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Abstract: Computational multiscale analyses are currently ubiquitous in science and technology.
Different problems of interest—e.g., mechanical, fluid, thermal, or electromagnetic—involving a
domain with two or more clearly distinguished spatial or temporal scales, are candidates to be solved
by using this technique. Moreover, the predictable capability and potential of multiscale analysis may
result in an interesting tool for the development of new concept materials, with desired macroscopic
or apparent properties through the design of their microstructure, which is now even more possible
with the combination of nanotechnology and additive manufacturing. Indeed, the information in
terms of field variables at a finer scale is available by solving its associated localization problem.
In this work, a review on the algorithmic treatment of multiscale analyses of several problems with
a technological interest is presented. The paper collects both classical and modern techniques of
multiscale simulation such as those based on the proper generalized decomposition (PGD) approach.
Moreover, an overview of available software for the implementation of such numerical schemes
is also carried out. The availability and usefulness of this technique in the design of complex
microstructural systems are highlighted along the text. In this review, the fine, and hence the coarse
scale, are associated with continuum variables so atomistic approaches and coarse-graining transfer
techniques are out of the scope of this paper.

Keywords: multiscale analysis; homogenization; proper generalized decomposition;
computational simulation

1. Introduction

Multiscale techniques emerge from a class of problems where macroscopic continuum field
variables fluctuate around a mean value at a small (Depending if small refers to a different order
of magnitude or not, a different multiscale strategy is followed) window of length and/or time.
This window is referred here as scale. The physics, chemists or mechanics which takes place at the
microscale dictates the overall material behavior at the macroscale. Conversely, macroscopic effects
on the specimen activate a cascade of events at the microscale which in turn evolves accordingly.
Engineering design at the microscale is a powerful tool to get materials with improved mechanical,
thermal, or electrical properties. Such a design is frequently inspired on nature, i.e., biomimetics.
The different scales which may be identified in multiscale continuum problems, with to the problems
of interest they are associated with, are introduced in the next sections.

Multiscale solvers have become the cornerstone in the so-called Integrated Computational
Materials Engineering (ICME) philosophy, which is being rapidly adopted by the industry [1]. This new
paradigm for the design of products comprises the analyses of several aspects of the materials used
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for a specific engineering application. Namely, their processing, the arrangement of their internal
structure, their properties, and, finally, their (long-term) performance [2]. Obviously, such an approach
requires the combination of several material models (i.e., physical phenomena) and multiple length
(and time) scales in a seamless fashion. Therefore, multiscale solvers play a fundamental role in the
virtual design and testing of materials [2,3].

1.1. Temporal Scales

Field variable fluctuations in the temporal scale are typically found in multiphysics problems,
especially, in electromechanical ones. In this kind of problems, both electrical and mechanical waves
are present, each of them with a different propagation velocity. Roughly (It depends on the physical
and mechanical properties of the transmission material), electrical waves propagate at the speed of
light, whereas mechanical wave velocity is of the order of the speed of sound. It is then clear the source
of each temporal scale for these problems.

A typical multiphysics example showing different time scales is heart electrophysiology (This
problem also exhibits different hierarchical spatial scales. Here we only refer to the time scales).
The electrical macroscopic activity of the heart, given in terms of an action potential electrical
signal, is the phenomenological representation of the dynamic activity of ion channels that take
place along the cardiomyocyte membrane [4]. Then, the network of cardiomyocytes present in the
cardiac tissue is activated in a synchronized way by this electrical signal, giving place to a contraction
of the tissue and finally releasing the blood ejection along the cardiovascular tree. Figure 1 shows
a typical electrocardiogram highlighting the differences of time scales of the heart electrical activity.
Multiscale modeling of heart electrophysiology is an extremely complex problem since it involves
mechanical and electrical equations, as well as different temporal and hierarchical spatial scales. Several
attempts have been made in this context to model electrophysiology in a multiscale fashion [5,6],
and mechanoelectrical multiscale approaches [7], some of them integrated within the so-called ‘Virtual
Physiology Human’ project [8].
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Figure 1. Electrocardiogram of a 26-year-old male (scale of the order of seconds). The electrical signal
varies abruptly in a short period of time as detailed in the box (of the order of ms). A multiscale scheme
considering both the fine temporal scale (ms) and the coarse one (s) is necessary to analyze the evolution
of a cardiac disease, as an example, for long periods of time. Pictures taken from www.wikipedia.org.
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1.2. Spatial Scales

Heterogeneous materials show a microstructure at a lower (or finer) observation spatial scale.
This class of materials induces a fluctuation of the field variables in the finer scale of the order of
the length of the heterogeneity. Examples of these materials include both natural and synthetic.
Some examples of natural materials are enumerated as follows (see additionally Figure 2):

• Bone: Bone microstructure exhibits a certain degree of porosity ranging from 5% in cortical bone
to 90% in cancellous or trabecular bone (see Figure 2a). Bones are part of the structural support
of animals, i.e., the skeleton, so the criterion followed by evolution and natural selection in the
design of such a microstructure is to economize the resistance/weight ratio. Man-made structures
inspired by this criterion include the sandwich and foam structures. The associated multiscale
problems in bone tissue are both mechanical and fluidics, since it is important to know the stress
distribution and velocity of the fluid within the microstructure as well as the skeleton response to
loads [9–13].

• Wood: This class of natural lightweight structures found in trees [14], see Figure 2b, is associated
with structural problems with application in primitive handmade structures as well as light
but stiff constructions, such as the World War II combat aircraft de Havilland Mosquito [15].
The microarchitectural arrangement of wood panels make them a lightweight stiff structure.

• Fibered tissues: Soft tissues are usually “reinforced” by collagen fibers (see Figure 2c). Examples
of these tissues are blood vessels and arteries and the cardiac tissue, which is also embedded with
cardiomyocytes. Collagen remodels in the microscopic scale during life tuning the mechanical
properties of the macroscopic tissue, which influences the development of certain vascular
disorders such as hypertension [16]. Even though the associated mechanical problem has been
established macroscopically with success in the case of blood vessels [17–21], it is necessary to
account for the fiber scale to include the mechanoelectrical activity of cardiomyocytes, as pointed
out above, for the case of the cardiac tissue [22].
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Figure 2. Examples taken from nature where different spatial scales can be distinguished. Left 
pictures are referred to the human (~m) scale (usually referred to as the ‘macroscopic’ or ‘coarse’ 
scale) while right ones correspond to a higher observation (~μm) scale (usually referred as the 
microscopic or finer scale): (a) human skeleton (left) and the typical microstructure of a flat bone 
(right). In this microstructure, one can visualize the engineering concept of a lightweight sandwich 
structure. The panels here refer to the cortical (low porosity) bone whereas the central zone is filled 
with cancellous (high porosity) bone; (b) World War II combat aircraft de Havilland Mosquito (left) 
and the microstructure (right) of its constituent materials (wood); (c) human vascular system (left) 
and microstructure of these soft fibered tissues showing the orientation of collagen fibers (right). All 
pictures taken from www.wikipedia.org except (b) right, taken with permission from [14]. 

Figure 2. Examples taken from nature where different spatial scales can be distinguished. Left pictures
are referred to the human (~m) scale (usually referred to as the ‘macroscopic’ or ‘coarse’ scale) while
right ones correspond to a higher observation (~µm) scale (usually referred as the microscopic or
finer scale): (a) human skeleton (left) and the typical microstructure of a flat bone (right). In this
microstructure, one can visualize the engineering concept of a lightweight sandwich structure.
The panels here refer to the cortical (low porosity) bone whereas the central zone is filled with
cancellous (high porosity) bone; (b) World War II combat aircraft de Havilland Mosquito (left) and
the microstructure (right) of its constituent materials (wood); (c) human vascular system (left) and
microstructure of these soft fibered tissues showing the orientation of collagen fibers (right). All pictures
taken from www.wikipedia.org except (b) right, taken with permission from [14].

www.wikipedia.org
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On the other hand, synthetic materials are provided with an artificial microstructure, composed
of different phases, in order to get improved mechanical, thermal, or electrical properties that each
raw material itself cannot reach alone. Many of the artificially designed microstructural materials are
bio-inspired to mimic some of the extraordinary properties of natural materials highlighted above.
Examples of these materials are composites, alloys, or biomaterials among many others. Some of them
are listed below (see additionally Figure 3):

• Concrete: It has been widely used as a building material since the mid-18th century. It is
microstructurally made through a mixture of water, cement, aggregates, and reinforcement.
The result is a cheap, easy, and resistant macroscopic material (see Figure 3a). The overall
mechanical and thermal behavior can be obtained by an analysis of its microstructure. Regarding
its mechanical behavior, it is well known that, microscopically, the progression of cracks in
the cement is stopped by the aggregates, whereas the reinforcement provides tension stiffness.
Recently, engineered cementitious composites (ECC) have emerged as a class of ultra-ductile
fiber-reinforced cementitious composites, whose better mechanical properties were the result
of years of study to develop a material microstructurally designed using micromechanics
concepts [23].

• Metal matrix composites (MMC): They belong to the class of composite materials with
different phases being one of them at least a metal. A two-phase MMC contains a matrix
and a reinforcement. The idea is to obtain a hybrid material with excellent properties such
as wear resistance, friction coefficient, mechanical resistance, or thermal conductivity (see
Figure 3b). All these properties can be derived from an analysis of its associated structure
at the microstructural level.

• Composite materials: These are fibered materials usually composed of a polymeric or resin matrix
phase and a fiber reinforcement (see Figure 3c). They have excellent resistance/weight ratio as
well as electrical, thermal and acoustic isolating properties. All these properties derive from the
microscopic orientation and density of fibers within the matrix.

• Biomaterials: The current generation of biomaterials includes self-active materials which interact
with the human body with improved regeneration and healing capabilities. An example is the
scaffolds used in tissue engineering. Here scaffolds are used as a temporary porous structural
support to attach cells and to segregate new matrix tissue. After the regeneration process is
complete the structure naturally degrades (see Figure 3d). The associated analysis of this problem
is both multiscale and multiphysical in nature. A summary of it may be found in [24].

