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Highlights 

 Immunogenicity of differentiated equine mesenchymal stem cells (MSCs) was 

unknown 

 Adipogenesis and osteogenesis, but not chondrogenesis, upregulated MHC-I in 

equine MSCs 

 MHC-II expression increased after equine MSCs differentiation into the three 

lineages 

 CD40 and CD80 expression was not induced in equine MSCs after differentiation  

 MHC upregulation after differentiation might increase equine MSC immunogenicity 
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Abstract 

Mesenchymal stem cells (MSCs) are a promising treatment for equine musculoskeletal 

injuries because of their ability to regulate the inflammation and to differentiate into 

other cell types. Since interest in allogeneic therapy is rising, concerns about MSC 

immunogenicity need to be addressed. Differentiated MSCs from several species 

increase their expression of immunogenic molecules and induce alloresponses, but 

equine MSC immunogenic profile after differentiation has not been reported. Therefore, 

the aim of this study was to assess the gene expression of immunogenic markers in tri-

lineage differentiated equine bone marrow derived MSCs (eBM-MSCs). For this 

purpose, eBM-MSCs (n=4) were differentiated into osteoblasts, adipocytes and 

chondrocytes. Differentiation was confirmed by specific staining and gene expression of 

lineage-related markers. Subsequently, gene expression of MHC-I, MHC-II, CD40 and 

CD80 was analyzed in undifferentiated (control) and tri-lineage differentiated eBM-

MSCs. Osteogenesis and adipogenesis, but not chondrogenesis, significantly 

upregulated MHC-I; MHC-II expression significantly increased in the three lineages, 

while CD40 and CD80 expression did not change. Despite this, MHC-I and MHC-II 

upregulation after differentiation might lead to increased immunogenicity and risk of 

allorecognition, either eBM-MSCs differentiate in vivo after administration or they are 

differentiated prior to administration, with potential negative consequences for 

effectiveness and safety of allogeneic therapy. 

 

Keywords.- Horse; Mesenchymal stem cells; Allogeneic; Immunogenicity; 

Differentiation  

Word count.- 2,787 words 
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Introduction 

Mesenchymal stem cells (MSCs) are raising great interest for the treatment of equine 

musculoskeletal injuries since these have a huge impact in this species (Thorpe et al., 

2010), and because of the suitability of the horse as animal model (Colbath et al., 2017). 

Mesenchymal stem cells exert their therapeutic effects through different mechanisms, 

including anti-inflammatory and immunomodulatory properties, and their ability to 

differentiate into cells such as chondrocytes, osteoblasts or tenocytes (da Silva Meirelles 

et al., 2009). The regulatory properties of MSCs are currently focusing most of the 

interest, but differentiation should also be taken into account as it can occur in vivo after 

administration even if at low rates (Murphy et al., 2003; Mokbel et al., 2011). 

Furthermore, some therapeutic strategies are based on the implantation of differentiated 

MSCs, such as chondrocytes for treating joint pathologies (Broeckx et al., 2014a; Ham 

et al., 2015). The implantation of chondrocytes derived from MSCs may overcome the 

limitations of other techniques using autologous chondrocytes or chondroprogenitor 

cells, which are technically demanding and may involve donor site morbidity related to 

tissue harvesting (Jayasuriya and Chen, 2015; Cokelaere et al., 2016). Moreover, 

bioreactors are being developed to produce tissue-engineered constructs derived from 

MSCs for the repair of tissues such as cartilage, bone or tendon (Xie et al., 2013; 

Youngstrom et al., 2016).  

The optimal moment for MSC administration has yet to be determined, but several 

studies suggested enhanced effects with early administration (Koch et al., 2009; Mokbel 

et al., 2011), which might be limited by the use of autologous MSCs. Autologous 

therapy may also be limited in elderly patients or patients with genetic disorders. Hence, 

allogeneic therapy has raised great interest (Zhang et al., 2015). However, MSCs are not 

truly immune-privileged as they may induce both cellular and humoral immune 
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responses, thus their immune allorecognition would lead to negative effects both in 

terms of effectiveness, because of the elimination of the cells, and safety, because of 

potential adverse effects for the patient (Berglund et al., 2017b).  

