjj ) | nklogz(aff)ﬁ) (10)
k=1 v;

where v©) is the priority vector derived from the PCCM using the RGM method.
(G)
The procedure will modify the selected judgement p,s approaching it to the ratio % of
the priorities derived for the AIJ matrix; following a similar idea of that employed in the Dong

procedure [23].

0
Prs = (Prs) (W> ,0€10,1] (11)
S
In any case, the modified value would never exceed the limits of the consistency stability intervals
for this judgment, guaranteeing that the level of inconsistency for each decision maker is acceptable.
In what follows, the new iterative procedure for improving compatibility is explained in detail.
It is described for any judgement matrix P; it will be applied to P = PCCM, as following Algorithm 1.
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Algorithm 1
Let AV = (al(]”) be the pairwise comparison matrix of decision maker Dk (k=1,...,r;i,j =1,...,n)
r
and 7ty its relative importance in the group (7t > 0, Y. m = 1); a;j, ajj (i,j =1,...,n) the limits of
k=1

the intervals of the Consistency Interval Judgement matrix for the group; 8 € [0,1]; w(®) the priority
vector obtained when applying the RGM to the AIJ matrix; P a judgement matrix; and v the priority
vector derived from P using the RGM method.

Step 0: Initialisation
Lett =0, PO =P, J={(i,j), withi < j} and calculate for all (i, ) € J:

a(k)v]

1

dij = E ﬂklogzi]v'
k i

Step 1: Selection of the judgement

Let (1, s) be the entry for which d;s = (m;axjd,i
1])e

J=T=A{(rs)}

Step 2: Obtaining a PCCM entry
p(t+1) — p(H)

Ws
(t+1) s %f Fl b
Prs = z if Ay <2 < g
a,, if Z > Oyg

Step 3: Finalisation

] = @, then Stop
Elselett =t + 1 and go to Step 1.

4.2. Case Study

The previous procedure was applied to a case study which has been widely employed in the
literature [11,12,24,25]: three decision makers (DM1, DM2 and DM3) must compare 5 alternatives (Al,
..., A5). The individual pairwise comparison matrices are given in Table 1. The decision makers were
given different weights (711 = 5; mp = 4; and 713 = 2).

Table 1. Pairwise comparison matrices for the three decision makers.

DM1 A1 A2 A3 A4 A5 DM2 A1 A2 A3 A4 A5 DM3 Al A2 A3 A4 A5

Al 1 3 5 8 6 Al 1 3 7 9 5 Al 1 5 7 7 5
A2 - 1 3 5 4 A2 - 1 3 7 1 A2 - 1 1 5 1
A3 - - 1 3 2 A3 - - 1 5 1/5 A3 - - 1 5 1/3
A4 - - - 1 1/3 A4 - - - 1 1/5 A4 - - - 1 1/5
A5 - - - - 1 A5 - - - - 1 A5 - - - - 1

Table 2 gives the resulting priorities using the RGM for each of the three individual matrices and
their corresponding rankings.
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Table 2. Individual priority vectors, rankings and GCls.

Priorities DM1 DM2 DM3

A1l 0.513 0.520 0.560

A2 0.251 0.195 0.135

A3 0.115 0.072 0.101

A4 0.042 0.030 0.035

A5 0.079 0.182 0.168
Rankings 1-2-3-5-4 1-2-5-3-4 1-5-2-3-4

GClIs 0.143 0.303 0.298

The PCCM matrix that is obtained by applying the procedure explained in [11,12] is shown in
Table 3.

Table 3. Precise Consistency Consensus Matrix (PCCM).

PCCM Al A2 A3 A4 A5
Al 1 2.05 5.51 9 3.17
A2 0.49 1 3 6.08 1.74
A3 0.18 0.33 1 271 0.68
A4 0.11 0.16 0.37 1 0.35
A5 0.32 0.58 1.47 24 1

Two other AHP-GDM procedures have been applied: the AIJ that was explained in Section 2,
and the Dong procedure [23]. Table 4 shows the priority vectors obtained with the three AHP-GDM
procedures. It can be observed that the ranking of the alternatives is the same for the three procedures.

Table 4. Priority vectors and rankings for the AHP-GDM procedures.

Priorities PCCM AlJ Dong
Al 0.467 0.533 0.531
A2 0.255 0.208 0.216
A3 0.095 0.096 0.099
A4 0.044 0.037 0.038
A5 0.139 0.125 0.116

Rankings 1-2-5-3-4 1-2-5-3-4 1-2-5-3-4

Table 5 shows the consistency and compatibility indicator values for the three
AHP-GDM procedures.

Table 5. Consistency and compatibility indicator values (the best value of the methods is in bold, for
each indicator).