1.3. Scope and Outline

This paper reviews the state-of-the-art of multiscale solvers in continuum problems. The authors
are aware there exist a number of review papers on these topic (see for example [25–27] among many
others). However, these papers are generally focused on multiscale mechanics (natural extensions
to geometric and material nonlinear mechanics are of course included within these papers) with
a lack of motivation of problems with a technological interest solved via a multiscale technique.
These technological problems are not necessarily posed in a mechanical context but thermal, diffusive,
fluidic, or a multiphysical combination of them. Moreover, some of those papers are bounded to
computational homogenization techniques. In this paper, we review the proper mathematical definition
associated with a number of continuum problems and their multiscale strategy of solution. Indeed,
several multiscale schemes, not only those based on computational homogenization, are reviewed.
However, we do not go into detail in the review of the rigorous mathematics—i.e., proofs or
theorems—behind each multiscale technique. The current literature on multiscale problems is vast,
so we restrict ourselves in this paper to continuum problems both at the macro and microstructural
levels. It is then out of the scope of this paper the review of multiscale techniques based on atomistic
modeling and coarse-graining strategies. The reader is referred to [28–33] which address and review
these topics. The paper is organized as follows. First, we review a number of multiscale continuum
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problems based on the homogenization technique. The technological application and interest of each
problem is emphasized. Second, we review some other multiscale problems which do not follow the
homogenization scheme and are then classified as non-homogenization methods. Next, we review new
trends in computational multiscale schemes, such as those based on proper generalized decomposition
(PGD). Finally, a summary of existing software for the implementation of the aforementioned numerical
schemes is presented.
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Figure 3. Artificial materials with a microstructure. Left pictures are referred to the human (~m)
scale (usually referred as the macroscopic or coarse scale) while right ones correspond to a higher
observation (~µm) scale (usually referred as the microscopic or finer scale). (a) (left) Concrete bridge
(Picture taken from www.wikipedia.org) and (right) typical microstructure of a concrete building
material (Picture taken with permission from [28]). (b) (left) F-16 Fighting Falcon aircraft. It uses
monofilament silicon carbide fibers in a titanium matrix for a structural component of the jet’s landing
gear (microstructure shown in right) (Picture taken from www.wikipedia.org). (c) (left) Ferrari F-1
prototype. Many parts of the structure are made of fiber carbon composite (Picture taken from
www.wikipedia.org); right Microstructure of a carbon finer reinforced composite (Picture taken with
permission from [34]). (d) (left) Bioceramic implant to promote new bone tissue regeneration in Tissue
Engineering process. The implant is microstructurally featured in right. It is a porous scaffold where
cells attach, segregate new matrix and finally new bone tissue regeneration. (Picture (d) (left) taken
with permission from [35] and (right) taken with permission from [36]).
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2. Homogenization-Based Multiscale Approaches

In multiscale problems one faces the macroscale where the macroscopic domain is defined, and the
microscale where the material heterogeneities and microstructural details can be visualized. If `m is
the typical size of the heterogeneity and `M the typical size of the macroscale, then we assume there
exists separation of scales if `M � `m. Under this principle, homogenization-based multiscale (HM)
approaches are feasible.

The first step in HM is the definition of the domain of the microstructure. It is defined in terms of a
so-called representative volume element (RVE) which represents the underlying microstructure in the
neighborhood of a certain macro point [37]. An RVE must contain enough statistical information about
the inhomogeneous medium to be representative of the material itself. This RVE may represent the
whole macro-domain (global periodicity) or not (local periodicity), see Figure 4. A critical issue in HM
is the determination of the RVE size (`RVE). A priori, `RVE � `m, although it depends on the degree
of nonlinearity of the equations to be solved in the microscale, or differences on the properties of the
micro-constituents [38,39]. In the limit case, i.e., `RVE ∼ `M, there is not an actual RVE. In fact, the RVE
existence is not always assured (see an analysis on the RVE existence of quasi-brittle heterogeneous
materials in [40]).
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Figure 4. Concept of local (a) and global (b) periodicity. (Adapted from figures taken with permission
from [38,39]).

The general procedure followed in HM is shown in Figure 5. Briefly, and for a generic problem,
for a certain time step t + ∆t, the first gradient ∇rM

t+∆t of the field (scalar or vectorial) macroscopic
variable rM

t+∆t is given in the microscopic domain. There, the associated localization problem is solved,
and the averaged (vectorial or tensorial) state variables sM

t+∆t : 〈st+∆t〉 are homogenized. The state
variables are obtained through the constitutive relationships of the microconstituents of the microscopic
domain, such that, st+∆t = f

(
∇rt+∆t,∇

.
rt+∆t, . . .

)
. Hereafter, M and m denote the macroscopic and

microscopic scales, respectively, whereas the averaging symbol is defined as

〈·〉 = 1
|Ωm|

∫
Ωm
·dY (1)

with Ωm the volume of the microscopic domain. We use X and Y to define a material point at the
macroscopic and microscopic scale, respectively. There are many variations of this general procedure
depending on the particularities of the problem at hand. The differences from this general method are
illustrated for each specific problem below.
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Figure 5. General multiscale procedure based on first order homogenization. Field and state
variables computed at the macroscale for a given time increment are denoted as rM

t+∆t and sM
t+∆t,

respectively. The first gradient of the field variable ∇rM
t+∆t is provided to the microscopic scale. Then,

the localization problem is solved and the microscopic quantities rt+∆t and st+∆t are obtained. Finally,
the homogenized variable sM

t+∆t and the linearized material tangent operator ∂sM
t+∆t/∂∇rM

t+∆t are
passed to the macroscopic scale. This process is repeated iteratively.

Since in HM methods the micro domain (RVE) generally does not physically represent the exact
underlying geometry of its macroscopic location, boundary conditions at the microscale are not trivially
defined. In classical approaches, Neumann, Dirichlet, or periodic boundary conditions are usually
imposed. They are summarized below:

• Neumann: tt+∆t = sM
t+∆t(x)·nm(Y), Y ∈ Γm

• Dirichlet: rt+∆t = ∇rM
t+∆t(X)·Y, Y ∈ Γm

• Periodic: rΓml

t+∆t = rΓmr

t+∆t = rΓmt

t+∆t = rΓmd

t+∆t, Γml , Γmr, Γmt, Γmd ∈ Γm

being nm the outward normal of the microscopic RVE, Γm the microscopic boundary;
Γml , Γmr, Γmt, Γmd the left, right, top, and down parts of the boundary Γm (see Figure 5). Even though if
the microstructural domain is non-periodic, periodic boundary conditions generally provide the most
accurate approach in HM computations [41].

The process shown in Figure 5 is repeated iteratively. The downscaling problem is called the
localization problem, whereas upscaling is known as homogenization. These issues are addressed in
the following sections for different problems of industrial interest.

2.1. Linear Elasticity

Linear elastic problems with a microstructure cover a wide range of technological problems such
as those as heterogeneous materials, e.g., fibered composites, porous materials, concrete, metal matrix
composites, or reinforced materials with different microstructural phases. The general setup of HM
presented above is not followed in linear elastic problems, but they are focused on the computation of
the averaged macroscopic or apparent properties (directly computed from the microstructure) and
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obtaining the canonical functions available to solve the localization problem at the microstructure.
This methodology is reviewed below.

Classical literature on micromechanics has analyzed this problem since the seminal work
of Eshelby [42]. Several analytical theories have emerged to compute the apparent or effective
mechanical properties tensor CM, such as the asymptotic homogenization theory, and the effective
properties of materials with a simple regular microstructure have been analytically estimated [41,43–46].
Next, the localization and homogenization problems are introduced in the framework of linear
elastic problems.

2.1.1. Localization

Based on the asymptotic splitting of the displacement field u(X, Y) = uM(X) + um(Y), the linear,
elastic, microscopic problem in the absence of body loads reads as,

∇·σ = 0
ε = 1

2
(
∇u +∇uT)

σ = CM : ε

〈ε〉 = εM

(2)

ε and σ being the (linearized) strain and stresses state variables in the microstructure, and CM the
linear elastic fourth order tensor containing the mechanical properties of the micro-constituents of
the microstructure.

The absence of boundary conditions is noticeable on Equation (2). These boundary conditions
must reproduce, as closely as possible, the in-situ state of the RVE inside the material. Therefore,
they strongly depend on the choice of the RVE itself, and specially on its size. Regardless whether
periodic media are under consideration or not, the periodicity conditions are assumed, as discussed
above, which imply the following statements:

1. The stress vectors σ · nm are opposite on opposite sides of the boundary Γm.
2. The local strain ε(u) is split into its average and fluctuating terms such that,

ε(u) = εM + εm(um)

〈εm(um)〉 = 0
(3)

thus, the periodicity boundary conditions yield

σm · nm anti− periodic on Γm

u = εM · Y + um on Γm

um periodic on Γm
(4)

By virtue of the linearity of the problem, the solution of εm(um) in Equation (2) for a general
macro strain εM may be expressed as the superposition of elementary unit strain solutions εm(χkh) [41],
such as,

εm(um) = εM
khεm(χkh) (5)

where χkh are the displacements associated with those elementary strain states (canonical functions)
denoted by indices kh resulting from the solution of Equation (2).

By substitution of Equation (5) into Equation (3), the micro-strains are expressed as

εm(um) = εM
kh(Ikh + εm(χkh)) (6)

where Ikh is the identity fourth-order tensor with components I = Ikh =
(

Iij
)

kh = 1
2

(
δijδjh + δihδjk

)
.
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Note that the above analysis has been accomplished taking into account that εM is given
by the macroscopic scale. A similar approach may be established when σM is given (see [41] for
details). Once computed the canonical functions χkh (which are only a function of the microstructural
geometry), the strain and stress state at the microstructural level can be directly computed for any
given macroscopic strain state εM.

2.1.2. Homogenization

Once the elementary solutions εm(χkh) are obtained, the macroscopic stress-strain relationship is
obtained straightforwardly,

σM = 〈σ(u)〉 = 〈Cm : ε(u)〉 = 〈Cm(Ikh + εm(χkh))〉 : εM (7)

Consequently, at the macroscopic scale, the elasticity tensor is identified in Equation (7) as,

CM = 〈Cm(Ikh + εm(χkh))〉 (8)

2.1.3. Variational Formulation

To get a finite element implementation of the problem above, Equations (2) and (3) are used in
order to write the variational form, namely,∫

Ωm
εm(w) : (Cm : εm(um))dY = −

∫
Ωm

εm(w) :
(
Cm : εM

)
dY ∀w(Y) ∈ VY (9)

where the space VY is defined as,
VY =

{
w
∣∣∣w ∈ H1(Ωm)

}
(10)

with H1(Ωm) the first-order Sobolev space. Using Equations (5) and (9) can be further developed, namely,

∫
Ωm

Cm
ijpq

∂χkl
p

∂yq

∂ωi
∂yj

dY =
∫

Ωm
Cm

ijkl
∂ωi
∂yj

dY (11)

where χkl
p represents the characteristic microstructure displacement at p directions due to an applied

kl unit strain, being k = l normal unit strain states and k 6= l shear unit strain states. ωi represents a
virtual displacement. The total strain states are six (three normal and three shear) corresponding to the
six linear equations above (Equation (11)). Once these functions are obtained, the macroscopic stiffness
tensor can be computed through Equation (8).

