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Abstract 

The catalytic dehydrogenative coupling of silanes and alcohols represents a convenient process to 

produce hydrogen on demand. The catalyst, an iridium complex of the formula [IrCp*(Cl)2(NHC)] 

containing an NHC ligand functionalized with a pyrene tag, catalyzes efficiently the reaction at room 

temperature producing H2 quantitatively within a few minutes. As a result, the dehydrogenative coupling 

of 1,4-disilabutane and methanol enables an effective hydrogen storage capacity of 4.3 wt% that is as 

high as the hydrogen contained in the dehydrogenation of formic acid, positioning the silane/alcohol pair 

as a potential liquid organic hydrogen carrier for energy storage. In addition, the heterogenization of the 

iridium complex on graphene presents a recyclable catalyst that retains its activity for at least ten 

additional runs. The homogeneous distribution of catalytic active sites on the basal plane of graphene 

prevents diffusion problems and the reaction kinetics are maintained after immobilization. 

 

Keywords: hydrogen production, LOHC, iridium, energy storage, supported catalysis, graphene 
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Introduction 

Hydrogen is in a leading position among all possible clean alternative sources of energy that will have 

an impact in the near future due to a rising global demand.1–4 The combination of hydrogen with oxygen 

produces clean energy where the only by-product is water. The actual limitation of using hydrogen to 

obtain clean energy lies in the development of efficient methods for hydrogen storage.5–8 Among them, 

hydrogen storage in the form of organic liquids is becoming a very attractive strategy because the energy 

storage density and tractability are similar to actual carbon-based fuels.9–11 Liquid organic hydrogen 

carriers (LOHCs) in combination with a “green hydrogen production” method, i.e., the electrolysis of 

water or water splitting using eolic and/or solar energies, represent a promising technology for a future 

energy supply. However, the direct use of eolic and solar energies is limited due to the intermittent 

characteristics of wind and sun.12–14 An increase in these renewable energies is subjected to the 

availability of efficient energy storage systems.15,16 

An LOHC is an organic substance that stores hydrogen reversibly in the form of chemical bonds.17–24 

From a chemical point of view, H2 loading is a hydrogenation reaction, and the reverse process, is a 

dehydrogenation reaction. The bond-breaking and bond-formation transformations can be driven 

thermally, but the activation energy required makes the process unfeasible.25 The introduction of a 

catalyst reduces the temperature of both processes, which considerably decreases the required activation 

energy and controls the kinetics.26–28 Herein, a major challenge is to develop efficient methods for 

hydrogen release.29–32 H2 unloading must proceed at low temperatures and with a control of the 

hydrogen flow. In this regard, we have recently reported ruthenium complexes of type 

[Ru(arene)(Cl)2(NHC)] that are effective catalysts for the dehydrogenative coupling of silanes and 

alcohols under mild thermal conditions. This process has three main advantages in comparison with 

traditional ones: (1) hydrogen is obtained at low temperatures, even below 0 ºC, which facilitates the 

potential use of silanes for on-board vehicle applications,33–35 (2) the gas is released in short reaction 

times and the kinetic-control permits the production of a constant flow of hydrogen, and (3) the use of 

silanes as LOHCs is a carbon free process that produces high-purity hydrogen. Our previous work in 

ruthenium catalysts used in the coupling of silanes with alcohols show low to moderate hydrogen 

storage capacity.36 In this work, we have developed an active catalytic system based on iridium 

[IrCp*(Cl)2(NHC)] that increases the hydrogen storage capacity up to 4.3 wt% of H2 (Scheme 1). 

 

Scheme 1. Hydrogen production by the dehydrogenative coupling of 1,4-disilabutane and methanol 
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Results and Discussion 

The reaction of hydrosilanes with alcohols was investigated using Cp*Ir(NHC) complexes at a 

molecular level or supported on graphene (Scheme 2). The reaction of imidazolium salt 1 with 