PCCM AlJ Dong

GCI 0.023 0.122 0.069
CVN 0 0.018 0.018
GCOMPI 0.529 0.464 0.472
PVN 0.136 0.136 0.136

With respect to the indicators that measure consistency (GCI and CVN), the values obtained with
the PCCM are considerably better than those obtained with the other two approaches. The values of
the GCI for the AlJ procedure (0.122) and for the Dong procedure (0.069) are, respectively, more than
five times (535.7%) and three times (304.2%) greater than that of the PCCM (0.023). The behaviour of
the CVN is also better for the PCCM (CVN(PCCM) = 0 while CVN(AIJ) = CVN(Dong) = 0.018).
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With respect to the compatibility, the value of the GCOMPI for the Al] procedure (0.464) is better
than those of the PCCM (the value 0.529 is 14% greater than the AlIJ) and the Dong procedure (the
value 0.472 is 1.7% greater). Finally, in the analysis of the number of violations (ordinal compatibility),
the three methods gave the same result (0.136).

Having observed that the PCCM is the procedure (among the three being compared) that achieves
the highest value for the GCOMPI indicator, the iterative procedure proposed at Section 4.1 is applied
with the aim of detecting an improvement in the compatibility of the PCCM.

The iterative procedure was applied with different values of 8 (6 = 0.75; 6 = 0.5; 6 = 0.25; and
0 = 0); the PCCM corresponds to 8 = 1. In order to compare the results obtained for the combinations
considered, the focus is on the two cardinal indicators—the GCI for consistency and the GCOMPI
for compatibility.

Tables 6-9 show the sequence of iterations followed when applying the procedure (each column)
and the values obtained for the two indicators for each iteration. The second row specifies the
judgement that is modified in the corresponding iteration. The values for the original PCCM are
shown in the first column as it corresponds to the starting point of the iterative procedure (t = 0). The
modified values for each entry can be seen in Table 10. The values of the GCI and GCOMPI for the
judgment (1,4), t = 8, are empty because modifying this judgement will lead to a figure out of the matrix
GCIJA. The initial value is maintained and the procedure continues, selecting the following judgement.

Table 6. Results for the iterative procedure with 6 = 0.75 (the best value of the methods is in bold, for
each indicator).

Iteration® t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
Modif. Judg. - G5 25 G4 12 15 (23 @5 (14 (13 (24
GCI 0023 0023 0023 0022 0025 0023 0021 0.019 ° 0.020  0.019
GCOMPI 0529 0528 0527 0528 0522 0517 0512 0511 ° 0511 0511

Table 7. Results for the iterative procedure with 8 = 0.5 (the best value of the methods is in bold, for
each indicator).

Iteration® t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
Modif. Judg. - G5 (25 (G4 12 (15 (23 45 14 (13 (24
GCI 0023 0023 0024 0022 0028 0025 0020 0019 ° 0019  0.018
GCOMPI 0529 0527 0526 0527 0516 0507 0499 0496 ° 0496 0496

Table 8. Results for the iterative procedure with 6 = 0.25 (the best value of the methods is in bold, for
each indicator).

Iteration® t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 =8 t=9 t=10
Modif. Judg. - (3,5) 2,5) (34) (1,2) (1,5) (2,3) 4,5) (14) (1,3) (2,4)
GCI 0.023 0.024 0.024 0.023 0.031 0.029  0.021  0.021 ° 0.021  0.019
GCOMPI 0529 0526 0525 0526 0510 0499 0489 0485 ° 0.485  0.486

Table 9. Results for the iterative procedure with 6 = 0 (the best value of the methods is in bold, for each

indicator).
Iteration® t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
Modif. Judg. - (35) 25) (34) (12) 1,5) (23) (4,5) 14 13) (24)
GCI 0.023 0.024 0.025 0.023 0.036 0.033 0.024 0.025 ° 0.025 0.023
GCOMPI 0.529 0.525 0.523 0.525 0.505 0.493 0.484 0.477 ° 0.477 0.479

From Tables 6-9, it is possible to make the following observations:
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e  The order of the entrance of the judgements is the same for all the values considered for 6. This
does not always have to happen.

e According to the proposal followed in expression (11), the values of the compatibility indicator
improve when the value of the parameter 6 decreases.

e Inaddition to improving compatibility, the final result also improves consistency.

e  The value of the compatibility indicator almost always decreases with the iterations. In just a
few cases, for judgements (3,4) and (2,4), compatibility is slightly worse. The lowest value of the
GCOMPI (0.477) is obtained with 6 = 0 and applying the iteration procedure until the penultimate
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e The consistency indicator oscillates a little until achieving the highest value at iteration t = 4
(modifying judgement (1,2)). The next iteration (modifying judgement (1,5)) is a turning point
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There are two particular contributions to the literature:

(i) For the first time, the procedure followed to solve the optimisation problem that arises in each
iteration of the calculation algorithm of the PCCM has been explained in detail. The consideration
of different weights for decision makers greatly increases the difficulty of the optimisation
problem, and it has been necessary to study all of the possible situations that could occur.