2.1.4. Illustrative Example

Results of the implementation of the computational homogenization theory presented above
are shown over a periodic medium containing spherical voids. The overall effective moduli of this
microstructure are expressed as a function of the void fraction. The theoretical estimates of the
homogenized mechanical properties were presented in [45]. Thus, a unit cell containing different
fractions of voids was modeled (see Figure 6).

The RVE was subjected to unit strain states and the characteristic deformations are plotted in
Figure 7. A comparison of the obtained results versus the theoretical estimates presented in [45] is
shown in Figure 8 and Table 1. A good agreement was found.

The presented results show the ability of this technique to derive effective properties directly from
materials microstructure. It is also useful for the study of the influence of the microstructure on the
degree of anisotropy of a certain micro-architectural design or the derivation of macroscopic properties
of concrete [47–49], ceramics [50], and composites [51–56].
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Table 1. Theoretical estimates versus numerical values of effective elastic moduli of a body with
spherical voids.

Void Fraction CM
1111/Cm

1111
(Theoretical)

CM
1111/Cm

1111
(Numerical)

CM
1122/Cm

1122
(Theoretical)

CM
1122/Cm

1122
(Numerical)

0.05 0.894 0.897 0.865 0.868
0.1 0.802 0.805 0.748 0.750
0.15 0.722 0.725 0.646 0.648
0.2 0.650 0.652 0.557 0.557
0.25 0.586 0.589 0.479 0.480
0.3 0.527 0.525 0.412 0.406
0.4 0.423 0.413 0.302 0.285
0.5 0.331 0.305 0.219 0.179

2.2. Nonlinear Mechanics

Nonlinear mechanics multiscale formulation has to be established for every time step and
macropoint, since the overall macroscopic behavior is dictated by the microstructure evolution in terms
of internal variables evolution, which in turn, depend on the macroscopic history load. Therefore,
the multiscale strategy of solution yields the so-called FE2 scheme [57]. The process is roughly
illustrated in Figure 2. We distinguish in this section between material and geometrical nonlinearities.

A generic material nonlinear problem at small strains, and considering the asymptotic splitting of
the displacement field u(X, Y) = uM(X) + um(Y), is modeled as follows,

∇·σ = 0
ε = εM(uM)+ εm(um)

σ = f
(
ε,

.
ε, Θi, . . .

)
〈ε〉 = εM

〈σ〉 = σM

+ boundary conditions

(12)

Note that the stress tensor is evaluated in Equation (12) once defined its nonlinear constitutive
relationship (plasticity, damage, etc.) which may eventually be a function of the strain and strain rate,
and of internal variables denoted as Θi. The strain operator is defined as,

ε(·) = 1
2

(
∇ ·+∇·T

)
(13)



Materials 2019, 12, 691 13 of 46

Macroscopically, the variational formulation of the problem yields,∫
ΩM

σM : εM?dX =
∫

ΓM
t

tM · uM?dX (14)

where uM? represents a compatible virtual displacement (trial) function defined at the macroscale,
and according to (13), εM? = εM?(uM?). Using (12) in (14) yields,

∫
ΩM

[
1
|Ωm|

∫
Ωm

f (εM + εm,
.
ε

M
+

.
ε

m, Θi, . . .)dY
]

: εM?dX =
∫

ΓM
t

tM · uM?dX (15)

Microscopically, the variational formulation of the problem, considering the periodicity
conditions, yields, ∫

ΩM
σ : εm?dY = 0 (16)

Again, substitution of (12) in (16) yields,∫
Ωm

f
(

εM + εm,
.
ε

M
+

.
ε

m, Θi, . . .
)

: εM?dY = 0 (17)

Equations (15) and (17) represent a set of general integral differential equations, which couples the
macro and the micro scales. The reader is referred to [25] for the specific derivation of such equations
for a variety of material nonlinear problems.

The finite element implementation of the multiscale nonlinear problem requires linearization
of Equations (15) and (17) of the specific problem at hand. Linearization induces an FE2 solution
strategy. References [25,57,58] include a number of FE2 multiscale nonlinear material problems and
their numerical implementation.

Interestingly, the multiscale formulation above has been particularized for heterogeneous
adhesives in [59–61]. This problem has many applications since many aerospace, aircraft or automotive
mechanical components are joined together by using a structural reinforced (heterogeneous) adhesive.
At the macroscale, the adhesive behavior is featured by a cohesive zone modeling approach, whereas
microstructurally the localization and homogenization problems are solved, which dictates the overall
traction-separation macroscopic law. In [59] the matrix of the microstructure is modeled through a
classical damage approach, and in [61] the matrix of the adhesive is considered to obey an elastic-plastic
behavior. Figure 9a shows the bending test of a particle-reinforced heterogeneous adhesive. It can
be seen in Figure 9b the macroscopic (normal) traction-separation law for different concentration of
inclusions, obtained using the multiscale approach. Figure 9c represents the distribution of the plastic
normal micro strain throughout the microstructure of the macro point 4. The modeling here presented
shows the ability of multiscale techniques to analyze complex adhesive microstructure including the
behavior of both matrix and inclusion.
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relationship of the microstructure (finite strain plasticity, damage, etc.) which may eventually be a 
function of the deformation gradient 𝐅 and its rate 𝐅ሶ , and of internal variables denoted as 𝛩௜. The 
deformation gradient is defined as, 𝐅 = ∇௑,௒𝐱 (19)

Moreover, the Hill–Mandel condition or macro-homogeneity condition [36,40] read as, 1|𝛺௠| න 𝐏: 𝛿𝐅𝑑𝑌ఆ೘ = 𝐏ெ: 𝛿𝐅ெ (20)

Figure 9. Multiscale analysis of heterogeneous adhesives. (a) Bending test macroscopic setup of a
microstructurally reinforced adhesive. (b) Macroscopic traction-separation law in the normal direction,
based on a multiscale analysis, for different concentrations of the inclusion and the bending loading
included in the inset. (c) Microstructural distribution of the normal plastic microstrains for a 40%
concentration of inclusions at the right corner side of the adhesive (point 4), at the three first stage
levels of the macroscopic loading (inset in (b)). (Figures taken with permission from [61]).

On the other hand, microscopic (static) equations of geometrically nonlinear materials, in the
absence of body forces, are written as (material version):

∇X,Y·P = 0

P = f
(

F,
.
F, Θi, . . .

)
〈F〉 = FM

〈P〉 = PM

+ boundary conditions

(18)

being P and PM the microscopic and macroscopic first Piola–Kirchhoff stress tensor, respectively.
This stress tensor is evaluated in Equation (18) once defined its (hyperelastic) constitutive relationship
of the microstructure (finite strain plasticity, damage, etc.) which may eventually be a function of
the deformation gradient F and its rate

.
F, and of internal variables denoted as Θi. The deformation

gradient is defined as,
F = ∇X,Yx (19)

Moreover, the Hill–Mandel condition or macro-homogeneity condition [36,40] read as,

1
|Ωm|

∫
Ωm

P : δFdY = PM : δFM (20)
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Now, all the ingredients have been introduced in order to develop the multiscale weak form of the
geometrically nonlinear problem above. The macroscopic first variation of the weak form is written as
follows (material version), ∫

ΩM
PM : δFM?dX =

∫
ΓM

t

TM · δuM?dX (21)

where δuM? represents a compatible virtual displacement (trial) functions defined at the macroscale,
and its associated deformation gradient δFM?. Using (18) in (21), we get

∫
ΩM

[
1
|Ωm|

∫
Ωm

f (F,
.
F, Θi, . . .)dY

]
: δFM?dX =

∫
ΓM

t

TM · δuM?dX (22)

Microscopically, the variational formulation of the problem, considering the periodicity boundary
conditions, yields, ∫

ΩM
PM : δFM?dY = 0 (23)

Again, using (18) in (23), we can write∫
Ωm

f
(

F,
.
F, Θi, . . .

)
: δFm?dY = 0 (24)

Equations (22) and (24) represent a set of general integral differential equations, which couples
the macro and the micro scales in geometrically nonlinear systems. As in material nonlinearities,
this procedure takes advantage of FE2 solutions.

The reader is referred to [26], and references therein, for a review on the formulation and
finite element implementation of geometrically nonlinear multiscale problems. Figure 10 represents
both macro and microscopic equivalent plastic strains of a multiscale formulation of a finite strain
plasticity problem.
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Figure 10. Multiscale analysis of finite strain plasticity: Equivalent plastic strains (figure taken with
permission from [26]).

The geometrically nonlinear multiscale procedure outlined above is based on a first order
homogenization scheme. Nonetheless, it is based on the sketch presented in Figure 2 being in this figure
the macroscopic variable given to the microscopic scale FM

t+∆t, and the homogenized variable available
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at the macroscale PM
t+∆t This methodology lacks of accuracy (both quantitative and qualitative) in

problems undergoing large gradients of the deformation field, i.e., localization problems or another
class of problems where size effects in the microstructure are relevant [62,63]. These kinds of problems
arise in materials which undergoes both softening and hardening behavior. In this context, a second
order homogenization approach has been proposed in [64]. Briefly, in this work the authors propose to
pass to the microstructure both the first and second gradients of the deformation field (see Figure 2).
The inconvenience of this solution is writing a new equilibrium equation at the macroscale associated
with the homogenized second gradient (see [64] for details).

Another problem encountered in nonlinear multiscale problems is the loss of convexity of the
macroscopic strain energy density function which is computed and homogenized ‘on the fly’ during
the multiscale analysis. This shortcoming appears in problems showing loss of stability (bifurcation)
in the microstructure, or those including discontinuities, such as cracks, in the microstructure.
The former class of problems was studied in [65] using Γ-convergence available for non-convex
potentials. Moreover, in this work the representativeness of the RVE for this kind of problems was
determined by means of bifurcation theory. On the other hand, microstructure with discontinuities
and associated numerical problems were dealt in [66,67] using the multiscale aggregating method and
related works [68,69].

2.3. Darcy and Fick Problems

Heterogeneous materials with microstructure are also interesting for fluidic and diffusive
processes in applications such as filters, viscous dampers, catalyzers, or tissue engineering scaffolds.
Here the (linear) problem to analyze is based on the Darcy’s law of liquid percolation, which is also
analogous to the Fick’s law for diffusion. Both problems are then mathematically analogous, as well as
the interpretation of the permeability and diffusion tensors for Darcy’s and Fick’s based phenomena.

In the following sections, the multiscale problem associated with the linear steady-state flow
motion within a microstructure is presented.

2.3.1. Localization

Like in the linear elastic case, the microstructural flow motion of a liquid at the microscale
is given by solving the associated localization problem, which in turn can be computed once the
canonical functions of the microstructural velocities are computed. Then, the macroscopic associated
problem, i.e., Darcy’s law, is featured by the permeability tensor directly derived from the underlying
porous microstructure.