In spite of the aforementioned, clinical implications of allogeneic equine MSCs 

administration are not entirely clear. While single and repeat intra-articular 

administration of allogeneic MSCs have been reported as clinically safe in both healthy 

(Carrade et al., 2011; Pigott et al., 2013a, b; Ardanaz et al., 2016) and pathologic equine 

joints (Broeckx et al., 2014a, b), other authors reported altered synovial parameters 

compared to autologous MSCs after second administration (Joswig et al., 2017).  

These contradictory results might be due to different levels of major histocompatibility 

complex (MHC) expression and MHC compatibility between donor and recipient, since 

positive and heterogeneous MHC-II expression level (Schnabel et al., 2014) and in vivo 

generation of antibodies against MHC-mismatched equine MSCs (Berglund and 

Schnabel, 2016) have been reported. MSC differentiation might affect their MHC 

expression and, consequently, their immunogenicity. Hence, differentiation may imply 

negative consequences for allogeneic MSC survival, potentially hampering their 

effectiveness and compromising patient safety (Lohan et al., 2014).  

Upregulation or induction of MHC-I and MHC-II and costimulatory molecules such as 

CD40 or CD80 has been shown after MSC differentiation into several lineages in 

human and small laboratory animals (Le Blanc et al., 2003; Liu et al., 2006a, b; Huang 

et al., 2010; Ryan et al., 2014; Yang et al., 2017). However, to the best of our 

knowledge, immunogenic profile of differentiated MSCs has not been assessed in the 

horse. Since allogeneic MSCs may differentiate in vivo albeit at low rates (Mokbel et 

al., 2011) or they can be differentiated to create tissue constructs prior to implantation 
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(Youngstrom et al., 2016), questions about immunogenicity of equine differentiated 

MSCs need to be addressed.  

The aim of this study was to assess the gene expression of immunogenic markers after 

tri-lineage differentiation of equine bone marrow derived MSCs (eBM-MSCs) in order 

to provide preliminary results about the potential consequences of eBM-MSC 

differentiation for their allogeneic administration. 

Material and methods 

Isolation of equine BM-MSCs 

Twenty ml of BM from sternum were collected in heparinized syringes using a 4″11G 

Jamshidi needle from four healthy horses (Shetland ponies geldings, 4-7 years, 138-162 

kg) under approval of the Ethic Committee for Animal Experiments from the University 

of Zaragoza (Project License 31/11). Gradient density separation technique 

(Lymphoprep, Atom) was used to isolate mononuclear cells, which were expanded in 

basal culture medium consisting of low glucose Dulbecco’s Modified Eagle’s Medium 

(DMEM) supplemented with 1%Glutamine, 1%Streptomycin/Penicillin and 10%Fetal 

Bovine Serum (FBS) (Sigma-Aldrich) until passage three and then characterized as 

eBM-MSCs by their phenotype (Ranera et al., 2011) and by their tri-lineage 

differentiation potential as it will be explained in the next section.  

Tri-lineage differentiation of equine BM-MSCs 

Equine BM-MSCs (n=4) were exposed to induction media (differentiation) or basal 

medium (undifferentiated control) in triplicates according to each differentiation assay. 

Differentiation potential was assessed by specific staining and gene expression of 
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markers for each lineage. Methodology used was previously described by Ranera et al. 

(2011). 

For inducing osteogenic differentiation, 20,000 cells/cm2 were seeded in 24-well plates. 

Osteogenic medium consisted of basal culture medium described above supplemented 

with 10nmol/l dexamethasone, 10mmol/l β-glycerophosphate and 100µmol/l ascorbate-

2-phosphate (Sigma-Aldrich). After 7 days, cells were fixed with 70%ethanol for 1 hour 

at room temperature (RT), stained with 2%Alizarin Red stain (pH 4.6) (Sigma-Aldrich) 

for 10’ RT and washed with PBS (Gibco).  