[Cp*IrCl2]2 under transmetallation conditions using Ag2O produced the orthometallated iridium 

complex 2. Carbon-hydrogen activation processes are commonly observed in chelation-assisted 

aromatic Cp*Ir complexes. 37–40 Non-orthometallated iridium complex 3 was obtained by deprotonation 

of the imidazolium salt with tBuOK and metalation at room temperature. The addition of a second 

equivalent of base promotes orthometallation forming complex 2. The iridium molecular complexes 

were characterized by NMR spectroscopy, ESI-MS spectrometry and elemental analysis. The 

immobilization of iridium complex 3 on graphene was carried out as previously described.41–43 This 

methodology allows a controlled grafting of molecular complexes on the surface of reduced graphene 

oxide (rGO) by π-staking interactions. We have observed that the pyrene tag forms strong π-interactions 

with graphene, which prevents desorption of the molecular complex during the catalytic 

experiments.44,45 Direct evidence for  π-stacking interactions due to the pyrene tag was observed using 

single-crystal X-ray diffraction of compound 2 (Figure 1). Suitable single crystals were obtained after 

halide exchange using NaBr. The packing diagram shows a strong π-stacking interaction between the 

pyrene groups of different molecules. The interplanar distance between the polyaromatic groups is 3.5 

Å. The tendency of the pyrene tag to form π-stacking interactions has previously been observed for 

palladium,41 ruthenium44 and gold.46 The formation of π-π interactions at the molecular level leads to the 

immobilization of the molecular complexes on the graphene surface. Characterization of the hybrid 

material 3-rGO was performed by UV/vis, FTIR, HRTEM, and XPS, and the exact amount of complex 

3 on graphene was analyzed by ICP/MS analysis (Supporting Information). The results accounted for 

6.5% of iridium complex 3 on the surface of graphene. Analysis by X-ray photoelectron spectroscopy 

(XPS) provides evidence of the molecular structure of complex 3 on the surface of graphene. A 

comparative XPS analysis of complex 3 and the hybrid material 3-rGO shows the characteristic core-

level peaks of C1s and Ir4f at the same binding energy (Figure 2). XPS analysis shows that the mild 

conditions used during the immobilization process preserved the intrinsic properties of both the iridium 

complex and graphene.36,46 
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Scheme 2. Synthesis of the iridium molecular complexes and immobilization on graphene 

 

 

Figure 1. Packing diagram of complex 2 showing an interplanar distance of 3.5 Å between the pyrenes. 
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Figure 2. Comparative XPS analysis of molecular complex 3 (top) and hybrid material 3-rGO (down) 

for the core-level peaks of C1s and Ir4f. 

 

The coupling of silanes with alcohols is a well-known process for the protection of alcohols and the 

synthesis of silyl ether derivatives. Transition metal complexes are efficient catalysts for this 

transformation.47–50 We used dimethylphenylsilane as a model substrate for the optimization of reaction 

conditions in the dehydrogenative coupling of the silanes. In a typical experiment, a solution of iridium 

catalysts in the appropriate alcohol was added to a solution of silane in the same alcohol that was used as 

the solvent and reagent at 30 ºC. Immediately, the reaction starts bubbling hydrogen that was collected 

using an inverted burette or a pressure transducer. At the end of the reaction, the yield was evaluated by 

isolation of the silyl ether product. The catalytic activity of the orthometallated iridium complex 2 was 

low and was not further investigated. In contrast, the iridium complex 3 is an efficient catalyst for the 

dehydrogenative coupling of silanes and alcohols. Using 1.0 mmol of dimethylphenylsilane, MeOH and 

a catalyst loading of 0.5 mol%, the reaction was completed in less than 2 min at room temperature. The 

reaction kinetics are slightly different when measuring the generated hydrogen with an inverted burette 

or a pressure transducer due to a change in the reaction conditions (Figure 3.a). Additionally, at the end 

Page 5 of 21

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 

 

of the reaction, the silyl ether product was isolated by solvent removal and the yield was evaluated by 1H 

NMR spectra using anisole or trimethoxybenzene as a standard. The dehydrogenative coupling of 

dimethylphenylsilane works for different alcohols using catalyst 3. The reaction rates rapidly decrease 

with an elongation of the alcohol chain, and for secondary alcohols, the process is so slow that 

quantitative yields are not achieved in 80 min (Figure 3.b). The control of the reaction kinetics is 

important for industrial applications, especially in the case of hydrogen release from an LOHC 

connected to a fuel cell.51 Herein, we shown that the dynamics are controlled by the use of an 

appropriate alcohol that can be adjusted to the operation dynamics of the fuel cell.  