Following the asymptotic homogenization theory, we expand the velocity and pressure fields,
v and p, as,

v(X, Y) = vM(x) + vm(Y)
p(X, Y) = pM(x) + pm(Y)

(25)

Then, the equilibrium and continuity microscopic equations for an incompressible viscous fluid
within the steady state Stokes flow problem read as,

−∇p·I + µ∇·∇v + ρf = 0
∇·v = 0

v = 0 ∈ Γm (no− slip condition)
+boundary conditions

(26)

with ρ and µ being the fluid density and dynamic fluid viscosity, respectively. The body forces vector
per unit volume is denoted by f. For brevity, we define Z = −∇p·I + ρf, with I the second-order
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identity tensor. Since we deal with periodic boundary conditions, we establish an analogous procedure
to (4) for the fluid problem,

pmnm antiperiodic on Γm

vm periodic on Γm (27)

As in the solid problem, the micro-velocities in (26) allow a solution of the form,

vm = −Zm
j κi

j (28)

with κi
j the characteristic fluid velocities associated with unit pressure gradients [70]. Equation

(28) allows to obtain the microvelocities along the microscopic domain subjected to a macroscopic
pressure Zm.

After some algebraic manipulations and using (25), (26), and (28), the functions κi
j [70] must obey

the following expression in the microscopic fluid domain of the RVE,

µ∇2κ = −Zm (29)

in combination with the boundary conditions (27).

2.3.2. Homogenization

To obtain the homogenized macroscopic Darcy’s law, the microvelocities in Equation (28) are
averaged over the microstructural domain (RVE) as follows,

K = 〈κi
j〉 (30)

with K being the macroscopic permeability matrix. To derive Equation (30), the null fluctuation of the
velocity field 〈vm〉 = 0 in Ωm has been taken into consideration.

2.3.3. Variational Formulation

The variational form of the fluid phase is developed similarly to the case of solids. Therefore,
by using the periodicity assumptions in Equation (27) the variational form of Equation (26) yields to,

µ
∫

Ωm
∇γ · ∇vmdY = −

∫
Ωm

ZM · γdY ∀γ(Y) ∈ VY (31)

being the space VY defined as in the section above. Using the superposition of Equation (28) and the
result Equation (29) we finally get the following integral expression,

µ
∫

Ωm
F

∂κ
j
i

∂yp

∂γ
j
i

∂yp
dY =

∫
Ωm

γjdY (32)

where κ
j
i represents the characteristic microstructure fluid velocity due to an applied generalized

pressure gradient ZM
i in the direction i and γj represents a virtual velocity. Once these functions are

obtained, the macroscopic permeability Kij may be obtained from Equation (30).

2.3.4. Illustrative Example

The developed homogenization modeling presented for fluids is applied to a periodic
microstructure composed by a cylinder void immersed within a fluid medium.

This problem has many interests in composite manufacturing, since the cylinder void may
reproduce the composite fibers to model intra-yarn flow in permeable yarns, being the permeability
a critical parameter in this process. In fact, the mathematical determination and prediction of the
permeability tensor for these applications have been an active field of research in the last decade [71–81].
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We considered different void fractions as shown in Figure 11. This problem was studied by
Gebart [82], giving an analytical formula both for the longitudinal (along the fiber/cylinder direction)
and transverse permeability, namely,

kL,G = 8
57
(1−Vf )

3

V2
f

r2

kT,G = 16
9π
√

2

(√
π

4Vf
− 1
)2.5

r2

with Vf the volume fraction and r the radius of the cylinders. Berdichevsky and Cai [83] on the other
hand presented the following formulae for the permeabilities of the same problem,

kL,B = r2

8Vf

(
ln 1

V2
f
−
(

3−Vf

)(
1−Vf

))
kT,B = r2

8Vf

(
ln 1

V2
f
− (1−Vf )

2

(1+Vf )
2

)
The solution of the so-called characteristic velocities is given in Figure 12. The remaining functions

κ
j
i , which are not presented in that figure, are negligible. Finally, a comparison of the obtained values

and the theoretical estimates are shown in Figure 13. Numerical results are always comparable showing
a better fitting with the solution provided by [82] for the transverse permeability and [83] for the
longitudinal one.
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Figure 13. Theoretical estimates [82,83] versus numerical values of dimensionless permeability of a body
with a cylinder void (radius r, void fraction φ). (a) transverse permeability; (b) longitudinal permeability.

This technique has been successfully applied for the determination of the permeability tensor,
and hence the macroscopic Darcy’s law, in woven structures [84,85], tissue engineering scaffolds [86–88]
and porous materials [70,89].

2.4. Heat Transfer

In another field of application, heterogeneous materials with microstructure look for having
excellent heat conduction/isolation macroscopic properties. Some examples are isolating construction
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materials (building materials, mechanical parts of engines), heat exchangers or thermal energy storage
materials. All these problems may be analyzed by means of the heat transfer (Fourier) law both
macroscopically and microscopically (note that the presented analysis here is also available for Fickean
diffusion due to the analogy of the mathematical equations. The difference of this approach from
that presented in Section 2.3 is here the microstructural level is a heterogeneous material composed
of different phases with different diffusion coefficients. The pore scale which drives the diffusion
mechanism is not then captured yet microscopically as it is in the approach presented in Section 2.3.).
Therefore, macroscopic heat transfer behavior is given by analyzing the microscopic heat transfer
problem (Note that the microscopic problem is still formulated in phenomenological terms).

Heat transfer equation in the steady state at the micro level can be written as

∇ · q = 0
q = −D · ∇θ

〈q〉 = qM
(33)

q being the heat flux at the micro-level, D the heat conductivity matrix and θ the temperature. Having
in mind the asymptotic decomposition of the temperature field θ(X, Y) = θM(X) + θm(Y), one can
identify the steady-state heat transfer problem as the scalar version of the multiscale Poisson problem
in linear elasticity presented in Section 2.1. Therefore, the mathematical details of the problem in this
section are avoided due to that analogy.

The homogenization technique has been used in [90,91] for the analytical estimation of thermal
properties. More recently, [92–95] have derived a multiscale formulation of heat transfer problems.

Specifically, heat transfer problems have many interests in composites sciences since these
structures are usually subjected to extreme temperature changes. It is important then to predict
apparent thermal conductivities in order to analyze the mechanical behavior and the degradation
process in composite structures. This has been studied analytically in [96–98], by the asymptotic
homogenization method [99] or following a multiscale procedure [100,101].

2.5. Multiphysics: Thermomechanics, Poroelasticity, and Others

The multiscale treatment of several multiphysics problems of interest is reviewed in this section.

2.5.1. Thermomechanics

Thermomechanical analysis of heterogeneous materials is of interest in applications such
as ceramic coatings, high temperature alloy pipes, MMC in combustion engines, turbines, etc.
These problems involve the coupling of the mechanical and heat transfer problems, so the multiscale
formulation of the thermomechanical problem is based on the natural extension of the linear elasticity
and heat transfer problems. Therefore, the thermomechanical macroscopic behavior is given by
analyzing the microscopic thermomechanical problem (as in Section 2.4 the microscopic problem is
still formulated in phenomenological terms).

Micromechanically, the linear thermomechanical problem is written as follows,

∇·σ − ρ
..
u = 0

ε = 1
2 (∇u + (∇u)T)

σ = Cm : ε +V .
ε−C : αθ

ρcp
.
θ = ∇ · q + Q +V .

ε⊗ .
ε

q = −D · ∇θ

〈ε〉 = εM

〈q〉 = qM

+ initial and boundary conditions

(34)
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with ρ the density, V the viscosity tensor (considering a Kelvin–Voigt model), α the coefficient of
thermal expansion vector, cp the specific heat per unit mass, Q the volumetric heat source term and
V .

ε⊗ .
ε the mechanical (viscous) dissipation.

Neglecting (in other words, we mean that the time needed to impose changes to the mechanical
and thermal loading at the macroscale is assumed to be much larger than the time required for the
velocity and temperature of the microscopic problem to reach the steady state due to such changes [102])
inertial forces at the microscale since the volume of the RVE is small [27] and also thermal inertial effects
at the microscale, i.e., first left term in Equation (34); and considering the asymptotic decomposition
of both the displacement and temperature field, namely, u(x, Y) = uM(X) + um(Y) and θ(x, Y) =

θM(X) + θm(Y), respectively, the localization and homogenization associated problems to (34) can be
formulated by analogy to the concepts of localization and homogenization of linear viscoelasticity and
heat transfer problem. Heat transfer has been analyzed in Section 2.4. On the other hand, localization
and homogenization in linear viscoelasticity can be developed by turning the viscoelastic problem
into a fictitious elastic one by means of the Laplace transform. Then, the process is analogous to the
linear elasticity presented in Section 2.1. The bases of the localization and homogenization of the linear
viscoelastic problem are given in [41]. Nonetheless, localization and homogenization problem setup
for coupled thermomechanics, i.e., Equation (34), is shown in [103]. A modern multiscale approach to
this problem is found in [104].

An interesting application of multiscale thermomechanical solvers in the optimization of solar
selective coatings for absorber tubes can be found in [105]. In this application, the absorber layer
is a nanocomposite consisting of an amorphous carbon matrix reinforced with titanium carbide
nanoparticles. Therefore, RVEs containing one and several particles, respectively, were defined in
order to obtain homogenized thermo-mechanical properties upscaled to the component level for the
long-term performance analysis of the whole absorber tube. For this purpose, the strain and thermal
gradients of the macroscopic problem are set as boundary conditions at the microscale boundary value
problem. In the first stage, the heat transfer problem is solved and, then, the microscopic thermal strain
field is used in the subsequent mechanical boundary value problem. Finally, both the microscopic
stress tensor and heat flux vector are homogenized and upscaled to the macro problem, as represented
in Figure 14.
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Figure 14. Multiscale thermomechanical solving scheme (taken with permission from [105]).
The heterogeneous microscopic structure is evaluated stepwise and upscaled to the macroscopic
problem in order to assess the long-term performance of the tubes.

Another interesting example is that of [102], in which a fully-coupled thermomechanics monolithic
scheme is adopted to solve the momentum and energy equations and applied to shape-memory alloys
(Figure 15).



Materials 2019, 12, 691 22 of 46Materials 2019, 12 FOR PEER REVIEW  22 

 

 
Figure 15. Macroscopic results of Nitinol tube under stretch (taken with permission from [102]). (a) 
Longitudinal Cauchy's stress (Pa); (b) martensite fraction; and (c) temperature [K]. Left and right 
results for an imposed strain rate of 10−4 s−1 and 10−3 s−1, respectively. 