Equine BM-MSCs were seeded at 5,000 cells/cm2 in 12-well plates for the adipogenic 

differentiation with induction medium consisting of 1µmol/l dexamethasone, 500µmol/l 

3-isobutyl-1-methylxanthine, 200µmol/l indomethacin and 15% rabbit serum (Sigma-

Aldrich) supplemented basal medium. After 15 days, cells were fixed with 10%formalin 

(Sigma-Aldrich) for 15’ RT, stained with 0,3%Oil Red O stain (Sigma-Aldrich) 

(dissolved in 60:40; isopropanol:distilled water) for 30’ at 37ºC and washed with 

distilled water.  

To achieve chondrogenic differentiation, approximately 300,000 eBM-MSCs were 

transferred to conic bottom 15ml tube, 400µl of differentiation medium were added and 

then centrifuged at 1,750rpm 5’ to pellet the cells. Chondrogenic medium consisted of 

10%FBS, 10ng/ml TGFβ-3 (R&D Systems), ITS+premix (Beckton Dickinson), 

40µg/ml proline, 50µg/ml ascorbate-2-phosphate and 0.1µmol/l dexamethasone 

supplemented high glucose DMEM (Sigma-Aldrich). After 21 days, pellets were fixed 

in 10%formalin, embedded in paraffin and cut into 5µm sections. The sections were 

hydrated with increasing gradients of alcohols, stained with Mayer’s haematoxylin and 
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3%Alcian Blue dyes, rinsed with distilled water, dehydrated with decreasing amounts of 

alcohol and mounted. 

Differentiation was also assessed by analyzing the gene expression of the osteogenic 

markers Alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2), 

the adipogenic markers Lipoprotein lipase (LPL) and Peroxisome proliferator-activated 

receptor γ (PPARγ), and the chondrogenic markers Collagen type II alpha I (COL2A1) 

and Aggrecan (ACAN). Methodology used for gene expression analysis will be further 

explained in the next section. 

Real time quantitative polymerase chain reaction (RT-qPCR) 

Expression of genes coding for the lineage-associated markers aforementioned and 

immunogenic markers MHC-I, MHC-II, CD40 and CD80 was analyzed by RT-qPCR. 

Isolation of mRNA and complementary DNA (cDNA) retrotranscription from all 

samples were performed with the kit Cells-to-cDNA II (Ambion) according to 

manufacturer’s instructions. 

RT-qPCR reactions were performed and monitored with a StepOne RT-PCR System 

device (Applied Biosystems), using Fast SYBR Green Master Mix (Applied 

Biosystems) and 2 µl of cDNA as template. Amplification was performed in triplicate 

as follows: 20’’ at 95°C, followed by 40 cycles consisting of 3’’/95°C and 30’’/ 60°C. 

A dissociation curve protocol was run after every reaction. Gene expression levels were 

obtained using the comparative Ct method. Normalization factor was calculated as the 

geometric mean of the quantity of two housekeeping genes, GAPDH and B2M (Ranera 

et al., 2011). Primers were designed with the Primer Express 2.0 software based on 

known equine sequences and cDNA obtained from equine peripheral blood 
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mononuclear cells (PBMCs) was used as positive control to validate the primers 

(Remacha et al., 2015). Information about primers is shown in Table 1. 

Statistical analyses 

Statistical analyses were performed using the SPSS 15.0 (SPSS Inc.). Normality of each 

data group was tested with the Shapiro-Wilk test. Differences in the expression level of 

each gene were assessed between undifferentiated (control) and differentiated cells 

within each lineage by the non-parametric paired Wilcoxon test. Significance level was 

set at P<0.05 for all analyses. 

Results and Discussion 

Equine MSCs were successfully isolated from BM from all animals and displayed 

similar phenotype (data not shown) and differentiation potential to that previously 

described (Ranera et al., 2011), as shown by specific staining (Figure 1.A) and by 

upregulated gene expression of lineage markers (p<0.05) (Figure 1.B). Control cells 

(not exposed to induction media) did not spontaneously differentiate in any case.  

Based on previous studies in other species (Le Blanc et al., 2003; Liu et al., 2006a, b; 

Huang et al., 2010; Ryan et al., 2014; Yang et al., 2017), controls with separate 

components of the differentiation media were not performed. This approach was based 

on the assumption that possible MHC upregulation would be related to phenotypic 

changes experienced by differentiated MSCs, rather than to the direct effect of media 

composition. Actually, dexamethasone may decrease MHC-II expression in 

constitutively expressing human cells (Schwiebert et al., 1995). Indomethacin is a non-

steroidal anti-inflammatory agent which inhibits prostaglandin(PG)-E2 production. 