 

 

Figure 3. a) Hydrogen evolution monitoring for the reaction of Ph(Me)2SiH with MeOH (1 mL) at 30 

ºC using catalyst 3 (0.5 mol%). b) Dehydrogenative coupling of Ph(Me)2SiH with different alcohols (1 

mL) using catalyst 3 (0.5 mol%). Yields obtained using a pressure transducer. 

 

Complex 3 is an active catalyst for the coupling of a variety of silanes and alcohols (Table 1). The 

structural versatility of silanes and the variety of alcohols allows the formation of mixtures with 
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controlled properties such as the boiling point, density or hydrogen storage capacity. The 

dehydrogenative coupling of silanes with alcohols catalyzed by complex 3 is sensitive to silane 

bulkiness and the alcohol nucleophilic character. Quantitative yields are obtained in the coupling of 

primary, secondary and tertiary silanes with alcohols at low temperature. In all cases, the reaction 

kinetics is rapid even at 30 ºC. The reaction rates are very fast for the primary alcohols and decrease 

with chain elongation (Table 1, entries 1-4). Bulky silanes such as diphenylsilane, do not reach 

quantitative yields even after a 2 h reaction time (Table 1, entry 5). The hydrogen storage capacity of 

silanes containing a single hydride is low. For instance, the hydrogen content of Ph(Me)2SiH/MeOH is 

only 1.2 wt% of H2 (Table 1, entry 1). However, the versatility of hydrosilanes increases the hydrogen 

storage capacity when using secondary or tertiary hydrosilanes. The effective hydrogen storage capacity 

of phenylsilane/MeOH increases up to 3.0 wt% (Table 1, entry 9) and in the case of 1,4-

disilabutane/MeOH the hydrogen storage capacity is 4.3 wt% of H2. This is as high as the hydrogen 

contained using formic acid as an LOHC. 

 

Table 1. Scope of the dehydrogenative coupling of silanes 
and alcohols. 

 

 

 

Entry Silane ROH 
eff

HSC t (min) Yield (%)
a
 

1 

 

 

 

MeOH 1.2 3 100(98) 

2 EtOH 1.1 30 100(97) 

3 nPrOH 1.0 40 100(98) 

4 nBuOH 0.96 55 100(99) 

3 

Et3SiH 

MeOH 1.4 20 100  

4 EtOH 1.2 30 100 

5 

 

MeOH 1.6 120 85(82) 

6 

 

MeOH 3.0 5 100 

7 EtOH 2.5 15 100(94) 

8 

 

MeOH 2.8 20 100(93)  

9 EtOH 2.3 35 100(90) 

10 

 

MeOH 3.3 15 100(75)  

11 EtOH 2.7 20 96(80) 

12 

 

 

 

 

MeOH 4.3 12 100(96) 

13
b
 EtOH 3.3 30 100(97) 

14
c
 nPrOH 2.7 25 100 
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15
c
 nBuOH 2.3 40 100 

Reaction conditions: silane (1.0 mmol), iridium catalyst (0.5 
mol%), 30 ºC and 1 mL of ROH. [a] Yields determined by 
H2 formation using an inverted burette and/or a pressure 
transducer. Isolated yields in parenthesis based on the 
amount of silyl ether determined by 1H NMR spectroscopic 
analysis using 1,3,5-trimethoxy benzene as an external 
standard. [b] Iridium catalyst (1 mol%). [c] Iridium catalyst 
(2 mol%). 

 

 

 

The immobilization of molecular complex 3 on graphene leads to the formation of a hybrid material 

composed of an organometallic complex on the surface of reduced graphene oxide. The catalytic 

properties of 3-rGO were evaluated in the dehydrogenative coupling of silanes and alcohols. The 

coupling of dimethylphenylsilane and MeOH using catalyst loading based on iridium of 0.5 mol% 

produces a 100% yield in 7 min. The comparison of the catalytic activity at a molecular level (100% 

yield in 3 min) and the support reveals that the catalytic activity is maintained. In most cases, the 

immobilization of molecular catalysts leads to a dramatic decrease in activity due to diffusion problems 