  

Figure 15. Macroscopic results of Nitinol tube under stretch (taken with permission from [102]).
(a) Longitudinal Cauchy’s stress (Pa); (b) martensite fraction; and (c) temperature [K]. Left and right
results for an imposed strain rate of 10−4 s−1 and 10−3 s−1, respectively.
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2.5.2. Poroelasticity

Poroelastic saturated media—such as soils, rocks, foams or living tissues—are microstructurally
biphasic media composed by a solid skeleton and a fluid phase. Poroelasticity Biot’s macroscopic
equations are then the phenomenological description of the microscopic fluid motion according to the
microscopic deformation of the solid skeleton. Poroelastic macroscopic equations read as,

σM = CM : εM
S − βpM

εM
S = 1

2 (∇uM +
(
∇uM)T

)

∇ · σM = ρ
..
uM

+ φρ f
.

wM

.
ς

M
+∇·gM = 0

gM = −K
(
∇pM + ρ f

..
uM

+
ρ f +φρ f

φ

.
wM

)
+ initial and boundary conditions

(35)

The first line in Equation (35) relates the constitutive macroscopic relationship in terms of the
macroscopic solid skeleton deformation εM

S and the overall pore pressure pM. In this equation, β is the
Biot’s stress tensor defined as,

β = φ
(

1 + R−1Q
)

R and Q being the macroscopic tensors accounting for fluid-solid interactions, which are only
dependent on the microarchitectural distribution and shape of pores. The second line in Equation
(35) is the compatibility deformation condition for the solid skeleton, in the third one the dynamic
equilibrium equation written in terms of the rule of mixtures (ρ f being the fluid density in that
equation). The fourth line in Equation (35) is the mass balance equation, with

.
ς defined as the variation

of fluid volume per volume. Finally, Darcy’s macroscopic law is given in, with gM the macroscopic
specific flux.

Under the hypothesis of small strains, both the apparent elastic, fluid, and solid-fluid macroscopic
properties in Equation (35) can be derived by a microstructural homogenization analysis analogous
to those presented in Sections 2.1 and 2.3 (see [70]). Moreover, the stress state at the microscopic
solid skeleton as well as velocity profiles within the pore phase may be obtained by its associated
microscopic localization problem (at the microstructural level, we neglect inertial forces analogously
to the problem presented in Section 2.5.1). Note that, at the microscopic scale, a more fundamental
physics—i.e., mechanics, fluids, and their interaction—may be distinguished as difference of the heat
transfer or thermomechanical problems.

The approach here followed can analyze the poroelastic features and homogenized macroscopic
properties of porous media [106,107], tissue engineering scaffolds [108,109], or to derive a multiscale
FE2 approach for poroelastic macroscopic media including plasticity [110].

2.5.3. Others

An interesting multiscale and multiphysics problem can be identified in bone tissue regeneration
using scaffolds, i.e., bone tissue engineering processes. As mentioned in the introduction, structural
porous supports are set in the bone defect to promote new bone tissue regeneration. Microscopically,
bone cells attached to the scaffold pore surface and segregate matrix and hence new bone tissue.
Cell matrix generation is highly influenced on mechanical cues that ‘feel’ bone cells from the
micromechanical state in their neighborhood and the fluid microcirculation within the pores. Overall,
microscopic new tissue regeneration changes the apparent elastic and permeability scaffold properties.
Macroscopically, the inclusion of a scaffold in the bone defect induces a different mechanical state in
the surrounding of the implant, which activates a remodeling process in bone.

This problem was approached in [24] using a multiscale and multiphysics approach (see Figure 16).
The macroscopic domain was divided into bone and scaffold regions. In the bone domain, the linear
elasticity equations with a certain macroscopic bone remodeling model were solved. The scaffold
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domain was treated as a multiscale and multiphysics approach. In this domain, fluid and solid skeleton
domains were distinguished (see Figure 16). New bone tissue deposition, scaffold degradation as
consequence of biodegradation as well as the mechanical behavior of the solid skeleton were modeled
at this two-scale level. The apparent mechanical and permeability properties were homogenized at
the macroscale taking into consideration the evolution of the microstructure as consequence of tissue
regeneration and scaffold resorption. Using this approach, the overall new bone tissue regeneration can
be predicted in terms of the microscopic biophysics and mechanobiology that take place. The multiscale
problem was formulated using the homogenization theory applied to solids and fluids introduced
in Sections 2.1 and 2.3 (see [24]). Figure 16 shows the evolution of new bone tissue growth both
macroscopically (in terms of density) as well as microscopically in the middle location of the implant
for different days. This problem is globally nonlinear so that it gives rise to a FE2 solution strategy.
The source of this nonlinearity is the evolution (change) with time of the different phases of the
microstructure, due to the described phenomena.
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Figure 16. Multiscale and multiphysics bone tissue regeneration using biodegradable scaffolds.
(a) Proximal femur implanted with a scaffold in the greater trochanter region. A detail of the
microstructure is shown in (b) solid domain and (c) fluid domain. Right: Apparent (macroscopic)
density evolution (g cm−3) of the bone organ and detail of the scaffold implantation. Microscopically,
bone regeneration distribution onto the scaffold microsurface of the macroscopic scaffold midpoint is
shown for different days after implantation. See [24].

3. Non-Homogenization-Based Multiscale Approaches

In some multiscale problems, the separation of scales, as introduced in Section 2, does not hold
because `m ∼ `M. Under such condition, the authors propose the term non-homogenization-based
multiscale (NHM) approaches to encompass all those techniques that cannot be classified as HM.

NHM becomes the main alternative on the limits of pure HM methods. For instance, the concept
of RVE, on which the idea of HM methods is based, does not work when material instabilities and
localization are present (e.g., local buckling, cracks). The very alternative is to tackle the problem
directly at the microscale. However, this may become computationally inefficient and, of course,
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tremendously expensive. These, often called true multi-scale methods can be globally summarized in
the following list:

• Multigrid [111]
• Domain decomposition-based [112], embedded or static condensation [113]
• Wavelet methods [114]
• Discrete-to-continuum, also often referred to as mesoscale models (e.g., coarse-graining [67,115],

quasi-continuum [116], bridging domain methods [30,117]).

There exists a plethora of multiscale techniques currently available. It is not the purpose of the
authors to detail all of them but to provide a brief overview on the main ingredients of the formulation
of these solvers. Certainly, the authors will focus on the first two approaches, namely, the multigrid and
domain decomposition methods under different applications from non-linear mechanics to transport
or heat transfer problems. The reader is referred to the literature [26,118,119] in order to get more
details on other approaches, yet not restricted to continuum physics.

3.1. Multigrid

Multigrid methods are iterative solvers that exchange information on the solution among different
grids (e.g., discretizations) of the same problem by means of transfer operators and local processing at
each scale. The basis of multigrid methods can be found in [111] in which it is defined as an algebraic
method for solving discrete equations (e.g., finite differences, finite elements) on a given grid by
constant interaction with a hierarchy of coarser grids (as shown in Figure 17). In fact, that multigrid
approach is based on a multilevel hierarchy that it makes the methodology applicable to any numerical
method for solving the continuum (if these are based on the discretization of the domain).
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The most general approach in multigrid is the so-called V-cycle by which a first stage of coarsening
is followed by the determination of the exact solution and then the interpolation and relaxation.

Given a positive definite and symmetric matrix, K, and the linear system, Ku = f, the energy
minimization problem reads

P(u) =
1
2

uTKu− uTf (36)

Now, define u as the current approximation of the solution; then, the absolute error is defined as

e = u− u (37)

The residual, therefore, can be defined as

r = f−Ku = K(u− u) = Ke (38)
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Then, at all levels, the problem is reduced to solving Ke = r. The minimization problem then
reads as

min
{

1
2

eTKe− eTr
}

= min
{

1
2

(
ẽ + H f

c ec
)T

K
(

ẽ + H f
c ec
)
−
(

ẽ + H f
c ec
)T

r
}

(39)

where ẽ is the initial fine level error, ec the coarse level error, and H f
c the coarse-to-fine

interpolation operator.
The multigrid method, according to Brandt [111], has a double-side view depending on the

coarsening or refining of the grids. For instance, in the case of coarse grids, it can be seen as “correction
grids accelerating convergence of a relaxation scheme on the finest grid by efficiently liquidating
smooth error components. On the other hand, finer grids can be seen as connecting grids that improve
accuracy on coarser grids by connecting their forcing terms. So, it is possible to manipulate accurate
solutions on coarser grid with infrequent visits to pieces of finer levels”.

3.1.1. Non-Linear Mechanics

In [26], the Newton-multigrid algorithm is presented for the resolution of multiscale non-linear
mechanics problems focusing in large plastic strains. The solution of the non-linear problem is based
on the linearization of the system

Lin{r(∆u), u0} = r(u0) + K(u0)∆u = 0 (40)

with K(u0) =
∂r(u0)

∂u .
The algorithm for the non-linear mechanics problem is presented in Figure 18 adapted from [26].

The Newton-type solver for the non-linear problem (Figure 18a) calls an iterative multigrid cycle
(described in Figure 18b) for the linearized problem.Materials 2019, 12 FOR PEER REVIEW  27 
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• Residue, sl ← sl - KlΔvl

End

Linearized iteration at fine-scale

Multigrid iteration

Figure 18. Multigrid schemes: non-linear Newton multigrid (a) calls a nested algorithm for solving
the linear problem (b) and, at the same time, this calls for a linearized iteration at the fine-scale (c).
Algorithm adapted from [26].
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This scheme provides an important speed-up with respect to direct solvers. According to the
authors, the critical point with regard the efficiency of such a method is the consideration of the
heterogeneity of the linearized structural problem. Finally, in order to reduce the fine-scale oscillating
part, a two-grid cycle with pre- and post-smoothing is used to solve the problem at the fine-scale.

The main transfer functions are defined in this method in order to promote the prolongation, i.e.,
coarse-to-fine transformation, Pl

l+1; and the restriction, i.e., the fine-to-coarse transformation, Rl+1
l .

For symmetric matrices, Rl+1
l =

(
Pl

l+1

)T
.

In the aforementioned work, the heterogeneity of the microstructure is tackled by splitting the
fine-scale displacements, v, into a long-wave and a short-wave term

v = v + ṽ (41)

Similarly, the transfer operators can be split into these two types of fluctuations; therefore

P f
c = P f

c + P̃
f
c

Rc
f = Rc

f + R̃
c
f

(42)

where c and f stand for coarse and fine, respectively.

3.1.2. Darcy Flow

Geomechanical information is usually provided at very high resolution; therefore, it is difficult
to handle this type of problems at the full-scale. In this sense, coarsening of the information is very
interesting but due to the multiscale nature in the physics of the problem, it cannot be treated as an
isolated problem. Multigrid methods provide a useful framework for tackling this type of problems.
Indeed, heterogeneity in the permeability can be treated at the finer scale and the solution can be
approximated at the coarser scale [120].

The fluid flow through a porous medium is described by Darcy’s law, that reads

u = − κ

µ
(∇p− ρg) (43)

where u is the macroscopic velocity field in the porous domain, p the pressure field, g the gravity field,
κ the permeability, µ the viscosity, and ρ the density.