Since PGE2 may participate in MHC regulation, their inhibitors might influence MHC 
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expression (Otsuka et al., 1991; Kim et al., 2010). However, to the best of our 

knowledge it has not been reported modification of MHC expression in MSCs by 

indomethacin. Members of the TGFβ family are usually found in immune-privileged 

tissues (Siglienti et al., 2007) and TGFβ-2 diminished MHC expression in equine MSCs 

(Berglund et al., 2017a), so it would not be expected that the isoform TGF-β3 had 

upregulated MHC. Finally, as far as we are concerned, the other components used in the 

differentiation media have not been described to affect MHC expression.  

The results presented in this study are refered to gene expression, which has been 

widely used to study differentiated MSCs as it reflects their response to their 

environment in terms of control of protein production. However, mRNA traduction into 

proteins is a complex process so gene expression may not exactly correlate with protein 

expression. Nevertheless, increased MHC expression has been observed in both terms 

of gene and surface (protein) expression in undifferentiated equine MSCs exposed to 

inflammatory stimuli (Barrachina et al., 2016). Moreover, previous studies in other 

species assessing MHC expression in differentiated MSCs reported its increase in terms 

of both gene and protein expression (Huang et al., 2010; Xia and Cao, 2013). Therefore, 

gene expression changes found in this study may be related to surface protein changes, 

albeit at different extent. Further analyses, including protein expression and cytotoxicity 

assays, are warranted; but current gene expression results provide a preliminary insight 

about changes in the immunogenicity of differentiated equine MSCs.  

Gene expression of MHC-I was significantly upregulated, compared to the 

undifferentiated control, in both osteogenic (p<0.01) and adipogenic (p<0.01) 

differentiated eBM-MSCs, but not in the cells undergoing chondrogenesis (Figure 2.A). 

On the contrary, MHC-I expression did not increase in human MSCs differentiated into 

osteogenic and adipogenic lineages but was upregulated after chondrogenesis (Le Blanc 
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et al., 2003). Interestengly, in the study of Le Blanc, MHC-I expression after 

adipogenesis was slightly reduced, while in our study this lineage showed the greatest 

MHC-I upregulation.  

MHC-II gene expression significantly increased in eBM-MSCs differentiated into the 

three lineages (p< 0.05 for osteogenesis and adipogenesis, p<0.01 for chondrogenesis) 

(Figure 2.B). However, differentiated human MSCs did not show increased MHC-II 

expression in any lineage (Le Blanc et al., 2003), as well as no MHC-II expression was 

found in insulin-producing cells derived from human MSCs (Yang et al., 2017). On the 

contrary, human MSCs undergoing neuronal differentiation (Liu et al., 2006a) and 

murine MSCs differentiated into osteoblast (Zhang et al., 2009) and myocardiocytes 

(Huang et al., 2010) did upregulate MHC-II expression. 

On the other hand, neither CD40 nor CD80 gene expression significantly changed in 

differentiated eBM-MSCs compared to undifferentiated cells (Figure 2.C and 2.D). In 

basal conditions, MSCs do not express costimulatory molecules such as CD40, CD80 or 

CD86 (Wang et al., 2014) but inflammatory exposure may lead to CD40 upregulation 

(Najar et al., 2012; Barrachina et al., 2017). Similarly to our results, insulin-producing 

cells derived from human MSCs showed no expression of CD40 or CD80 (Yang et al., 

2017). Osteogenic differentiation neither induced CD80 nor CD86 expression in murine 

MSCs (Zhang et al., 2009), but osteogenesis (Shi et al., 2010) and neurogenesis (Liu et 

al., 2006a) of human MSCs led to CD80 expression.  

Thus, a great variability has been observed in the immunogenic profile of differentiated 

MSCs among species and lineages. Therefore, it is needed to assess these changes in 

each case to clarify the potential implication of MSC differentiation in their 

immunogenicity and, consequently, in their effective and safe administration. To the 
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best of our knowledge, this is the first study reporting the influence of the osteogenic, 

adipogenic and chondrogenic differentiation of equine MSCs on their immunogenic 

gene expression profile. 