and saturation kinetics. The situation is different when using graphene as a support because all the 

catalytic centers are located at the surface of the material. The location of the active catalytic species on 

the surface of a 2D material allows the direct interaction with substrates and diffusion problems are 

negligible. We have previously observed the same results for other molecular catalysts anchored on the 

surface of graphene.45 Another interesting effect was observed when decreasing the catalyst loading. At 

a molecular level, we observed that when using a catalyst loading of 0.1 mol% the reaction of 

dimethylphenylsilane and MeOH practically stopped after reaching a 70% yield after 15 min. In 

contrast, quantitative yields are obtained when using the hybrid material 3-rGO. This result is an 

indication that the reduced graphene oxide is stabilizing the catalytic active species. Graphene is not 

only acting as a mere support but also interacting with the catalytic active species. An enhancement in 

the catalytic activity and stability has been observed in the internal hydroamination of alkynes using 

gold catalysts immobilized on graphene.46 

The recycling properties of the hybrid material 3-rGO were tested using dimethylphenylsilane as 

a model substrate. The catalytic activity was evaluated using the general conditions previously described 

(Table 1). After each run, the solid catalyst 3-rGO was removed from the solution by decantation 

washed with methanol and then reused. The hybrid material 3-rGO was reused up to ten times without a 

decrease in activity (Figure 4). The results show that the immobilization on graphene leads to a robust 
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catalytic hybrid material that is recyclable. The properties of the hybrid material were analyzed by 

HRTEM microscopy after the recycling experiments (Figure 5). The images show that the single-layer 

morphology of graphene is preserved after the catalytic experiments. There is no formation of 

nanoparticles and the EDS elemental analysis shows the presence of homogeneously distributed iridium. 

OH
OH

O
OH

O

HO

3-rGO

+Ph Si

Me

H

Me

MeOH +Ph Si

Me

OMe

Me

H2

3-rGO

Ir

N

N

Cl

Cl

 

 
Figure 4. Recycling experiment using Ph(Me)2SiH. Conditions: Catalyst loading 0.5 mol%, 1.0 mmol of 

silane, 1 mL of MeOH at 30 ºC for 15 min. Yields determined by GC using anisole as the standard. 

 

 

Figure 5. HRTEM images before (left) and after (right) ten catalytic cycles. 

 

The mechanism of the dehydrogenative coupling of silanes with alcohols by homogeneous iridium 

complexes is based on the interaction of the Si-H bond with the metal center forming the reactive metal 

hydrides. The active hydrides come from the hydrosilanes via oxidative addition or the formation of 

electrophilic metal/Si-H σ complexes. The oxidative addition of a Si-H bond to the iridium (III) center is 

unlikely under reductive alcoholic solutions and most probably is the formation of a metal-σ complex. 
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The formation a metal/Si-H σ complex requires a vacant coordination site that is not present in complex 

3. The possible formation of vacant sites in complex 3 were evaluated using different solvents. The 1H 

NMR spectra of the iridium complexes of type [Cp*Ir(Cl)2(NHC)] in CDCl3 display one set of sharp 

signals. In contrast, the presence of different species were observed when an NMR analysis was 

conducted in CD3OD (or D2O). This process is reversible, since the removal of CD3OD and the addition 

of CDCl3 provided the initial spectrum. This finding is indicative of an equilibrium between different 

metal complexes promoted by MeOH (Scheme 3). A similar process was observed in the case of Ru-

arene complexes.52 In this context, the iridium complexes of general formula [Cp*Ir(Cl)2(NHC)] are in 

equilibrium in MeOH generating cationic species and vacant sites. This equilibrium enhances the 

electrophilic character of complex 3 in alcohols which points to a mechanism based on the formation of 

a Si-H σ complex. 