The continuity equation is
∇ · u = f (44)

f being the source term. The problem is completely defined with the boundary conditions in terms of
flow and pressure

u · n = gN (45)

p = gD (46)

where n is the normal outer vector of the boundary and gN and gD the Neumann’s and Dirichlet’s
values for the boundary conditions, respectively.

The problem is reduced to finding u and p, which can be expressed in terms of a linear system of
equations as [

0 BT

−B D

][
p
u

]
=

[
b
c

]
(47)

with b = f −∇ · vgN , c = ρg− kvgN , B the differential operator, and D the inverse of the permeability
tensor that, in the case of isotropic media, is defined as D = κµ−1I, with I as the identity tensor. vgN is
the velocity on the Neumann’s boundary such that vgN · n = 0, with n the outwards normal vector.
The velocity is defined as u = u + vgN .
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The multigrid algorithm for Darcy’s flow presented in [120] is based on the Schur complement of
the velocities, which reads

Ap =
(

BTD−1B
)

p = f = b− BTD−1c (48)

In the work by Rath [120], a multigrid method is used to perform the coarsening procedure
following an upscaling approach. The main objective is to achieve a compromise solution at the coarse
scale sufficiently representative of the finer-scale. As shown in Figure 19, a two-level V-cycle is used to
solve the linear system. The pressure is obtained using the residual, ri = fh−Ah pi, where the subscript
h refers to the fine-scale grid, and the coarse corrector AH , where subscript H refers to the coarse-scale.

Materials 2019, 12 FOR PEER REVIEW  28 

 

ቂ 𝟎 𝐁்−𝐁 𝐃 ቃ ቂ𝑝𝐮ቃ = ቂ𝑏𝐜ቃ (47)

with 𝑏 = 𝑓 − ∇ ⋅ 𝐯௚ಿ , 𝑐 = 𝜌𝐠 − 𝐤𝐯௚ಿ , 𝐁  the differential operator, and 𝐃  the inverse of the 
permeability tensor that, in the case of isotropic media, is defined as 𝐃 = 𝜅𝜇ିଵ𝐈, with 𝐈 as the 
identity tensor. 𝐯௚ಿ is the velocity on the Neumann’s boundary such that 𝐯௚ಿ ⋅ 𝐧 = 0, with 𝐧 the 
outwards normal vector. The velocity is defined as 𝐮ഥ = 𝐮 + 𝐯௚ಿ. 

The multigrid algorithm for Darcy’s flow presented in [120] is based on the Schur complement 
of the velocities, which reads 𝐀𝑝 = (𝐁்𝐃ିଵ𝐁)𝑝 = 𝑓 = 𝑏 − 𝐁்𝐃ିଵ𝐜 (48)

In the work by Rath [120], a multigrid method is used to perform the coarsening procedure 
following an upscaling approach. The main objective is to achieve a compromise solution at the 
coarse scale sufficiently representative of the finer-scale. As shown in Figure 19, a two-level V-cycle 
is used to solve the linear system. The pressure is obtained using the residual, 𝐫௜ = 𝐟௛ − 𝐀௛𝑝௜, where 
the subscript ℎ refers to the fine-scale grid, and the coarse corrector 𝐀ு, where subscript 𝐻 refers 
to the coarse-scale. 

 
Figure 19. Multigrid scheme adapted from [120] for the Darcy problem. It consists of a two-level 
V-cycle with smoothing and coarsening of the solution. 

3.1.3. Heat Transfer 

Similarly, to the mechanical and the transport problem, heat transfer analysis is very 
challenging from the computational point of view. Moreover, when mechanical loads are present in 
such analysis (e.g., contact problems), the required computational power increases dramatically. Of 
course, when multiscale materials are being taken into account, alternative approaches to 
conventional direct simulations of the fine scale have to be foreseen. 

In [121], a multigrid approach is proposed for the resolution of the heat transfer problem in the 
case of moving heat sources, as is the case of contact in surface coatings. The multigrid algorithm is 
based on a finite difference framework. 

The differential equation of heat conduction for unsteady problems with no heat generation 
reads 𝜌𝑐௣ 𝜕𝜃𝜕𝑡 − ∇ ⋅ (𝐃∇𝜃) = 0 (49)

with 𝐃 the conductivity tensor, 𝜌 the density, 𝑐௣ the specific heat, and 𝜃 the temperature field. 

Initialization
i = 0, p0 = 0, r0 = fh – Ahp0

Smooth
• ci = 2/3(diagAh)-1ri
• pi+1 = pi+ci
• i ← i + 1
• r0 = fh – Ahp0

¿ ||ri|| < θ||r0|| ?

End

yes

Coarsen
• ci = AH

-1Rri
• pi+1 = pi+Pci
• i ← i + 1
• ri = fh – Ahpi

~
~

no

Figure 19. Multigrid scheme adapted from [120] for the Darcy problem. It consists of a two-level
V-cycle with smoothing and coarsening of the solution.

3.1.3. Heat Transfer

Similarly, to the mechanical and the transport problem, heat transfer analysis is very challenging
from the computational point of view. Moreover, when mechanical loads are present in such
analysis (e.g., contact problems), the required computational power increases dramatically. Of course,
when multiscale materials are being taken into account, alternative approaches to conventional direct
simulations of the fine scale have to be foreseen.

In [121], a multigrid approach is proposed for the resolution of the heat transfer problem in the
case of moving heat sources, as is the case of contact in surface coatings. The multigrid algorithm is
based on a finite difference framework.

The differential equation of heat conduction for unsteady problems with no heat generation reads

ρcp
∂θ

∂t
−∇ · (D∇θ) = 0 (49)

with D the conductivity tensor, ρ the density, cp the specific heat, and θ the temperature field.
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As mentioned before, the discretization framework in this work is the finite difference method,
and the system can be linearized by defining a differential operator.

According to Boffy et al. [121], multigrid methods are very convenient within local mesh
refinement strategies: the fine grids are restricted to smaller subdomains, whereas the coarse grids
cover the entire domain. The coarse grid correction is carried out in the local part, where the finest
grid exists (see Figure 20).
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Figure 20. Residuals of the solution (a) for a unit flow disc heat transfer problem by means of a
multigrid scheme (b). Taken with permission from [121].

In [122] more details on the implementation of the multigrid problem in V- and W-cycles are
provided. The procedure is similar to that described in Section 3.1.1.

The approximation of the error is obtained on the coarse grid and interpolated to the target grid,
this is used as a correction to improve the solution of this grid.

3.2. Domain Decomposition

It must be remarked that, in the case of domain decomposition, the definition of the displacement
field differs from that of Section 2, since it is uniquely defined at each subdomain, as explained
below. Thus, it makes no sense to define the displacement fields in terms of an average field plus
the fluctuation term. For the sake of simplicity only one decomposition is considered in this section,
but this could be extended to a general problem with a certain number of subdomains.

Let us consider the problem shown in Figure 21, where two zones within a global domain Ω are
identified: one corresponding to the finer scale in which the microscale phenomena will be accounted
for, Ωm; and the remainder material which is given bulk properties, ΩM. Thus, Ω ≡ Ωm ∪ ΩM.
The interface between both subdomains is denoted as Γm−M.

The main idea in domain decomposition is that the problem has to be solved in each subdomain,
Ωm and ΩM, and continuity is enforced at the disjoint interface Γm−M. Another way of subdividing
the domain is the so-called overlapping method, also known as Schwarz method [112].
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Figure 21. The domain decomposition method is a generic numerical technique that allows the
interaction between different subdomains. For instance, it can be used to define one domain with
bulk properties and another with homogenized properties (a). In the case of multiscale modeling,
one subdomain corresponds to the macroscale model which interacts with the microscale model (matrix
with cylindrical inclusions) through the interface (b). These figures correspond to a three-point bending
test in notched specimens of a metal-matrix composite.

3.2.1. Linear Elasticity

As presented in Section 2, the linear elasticity problem for a given domain Ωk and in the absence
of body loads, can be written as

∇·σk = 0

εk = 1
2 (∇uk +

(
∇uk

)T
)

σk = Ck : εk

(50)

being σk and εk the stress and strain tensors, respectively, in the domain, and Ck the fourth-order
linear elastic tensor containing the mechanical properties in the domain Ωk.

The problem above can be solved independently for each subdomain, k = {m, M} with the
following interface conditions:

• Dirichlet boundary conditions: um = uM on Γm−M

• Neumann boundary conditions: σm · nm + σM · nM = 0 on Γm−M

Linear elastic domain decompositions methods are also useful for speeding up the analysis as
they can be implemented in a general parallel framework, see for instance [123,124].

3.2.2. Non-Linear Mechanics

In the case of nonlinearity in the material, the domain decomposition can be used to split the
global domain into one linear problem (e.g., the bulk material—here defined as macroscale) and one
non-linear problem (e.g., fine scale—here defined as microscale).
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Thus, let us consider the linear elastic problem (Equation (50)) for the macroscopic domain (using
superscript M), and the non-linear problem for the microscopic domain and defined in general as

∇·σm = 0
εm = 1

2 (∇um + (∇um)T)

σm = f
(

εm,
.
ε

m, Θm
i , . . .

) (51)

As in the case of homogenization-based techniques, the stress tensor is evaluated in Equation (51)
once defined its nonlinear constitutive relationship (e.g., plasticity, damage, etc.) which may eventually
be a function of the strain and strain rate (εm and

.
ε

m, respectively); and of internal variables denoted
as Θm

i .
In principle, there are not any special differences with respect to the liner elasticity approach,

since the macro- and microscopic subdomains are solved independently, thus the interface conditions
are kept:

• Dirichlet boundary conditions: um = uM on Γm−M

• Neumann boundary conditions: σm · nm + σM · nM = 0 on Γm−M

3.2.3. The Finite Element Tearing and Interconnecting (FETI) Method

Regarding a general concurrent scheme, one representing the microscale (m) where localization
occurs and the remaining macroscopic material (M) which is assumed to undergo classical elastic
behavior. For this type of models, a localization limiter may be required to determine whether a
macroscopic zone has to be refined or not in an adaptive scheme. In [125], different coupling schemes
(e.g., mortar and Arlequin methods) and a discussion on their advantages is driven.

The domain decomposition methodology presented by [126] for the multiscale analysis of
heterogeneous brittle materials with continuum damage models is adapted for the continuum-discrete
coupling. This approach is based on the finite element tearing and interconnecting (FETI) method.
The microscopic model (in this case continuum) is used to analyze the fracture processes in the
damaged zones, while the rest of the structure remains far from the inelastic regime and is analyzed
with standard finite elements (see Figure 21).