(ii) The work presents a proposal to improve the compatibility of PCCM matrices. As previously
mentioned, whilst the PCCM gives much better values than other procedures with regards to
consistency, its behavior in terms of compatibility is worse. Following a sequential procedure
in line with their contribution to the GCOMPI, the judgments of the PCCM are modified using
a combination of the initial value of the PCCM and the ratio of the priorities obtained with the
AlJ procedure.

The case study proved that compatibility substantially improves, reaching values close to those
of the AIJ procedure. Consistency also improved, guaranteeing that the judgments of the consensus
matrix belong to the consistency stability intervals of all decision makers.

Although the proposal made in this paper has been focused on improving the compatibility of
the PCCM, the procedure can be adapted and applied to any consensus matrix.

Future research will seek to establish other criteria that determine the sequence in which the
judgments of the group consensus matrix are selected for modification. At the same time, future
extensions of this research will include a comparison of the proposal set out in this paper with the
recently published improvements made by the authors of [23] to their methodology.
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Appendix A

The following is a description of the procedure followed to solve the optimisation problem posed
in Step 6 and given by expression (9):

. ® ., 2 CWNEL 2n () ()
n;r{n m}gx s (GCI + w(n—1) [(ars Qs ) + - (t’érs Kps >€rs

with a,s € [logal,, logat;], where ays = log ay, aﬁ’? = log a%{) and eﬁ’;) = log eS’;)
This problem can be written as:
i o
o Min max Pr(ars)

2
where pr(a;s) = m (GCI(k) + ﬁ {(ocrs — txﬁf)) + % (oc,s — aﬁ?)a&’;)D are second degree

polynomials with a,s the variable and the coefficient for the quadratic term positive.
Therefore, the problem can be rewritten as:

min max pi(x) (A1)
xell, u] k
where py(x) = a;x? + byx + ¢ with a; > 0.
There are three cases:

a. The polynomial that is dominant in x = [ is an increasing function at this point. In this case, the
solution to the optimisation problem (9) is x* = I (Figure Ala).
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(pr(1), pre(D), pr (1)) = lex max(p(1), pric(D), pic (1)
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Case b. The polynomial that is dominant in x = u can be determined in an analogous way:
(ps(u), =prs(u), pr1s(u)) = lex max(py(u), —ph(u), pric(u))

By determining the polynomials which are dominant in I and u, and calculating their respective derivatives
we will be able to identify cases a and b.

Case c. Starting from point x0 = [ and from the corresponding polynomial that is dominant at this point, we
determine point x1 in which this polynomial becomes dominated. If the following polynomial that is dominant is
a decreasing function at this point, we continue the process, updating x0 = x1. At the moment in which we go
out from the interval under study, or when the new polynomial that is dominant is an increasing function, we
have finished the iterative stage and we only have to calculate the minimum of the present dominant polynomial
in the interval under study.

In Figure Alc we can see that p1l is the polynomial that is dominant in x = 1. It continues to
be the dominant polynomial until x1 where the new polynomial that is dominant is p2. Again, this
polynomial is dominant until point x2. But the polynomial that is dominant from this point is an
increasing function at x2, and therefore it is not necessary to continue. The solution to the optimisation
problem is given by the minimum of the polynomial p2 in the interval [x1,x2].

Finding the points where a polynomial ceases to be dominant is determined by exploring the
possible cut points with the rest of the polynomials in the problem (those that are within the interval
under study) as following Algorithm A1l.

Algorithm A1

nbin]mlgix pi(x) where py(x) = agx? + bex + ¢ with a; > 0
x€(l, u

Step 1: Find r and with
(pr(D), pre(1), pr1,(1)) = lex ]{naX(pk(l), ple(1), pii(1))

(ps(u), =pts(u), pris(u)) = lex max(pg(u), —pri(u), pi(u))

If prr(1) > 0 then x* = I. STOP
If p/s(u) < O then x* = u. STOP
Step 2: Start from point xg = I, where the polynomial that is dominant, p,(x), is a decreasing function at this
point.
Step 3: Calculate I = {i such that 3 t; € (xo, u] withp;(t;) = pr(t;)andp;/(¢;) > p/(t;) }
Step 4: If I = @ the optimal solution is given by:

min pr(x)
x€[xo, u]

Step 5: Let j be the value such that

(=tj, pti(t;), pj () = lexmax(~t;, pri(t:), pi(t;))

i€l
If p/;(t;) > 0 the optimal solution is given by:

min p,(x)
XE[XQ, t/']

Otherwise, update and r = j and go to Step 3.
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