Hence, upregulation of MHC-I and MHC-II might be related to an increased risk of 

immune allorecognition of the differentiated eBM-MSCs. Allorecognition of MHC 

molecules can be triggered by both direct and indirect pathways, that is, through the 

direct recognition of MHC-I and MHC-II molecules expresed by donor MSCs by 

recipient CD8+ or CD4+ T-cells (Chan et al., 2006; Afzali et al., 2008), or through the 

internalization of allogeneic MHC-I and MHC-II fragments by the recipient antigen 

presenting cells and their subsequent presentation to B and T-cells, potentially leading 

to cellular and humoral responses involving the generation of immune memory, which 

may limit repeat administration (Consentius et al., 2015). Furthermore, natural killer 

(NK)-cells could also target allogeneic MSCs that are missing self-MHC since they 

would be unable to activate the NK-cell inhibitory receptors (Spaggiari et al., 2006). 

Equine MSCs expressing MHC-II directly induced proliferation of allogeneic MHC-

mismatched T-cells in vitro (Schnabel et al., 2014), so MHC upregulation after 

differentiation might play a similar role. Activation of naïve T-cells requires 

costimulatory signals provided by costimulatory molecules such as CD40 and CD80 

(Tse et al., 2003), which were not upregulated after differentiation of eBM-MSCs in this 

study. Even though the lack of costimulatory molecules expression in MSCs has been 

proposed to partially explain the absence of alloresponse in some situations (Consentius 

et al., 2015), the solely recognition of allogeneic MHC molecules may activate memory 

and effector T-cells, leading to an immune rejection (Benichou et al., 2017). 
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Consequently, MHC upregulated gene expression might be hypothesized to potentially 

increase the risk of immune allorecognition of eBM-MSCs after differentiation, even 

though costimulatory molecules were not upregulated. However, previous studies in 

other species did not always correlate the changes in the immunogenic profile of 

differentiated MSCs with an increased immune response in vitro (Le Blanc et al., 2003; 

Liu et al., 2006a; Zhang et al., 2009).On the contrary, other studies observed that 

differentiated MSCs induced proliferation of allogeneic T-cells in vitro (Shi et al., 2010; 

Ryan et al., 2014) and local and systemic T-cell memory response in vivo (Ryan et al., 

2014). Moreover, while allogeneic administration of undifferentiated MSCs did not 

show adverse effects and even therapeutic benefit was elicited, administration of 

allogeneic pre-differentiated cells (Xia and Cao, 2013) or MSC differentiation in vivo 

after injection (Huang et al., 2010; Gu et al., 2015) led to immune rejection associated 

to MHC-I and MHC-II induction. Thus, previous studies suggest that allogeneic MSCs 

would go from a regulatory status (undifferentiated) towards an immunogenic one after 

differentiation, only providing short-term therapeutic benefit since differentiated cells 

would be rejected. This immunogenicity increase might be not only due to increased 

MHC expression but also related to a loss of MSC immunomodulatory ability (Ryan et 

al., 2014). In addition, different results observed in vitro and in vivo might be also 

explained by the potential influence of the in vivo microenvironment. As 

proinflammatory cytokines may upregulate MHC expression in undifferentiated MSCs 

(Barrachina et al., 2016), inflammatory conditions might also play a role in the 

immunogenicity of differentiated MSCs in vivo (Yang et al., 2017). 

Summarizing, current knowledge about how differentiation influences MSC 

immunogenicity presents some contradictions but evidences that MSC immune 

properties could be affected, warranting further research in this area. The present study 
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provides preliminary data about the changes induced by differentiation in the 

immunogenic profile of eBM-MSCs. Gene expression of MHC-I and MHC-II, but not 

CD40 and CD80, was increased after tri-lineage differentiation of eBM-MSCs, which 

might influence their immunogenicity and, subsequently, their allogeneic use, either if 

differentiation may occur in vivo after administration or whether equine MSCs are 

previously differentiated for a tissue engineering approach. Implications of these 

findings for the allorecognition of differentiated eBM-MSCs needs to be further 

addressed, as well as the possible role of the in vivo microenvironment and the effect of 

differentiation on immunomodulatory ability of eBM-MSCs, since MSC immune 

properties play a key role in the development of effective and safe cell therapies. 
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Table 1.- Primers used for gene expression by RT-qPCR. GenBank accession numbers 

of the sequences used for primers design. Primers (F: Forward and R: Reverse) and 

length of the amplicon in base pair (bp). Genes were grouped in agreement with the 

functions and implications of encoded molecules.  