Let us now consider the general variational formulation of the elasticity problem in a domain
Ω ≡ Ωm ∪ΩM, ∫

Ω
σ :

.
εdΩ =

∫
Ω

q
.
udΩ +

∫
Γ

T
.
udΓ (52)

where q are the body forces acting in Ω, T is the surface prescribed tractions on the boundary Γ such
that T = σ · n on Γ, and

.
u the virtual displacements rate.

The discretized version of (52), using a finite element approach, can be written as fk = Kkuk,
where uk is the discrete approximation of the displacement field (i.e., nodal displacements) with
k = {m, M}. Then, the nodal forces vector fk and stiffness matrix Kk are defined as

fk =
∫

Ωk NqmdΩ +
∫

Γk NTmdΓ

Kk =
∫

Ωk

(
Bk
)T

DkBkdΩ
(53)

being Bk the deformation matrices, N the shape functions derivatives matrix and Dk the constitutive
matrix such that σk = Dkεk. In the case of non-linear behavior, this matrix must be examined for each
variable and computed as Dk ≈ ∂σ

∂ε . Thus, the matrix formulation of the fine and coarse scales reads,
respectively, as

fm = Kmum in Ωm

fM = KMuM in ΩM (54)
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Once the individual problems corresponding to each scale have been defined, we must enforce
the continuity equation for their interface, Γm↔M:

Qmum + QMuM = 0 (55)

where Qm and QM are the Boolean signed matrices, defined as

Qm =

{
0 ∀i, j ∈ Ωm

±1 ∀i, j ∈ Γm↔M (56)

for the fine scale domain, and equivalently for the coarse scale domain, ΩM.
The solution of Equation (54) with the restriction imposed in Equation (55) can be achieved by

means of Lagrange multipliers. In fact, this method reduces a restricted problem with n variables to an
unrestricted one with n + k variables, being k the number of restrictions.

3.2.4. Darcy and Fick Problems

Domain decomposition methods have also been successfully applied in the field of Computational
Geosciences, in order to describe the behavior in porous media flow [118,127]. For instance, one sound
problem in the aforementioned topic is that of a fluid region, Ω f , that filtrates into a porous medium,
Ωp. The former domain is governed by Stokes equations while the latter is ruled by Darcy equations.
Thus, for the fluid domain, we have

−∇ · T
(

u f , p f
)
= f

∇u f = 0

T
(

u f , p f
)
= 2νD

(
u f
)
− p f I

D
(

u f
)
= 1

2 (∇u f +
(
∇u f

)T
)

(57)

where u f and p f are the displacement and pressure fields, respectively, in the fluid domain, T is the
stress tensor, and D the deformation tensor. Equation (57) applies in the domain Ω f . On the other
hand, the Darcy equation reads as

up = − 1
n K∇pp

∇up = 0
(58)

where up is the displacement field in the porous domain, Ωp, n the volumetric porosity, K the
permeability tensor, and pp the pressure gradient. Equation (58) applies for the domain Ωp.

Similarly, to the mechanical problem, both domains interact at the interface, here defined as Γp↔ f ,
with the following conditions:

• Conservation of mass: u f · n f = up · np on Γp↔ f

• Balance of normal forces: p f − 2ν
(

n f
)T

D
(

u f
)

n f = pp on Γp↔ f

• Beavers-Joseph-Saffman condition: u f · T f = ζ
(

sp↔ f
)T

D
(

u f
)

sp↔ f on Γp↔ f

where n f and np are normal unit vectors defined outwards the corresponding domain, sp↔ f

the tangential unit vector of the interface Γp↔ f , and ζ a representation of the characteristic length of
the pores.

In [128], different iterative methods are presented in order to compute the solution of the coupled
problem by solving independently the fluid and porous problems and imposing Robin conditions
contrary to using Neumann–Dirichlet methods which are strongly sensitive to the fluid viscosity and
permeability tensor. In the referred paper, complete details on the numerical implementation of the
weak form of the problem can be found.
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One interesting application of the domain decomposition method to diffusion equations is that
of neutron flux. In [129], a methodology for analyzing the neutron diffusion problem following a
non-overlapping Schwarz decomposition with Robin interface conditions. The diffusion problem reads

1
D p +∇φ = 0
∇ · p + Saφ = Qg

(59)

being p the neutron current and φ the neutron flux, D the diffusion coefficient, Sa the absorption cross
section, and Qg the neutronic source representing secondary neutrons from scattering and fission reactions.

Now assume two domains with different scales of resolution, namely one for the macroscale, ΩM,
and another for the microscale, Ωm. Thus, the neutron current and flux are defined in both domains,
pM and φM for the macroscale; and pm and φm for the microscale. The interface conditions applied on
Γm↔M are:

• Flux continuity: φm = φM on Γm↔M

• Balance of neutron current: pm · nm + pM · nM = 0 on Γm↔M

with nm and nM the normal unit vectors on the interface, defined outwards. In [129], Robin
interface conditions are used instead, thus

pm · nm + αmφm + pM · nM + αmφM = 0
pm · nm + αMφm + pM · nM + αMφM = 0

(60)

where αm, αM > 0.

3.2.5. Heat Transfer

Let us consider the conduction steady-state heat transfer problem with two domains. The macroscopic
domain, ΩM, is characterized by its conductivity tensor KM. However, a microscopic domain, Ωm,
with a higher resolution conductivity tensor Km may be required. The steady-state heat transfer
equation for the macroscopic domain reads as

−∇ ·
(

KM∇TM
)
= QM (61)

being TM the temperature field and QM the heat source term which is assumed null below. Similarly,
the heat transfer problem at the microscale reads

−∇ · (Km∇Tm) = Qm (62)

and no volumetric heat source will be considered next, Qm = 0.
Within a general domain decomposition scheme [130], the interface conditions that must be

enforced on Γm↔M are

• Flux continuity: qm · nm + qM · nM = 0 on Γm↔M

• Temperature continuity: Tm = TM on Γm↔M

where nm and nM are the normal unit vectors at the interface Γm↔M in the micro- and macroscale
domain, respectively, qm and qM are the heat fluxes defined as

qm = −Km∇Tm

qM = −KM∇TM (63)

3.2.6. Illustrative Example

In order to remark the main features of the domain decomposition technique, an illustrative
example is presented below. Let us consider the three-point bending test (3PBT) of a metal-matrix
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composite notched specimen. The microstructure has been idealized a regular triangular arrangement
of circular inclusions of a softer material. The matrix is assumed to behave as an elastic perfectly-plastic
material, while the inclusions are pure elastic.

In this example, two approaches are presented: the first one consists in using a homogenized
elastic-plastic response for the whole domain (Figure 22a,b), (Ωm ∪ΩM); while in the second one
the domain is decomposed into a macro- and microscopic subdomain (Figure 22c,d). In the former
approach, the actual material heterogeneity is not taken into account and two different meshes, coarse
and fine, were used; while in the latter approach the heterogeneity is included in the microscopic
domain and the mesh size for the macroscopic subdomain is that of the fine homogenized case
(Figure 22b) and a finer mesh for the microscopic subdomain in order to model the different phases.
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Figure 22. Domain decomposition should not be mistaken with mesh refinement. Figure (a,b) show a
macroscale model with coarse and fine meshes, while a multiscale domain with macroscale (c) and
microscale (d) subdomains may have different mesh density.

In Figure 23, the load versus crack mouth opening displacement (CMOD) and the von Mises
stress field at the maximum CMOD are presented for different cases. The single macroscopic model
shows similar results for both mesh sizes (coarse and fine); however, these overestimate by about 18%
the maximum load from the multiscale modeling. On the other hand, it can be also observed that
the stress concentration changes, being narrower the plastic band in the case of the multiscale model.
Regarding the elastic zone, it can be observed that both models are equivalent.
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4. Proper Generalized Decomposition Multiscale Approaches

The origin of the proper generalized decomposition (PGD) can be found in the large time
increment (LATIN) method [131] which was mainly used for solving time-dependent non-linear
problems in computational mechanics. The LATIN method was based on the so-called radial
decomposition by which the solution field u was sought as a composition of separated variables
in space (x) and time (t), as

u(x, t) ≈
N

∑
i=1

Xi(x)Ti(t) (64)

where N is the number of couples used for the approximation of the solution, and Xi and Ti are the
basis for the space and time functions, respectively.

Later works [132–134] proposed a generalization of the decomposition in Equation (64) to any
other dimension of the problem, making this approach suitable for multiparametric models. Thus,
the separate representation is constructed by means of a successive enrichment of the solution in terms
of a N-th summation of the product of D functions (in the case of a D-dimensional problem)

u(z) ≈
N

∑
i=1

D

∏
j=1

Fj
i
(
zj
)

(65)

where Fj
i is the i-th one-dimensional function of the j-th variable zj.

As pointed out in [135], the function Fj
i
(
zj
)

can be defined in terms of a piecewise linear
interpolation concerning a total of n nodes, and yielding a more general expression for Equation
(64). Therefore, for a D-dimensional problem with n nodes and a solution approximation of N terms,
the total number of unknown becomes NDn, circumventing the curse of dimensionality of classical
mesh-based techniques that require nD degrees of freedom.

Recent works include the use of PGD/LATIN model reduction techniques in the analysis of
viscoplastic composites [136], cyclic damage [137], and reinforced concrete structures [138] to cite
a few.
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The PGD formulation is usually defined as a priori since it does not require any knowledge of the
solution, it rather works within an iterative strategy as a pseudo-eigenvalue problem [139]. The reader
is referred to [140] for a detailed description on the general formulation of this method.

In the work by Ammar et al. [141], the PGD was first used to overcome problems in computational
mechanics with different time scales that cannot be separated. The underlying idea is to search for the
solution by considering two temporal variables: the first one, t for the coarse scale, and the second one,
τ for the fine scale. Therefore, the solution is expressed as

u(t, τ) ≈
N

∑
i=1

F1
i (t)·F2

i (τ) (66)

Since the enrichment at the coarse scale is multiplicative, the continuity between time scales is
imposed explicitly. In the paper both penalty functions and Lagrange multipliers are successfully used.

In the authors’ opinion, this technique must be remarked since it is beginning to play an important
role in multiscale modeling. Following the structure of this review, PGD is analyzed from the point of
view of HM and NHM methods.

4.1. PGD in HM Methods

El Halabi et al. [135] presented a homogenization-based multiscale model in which a generic RVE
is solved at the microscale by means of the PGD. In such way, the displacement field at the microscale
is computed off-line, reducing the computational cost at the macroscale.

The displacement field is defined as the macroscopic field, M, enriched by a microscopic field, m

u = uM + um (67)

and consider the spatial coordinates to follow

x = xM
m + xm (68)

where xm denotes the relative position of x with respect to the initial node of the RVE, xM
m .