 

Scheme 3. Equilibrium of [Cp*Ir(Cl)2(NHC)] in a MeOH solution 

The dehydrogenative coupling of silanes with alcohols is a fast reaction even at room temperature, 

which suggest that the activation energy (Ea) is low. To determine the activation energy, a set of reaction 

profiles were measured at different temperatures. The catalytic reaction of dimethylphenysilane with 

MeOH was carried out at different temperatures in the range of 0 to 30 ºC. In all cases, quantitative 

yields were obtained even at 0 ºC (Figure 6). The activation energy obtained from the Arrhenius 

equation plot is 15.3 Kcal/mol. The coupling of silanes with alcohols is a convenient reaction to produce 

hydrogen on-demand because it is fast (low activation energy) and the process is thermodynamically 

favorable (∆G < 0). 
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Figure 6. Reaction curves at various temperatures. Conditions: 1.0 mmol of dimethylphenylsilane, 1 mL 

of MeOH, and 0.5 mol% catalyst 3. Yields obtained using a pressure transducer. 

Evaluation of possible pathways of catalyst deactivation was analyzed by recycling experiments and 

sequential addition of fresh substrates (Section S10). In the recycling experiments the determination of 

catalyst deactivation was performed under standard conditions but using a 10 mol% catalyst loading. 

After the gas evolution stopped, the volatiles were removed under reduced pressure, and the residue was 

analyzed by 1H NMR spectra using CDCl3. The spectra show identical signals before and after the 

catalytic experiment for catalyst 3 and additional signals that correspond to the formation of silyl-ether. 

Addition of fresh substrates resumes the catalytic process. In a parallel experiment, we have observed 

that catalyst activity is maintained after the sequential addition of dimethylphenylsilane. These 

experiments suggest that catalyst 3 is efficiently recycled. 

 

Density functional theory (DFT) calculations were carried out to evaluate the mechanism of the 

dehydrogenative coupling of dimethylphenylsilane and methanol catalyzed by [Cp*Ir(Cl)(NHC)]+. The 

proposed mechanism is based on the experimental evidence and theoretical results (Figure 7). Among 

the different pathways considered, the most plausible involves a transition metal/Si-H σ complex. DFT 

analysis indicates that the first step of the reaction is an electrophilic activation of the silicon-hydrogen 

bond.53 The electrophilic 16 valence electron [Cp*IrCl(NHC)]+ cation interacts with the hydrogen atom 

of the silane forming an η1-H-SiR3 complex (A, Figure 7). This type of electrophilic Si-H σ complex 

has been isolated and fully characterized.54 Calculations of the Si-H σ bond complex reveals that the η1 

coordination prevails over the η2-H-SiR3 and the origin is based on steric factors. In fact, no energy 

minimum was observed for the η2-H-SiR3 coordination, and an oxidative addition is a highly disfavored 

process (Section S9). Crabtree et al. introduced the first mechanism proposal based on a transition 

metal/Si-H σ complex.55 The presence of vacant sites in the iridium catalysts allows the formation of an 

η
2-H-SiR3 coordination.56–59 
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The Ir-η1-H-SiR3 interaction increases the electrophilic character of silicon, which undergoes a 

nucleophilic attack by the methanol (B, Figure 7). As a result, a neutral iridium hydride and the cation 

R3Si(H)OMe+ are generated. In the next step, the cation R3Si(H)OMe+ protonates the iridium hydride 

forming a dihydrogen complex that finally releases hydrogen gas. As a summary the iridium catalysts 

facilitates the methanol nucleophilic attack to the silane and favors the release of hydrogen from a metal-

dihydrogen intermediate. 

 

Figure 7. Mechanistic proposal for the dehydrogenative coupling catalyzed by [Ir(η5-

C5Me5)Cl(NHC)]+. 

 

Conclusions 

The dehydrogenative coupling reaction of silanes and alcohols represents a convenient process for the 

production of hydrogen on-demand using an iridium catalyst of the general formula [IrCp*(Cl)2(NHC)]. 

Quantitative yields of hydrogen are obtained in less than five min at 30 ºC by the coupling of 

dimethylphenylsilane and MeOH using a catalyst loading of 0.5 mol%. Hydrogen is produced at high 

rates, room temperature and without additives, which is convenient for combining hydrogen production 

with fuel cells. The iridium catalyst is active for sequential additions of silane and highly efficient 

suggesting that the catalyst is stable and robust. The proposed mechanism, based on the experimental 

evidence and DFT calculations, reveals the formation of a metal/Si-H σ complex. The rate-determining 
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step is the alcohol nucleophilic attack to the iridium-coordinated η1-H-SiR3 species. The immobilization 