GENE Accession 
number Primer sequence (5‘–3’) Amplicon 

size 
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HOUSE-KEEPING 

GAPDH NM_001163856 F:GGCAAGTTCCATGGCACAGT 
R:CACAACATATTCAGCACCAGCAT 128 

B2M NM_001082502.2 F: TCGTCCTGCTCGGGCTACT 
R: ATTCTCTGCTGGGTGACGTGA 102 

IMMUNOGENICITY-RELATED MOLECULES 

MHC-I AB525081 F: CGTGAGCATCATTGTTGGC 
R: TCCCTCTTTTTTCACCTGAGG 92 

MHC-II NM_001142816 F: AGCGGCGAGTTGAACCTACAGT 
R: CGGATCAGACCTGTGGAGATGA 172 

CD40 AY514017 F: ACAAATACTGCGACCCCAACC 
R: TTTCACAGGCATCGCTGGA 114 

CD80 Krampera 2006 F: CAGGAAAGTTGGCTCTGACCA 
R: TCTCCATTGTGATCCTGGCTC 135 

OSTEOGENIC MARKERS 

ALP XM_001504312 F: GATGGCCTGAACCTCATCGA 
R: AGTTCGGTCCGGTTCCAGAT 92 

RUNX2 XM_001502519.3 F: CTCCAACCCACGAATGCACTA 
R: CGGACATACCGAGGGACATG 80 

ADIPOGENIC MARKERS 

LPL XM_001489577 F:TGTATGAGAGTTGGGTGCCAAA 
R:GCCAGTCCACCACAATGACAT 70 

PPARγ XM_001492411 F:TGCAAGGGTTTCTTCCGGA 
R:GCAAGGCATTTCTGAAACCG 104 

CHONDROGENIC MARKERS 

ACAN AF019756 F: CTACGACGCCATCTGCTACA 
R: ACCGTCTGGATGGTGATGTC 96 

COL2A1 XM_005611082.1 F: TTAGACGCCATGAAGGTTTTCTG 
R: CTCTTGCTGCTCCACCAGTTCT 101 
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Figure legends 

Figure 1.- Tri-lineage differentiation induction was confirmed by specific staining (A) 

and gene expression (B). Alizarin red staining of eBM-MSCs differentiated into 

osteoblasts (magnification 20x) (A.1); Oil red O staining of eBM-MSCs differentiated 

into adipocytes (magnification 4X) (A.2) and Alcian Blue staining of pellets from eBM-

MSCs undergoing chondrogenic differentiation (maginification 10X) (A.3). Results 

from gene expression are expressed as Mean ± S.E.M (n=4) fold change of 

differentiated eBM-MSCs over undifferentiated eBM-MSCs (control) for osteogenic 

(B.1), adipogenic (B.2) and chondrogenic (B.3) markers. ALP, Alkaline phosphatase; 

RUNX2, Runt-related transcription factor 2; LPL, Lipoprotein lipase; PPARγ, 

Peroxisome proliferator-activated receptor γ; COL2A1, Collagen type II alpha I; 

ACAN, Aggrecan; * = p<0.05. 
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Figure 2.- Gene expression data are reported as Mean ± S.E.M (n=4) fold change of 

osteogenic, adipogenic and chondrogenic differentiated eBM-MSCs over 

undifferentiated eBM-MSC (control) for the immunogenic markers MHC-I (A), MHC-

II (B), CD40 (C) and CD80 (D). MHC-I, major histocompatibility complex type I; 

MHC-II, major histocompatibility complex tipe II; CD40, cluster of differentiation 40; 

CD80, cluster of differentiation 80; * = p<0.05; ** = p<0.01 
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