Regarding the scales’ information exchange, the micro to macro enrichment is based on
the resolution of the RVE at the microscale by means of the PGD, as mentioned before. Thus,
the displacement field over each microscopic element is obtained a priori and refers to a macroscopic
element. Thus, the boundary conditions of the microstructural RVE and the location of the microscopic
RVE with respect to the macroscopic mesh are used as independent variables (xm, xM

m , uM
m , uM

m+1).
Then the multiscale problem is reduced to minimizing the residual of the macroscopic nodal

forces and internal forces, pext ≈ pint. Thus, the internal forces have to be computed

pMel
int =

Nm

∑
n=1

∫
Ωm

n

(
BM
)T

E
∂u

∂xm dxm (69)

Particularized for the 1D case (see Figure 24); where BM is the strain matrix operator associated
with the shape functions in the macroscale, E is the elastic modulus, Nm is the total number of elements
in the microscale domain, and u can be substituted by the series decomposition.

The homogenization-based multiscale approach proposed by El Halabi et al. [135] is presented for
2D as well (see Figure 25). From the numerical tests, important computer time reduction was obtained.
However, the gap to the 3D modeling is somehow larger since the number of independent parameters
increases. In any case, the procedure can be extended to dynamic or non-linear problems by including
the time or internal variables as extra parameters in the microscale RVE problem. This work has been
further extended to account for material nonlinearities in [142].



Materials 2019, 12, 691 37 of 46

Materials 2019, 12 FOR PEER REVIEW  36 

 

El Halabi et al. [135] presented a homogenization-based multiscale model in which a generic 
RVE is solved at the microscale by means of the PGD. In such way, the displacement field at the 
microscale is computed off-line, reducing the computational cost at the macroscale. 

The displacement field is defined as the macroscopic field, 𝑀, enriched by a microscopic field, 𝑚 𝐮 = 𝐮ெ + 𝐮௠ (67)

and consider the spatial coordinates to follow 𝐱 = 𝐱௠ெ + 𝐱௠ (68)

where 𝐱௠ denotes the relative position of 𝐱 with respect to the initial node of the RVE, 𝐱௠ெ . 
Regarding the scales’ information exchange, the micro to macro enrichment is based on the 

resolution of the RVE at the microscale by means of the PGD, as mentioned before. Thus, the 
displacement field over each microscopic element is obtained a priori and refers to a macroscopic 
element. Thus, the boundary conditions of the microstructural RVE and the location of the 
microscopic RVE with respect to the macroscopic mesh are used as independent variables (𝐱௠, 𝐱௠ெ , 𝐮௠ெ , 𝐮௠ାଵெ ). 

Then the multiscale problem is reduced to minimizing the residual of the macroscopic nodal 
forces and internal forces, 𝐩௘௫௧ ≈ 𝐩௜௡௧. Thus, the internal forces have to be computed 

𝐩௜௡௧ெ೐೗ = ෍ න (𝐁ெ)்ఆ೙೘ 𝐸 𝜕𝑢𝜕𝑥௠ 𝑑𝑥௠ ே೘
௡ୀଵ  (69)

Particularized for the 1D case (see Figure 24); where 𝐁ெ is the strain matrix operator associated 
with the shape functions in the macroscale, 𝐸 is the elastic modulus, 𝑁௠ is the total number of 
elements in the microscale domain, and 𝑢 can be substituted by the series decomposition. 

The homogenization-based multiscale approach proposed by El Halabi et al. [135] is presented 
for 2D as well (see Figure 25). From the numerical tests, important computer time reduction was 
obtained. However, the gap to the 3D modeling is somehow larger since the number of independent 
parameters increases. In any case, the procedure can be extended to dynamic or non-linear problems 
by including the time or internal variables as extra parameters in the microscale RVE problem. This 
work has been further extended to account for material nonlinearities in [142]. 

 
Figure 24. Microscopic and macroscopic discretization in the 1D problem within the proper 
generalized decomposition. The macro element sizes from 𝑋௠ெ to 𝑋௠ାଵெ  and the micro element has 
its internal resolution with 𝑥଴௠ = 𝑥௠ெ and 𝑥௙௠ = 𝑥௠ାଵெ . Figure taken with permission from [135]. 

Figure 24. Microscopic and macroscopic discretization in the 1D problem within the proper generalized
decomposition. The macro element sizes from XM

m to XM
m+1 and the micro element has its internal

resolution with xm
0 = xM

m and xm
f = xM

m+1. Figure taken with permission from [135].Materials 2019, 12 FOR PEER REVIEW  37 

 

 
Figure 25. Micro and macroscopic stress distributions for a voided matrix in 2D by means of the 
proper generalized decomposition. Figure taken with permission from [135]. 

4.2. PGD in NHM Methods 

Among the NHM methods described in Section 3, PGD is especially suitable within a domain 
decomposition framework. Indeed, in the work by Néron and Ladevèze [132], the idea of using the 
domain decomposition in order to decompose the structure into an assembly of substructures is 
already presented (Figure 26), focusing on reducing the computational cost of the PGD approach. 

Thus, the macroscale (i.e., bulk) problem is defined in the macroscopic domain, 𝑀; while the 
microscopic problem, 𝑚, is modeled by means of PGD, and must satisfy the following interface 
conditions: 

• Dirichlet: 𝐮ሶ 𝒎 = 𝐮ሶ 𝑴 on 𝛤௠↔ெ 
• Neumann: 𝝈௠ ⋅ 𝐧௠ + 𝝈ெ ⋅ 𝐧ெ = 0 on 𝛤௠↔ெ 
in the case of time-dependent problem. 

The choice of the parameters at the microscale problem is similar to that in the HM case. Since 
the displacement field in the microscopic domain is obtained a priori, once the RVE problem is 
solved, the method performs better than the pure approach. 

Finally, regarding the multigrid approach, the use of PGD becomes less competitive since this 
method is most efficient when fixed meshes are taken into account. 

Figure 25. Micro and macroscopic stress distributions for a voided matrix in 2D by means of the proper
generalized decomposition. Figure taken with permission from [135].

4.2. PGD in NHM Methods

Among the NHM methods described in Section 3, PGD is especially suitable within a domain
decomposition framework. Indeed, in the work by Néron and Ladevèze [132], the idea of using
the domain decomposition in order to decompose the structure into an assembly of substructures is
already presented (Figure 26), focusing on reducing the computational cost of the PGD approach.

Thus, the macroscale (i.e., bulk) problem is defined in the macroscopic domain, M; while the
microscopic problem, m, is modeled by means of PGD, and, in the case of time-dependent problem,
must satisfy the following interface conditions:

• Dirichlet:
.
um

=
.
uM on Γm↔M

• Neumann: σm · nm + σM · nM = 0 on Γm↔M

The choice of the parameters at the microscale problem is similar to that in the HM case. Since the
displacement field in the microscopic domain is obtained a priori, once the RVE problem is solved,
the method performs better than the pure approach.
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Finally, regarding the multigrid approach, the use of PGD becomes less competitive since this
method is most efficient when fixed meshes are taken into account.
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5. Multiscale Multiphysical Software

The development of new multiscale multiphysical solving schemes has benefited from the
challenges posed by the industry. In fact, this framework has been successfully proven in the
automotive [143], aerospace [144], or energy [145] sectors. This has resulted not only in improved
numerical strategies, but also in the upgrading of extended-use software (both commercial and
open-source) and, even more, the birth of new special purpose tools to carry out advanced simulations.

Numerical modeling is claimed to be as much art as science. For this particular reason, there exist
as many tools as practitioners. This aphorism might become more evident when multiscale modeling is
taken into account, as it requires the involvement of multidisciplinary teams. Therefore, there does not
exist a single (or set of) specific tools to carry out multiscale multiphysical simulations. Yet, the authors
propose herein an overview of widely extended software with proven capabilities for this duty.

As described in Section 2, homogenization-based methods rely mainly on the concept of the
existence of a representative volume element. For this reason, several software related to the
generation of computational microstructures have aroused, for instance, for composites (e.g., Digimat)
or polycrystals (e.g., Voro++, Dream3D). In any case, RVEs can be also built within generic finite
element preprocessors.

The characterization of RVEs, either within a sequential scheme or an FE2 approach, is typically
carried out with FE software—such as Ansys [146], Abaqus [147], Comsol [148], etc.—to cite some
examples. The interaction between the micro- and macroscale problem can take place within the same
simulation environment, or with the use of an external orchestrator. In this sense, the adoption of
Python [149] as a scripting language has supposed an important push. Other open-source software
that can similarly be used are Kratos Multiphysics [150], Fenics [151], Calculix [152], FEAP [153],
or Code Aster [154].

From the perspective of non-homogenization-based methods, the modeling challenge lies on
efficient meshing techniques or the enforcement of interface constraints, for instance.

In the one hand, commercial software such as Ansys, Abaqus, or MSC Patran [155] have typically
presented advanced meshing capabilities. If required, high-performance meshing tools such as
GiD [156] or Rhino [157], can be used as well. With regard to open-source alternatives, Gmsh [158] is
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widely extended. On the other hand, built-in capabilities in FE software (e.g., kinematic constraints)
can be used to enforce compatibility at the interface of the domains.

Finally, the multiscale solving process is typically time-consuming. For this reason, parallelization
techniques (e.g., MPI, CUDA) are a demand in the case of large systems. Moreover, alternative
techniques such as that based on the fast Fourier transform (FFT) or the aforementioned PGD are
called to play an important role in the upcoming years.

6. Conclusions

In this paper, a review of multiscale solvers for continuum problems is presented. Several
multiscale strategies of solution, based or not on the homogenization technique, have been visited for
a number of problems formulated in continua. The potential interest of each multiscale problem in
industry has been emphasized along the paper.

Regarding HM methods these are feasible when length scales separation is assured. Moreover,
the solution scheme is different whether the problem is linear or not. In linear problems, the complexity
of the method is reduced to compute the macroscopic or apparent properties. However, a nonlinear
scheme induces a FE2 strategy. That is, each macroscopic Gauss point of the FE mesh calls an FE
microscopic simulation on the RVE. Then, the CPU time is dramatically increased under this scenario.
In order to amend or minimize this issue, several alternative techniques are under investigation
being the PGD one of the most promising ones, which may allow in the near future to run nonlinear
multiscale models using conventional computers.

On the other hand, in non-separated scales the so-called NHM methods are invoked. In this
paper, several techniques in this field were reviewed, paying special attention to multigrid and
domain decomposition within mechanical, heat transfer, or diffusion problems. These methods have
been proven efficiently in the literature and the main ingredients of the numerical approach have
been discussed.

Due to recent advances and large investigation in multiscale algorithms, this field is becoming
applicable in industry. Multiscale simulation is especially well-suited for the design of new concept
materials from the microstructure, to get materials with desired or with unprecedented properties,
as well as to understand the performance, organization and behavior of hierarchically materials,
such as complex multilayered nanocomposites or living tissues, to cite a few.
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