of the iridium complex on the surface of graphene allows the preparation of a solid catalyst that is easily 

isolated from the reaction mixture. The recycling properties show that the solid catalyst can be reused up 

to ten times without any decrease in activity. The coupling reaction of 1,4-disilabutane with MeOH 

forms six moles of molecular hydrogen. The effective hydrogen storage capacity of disilabutane/MeOH 

is 4.3 wt% of H2, which is similar to the storage capacity of formic acid (4.4 wt%). The low 

temperatures for hydrogen production and the moderate-to-high hydrogen storage capacity, make the 

pair of disilabutane/MeOH a potential liquid organic hydrogen carrier for energy storage in mobile 

applications. 

 

Experimental Section 

General procedures. Anhydrous solvents were dried using a solvent purification system. The alcohols 

used for the catalytic experiments were dried over preactivated molecular sieves of 3 Å. All hydrosilanes 

were obtained from commercial suppliers and used as received. Safety warning: 1,4-disilabutane is a 

highly flammable liquid and vapors have been reported to spontaneously ignite on contact with air 

(Gelest). We have not experienced any problems working in alcohol dilution. Imidazolium salt 1 was 

obtained according to reported procedures.41 Nuclear magnetic resonance (NMR) spectra were recorded 

on Bruker spectrometers operating at 300 or 400 MHz (1H NMR) and 75 or 100 MHz (13C{1H} NMR), 

and referenced to SiMe4 (δ in ppm and J in Hertz). NMR spectra were recorded at room temperature  

with the appropriate deuterated solvent. High-resolution transmission electron microscopy (HRTEM) 

and high-angle annular dark-field HAADF-STEM images of the samples were obtained using a JEM-

2100 LaB6 (JEOL) transmission electron microscope coupled with an INCA Energy TEM 200 (Oxford) 

energy dispersive X-ray spectrometer (EDX) operating at 200 kV. Samples were prepared by drying a 

droplet of a MeOH dispersion on a carbon-coated copper grid. X-ray photoelectron spectra (XPS) were 

acquired on a Kratos AXIS ultra DLD spectrometer with a monochromatic Al Kα X-ray source (1486.6 

eV) using a pass energy of 20 eV. To provide a precise energy calibration, the XPS binding energies 

were referenced to the C1s peak at 284.6 eV. Catalytic experiments were monitored using a pressure 

transducer “Man on the moon” x102 series kit (www.manonthemoon.com) microreactor with a total 

volume of 38.2 mL. Hydrogen identification was carried out by injecting the generated gas of a typical 

reaction in in a quadrupole mass spectrometer (Omnistar GSD 320 03 from Pfeiffer Vacuum). 

General procedure for the catalytic dehydrogenative coupling of silanes and alcohols. The catalytic 

experiments were performed in a 25 mL round bottom flask, using 0.5  to 1 mmol of silane, 1 mL of 

alcohol, and a catalyst (0.05 – 1.00 mol %). The flask was heated at 30 ºC under an initial aerobic 
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atmosphere. The system was connected to a pressure transducer for monitoring the reaction or was 

connected to an inverted water-filled burette that was used to collect the released gas. The yields and 

conversions were determined by GC analysis using anisole as the internal standard. The isolated yields 

were determined by solvent evaporation and analysis by 1H NMR spectroscopy using 1,3,5-

trimethoxybenzene as the external standard. 

 

Synthesis of 2. Under the exclusion of light, imidazolium salt 1 (94.7 mg, 0.25 mmol) and Ag2O (58.5 

mg, 0.25 mmol) were mixed in 10 mL of acetonitrile in a round-bottom flask, and the suspension was 

stirred for 5 h at room temperature. [IrCp*Cl2]2 (100 mg, 0.125 mmol) and KCl (243 mg, 3.25 mmol) 

were added, and the reaction mixture was stirred at room temperature for 15 h. Acetonitrile was 

removed under reduced pressure, and the mixture was suspended in dichloromethane. The insoluble 

salts were removed by filtration, and the crude product was purified by flash chromatography, producing 

2 as a crystalline orange powder. Yield: 80 mg (49%).1H NMR (400 MHz, CDCl3) δ 8.67 (s, 1H, CHpyr), 

8.20 (d, 3JH,H = 9.4 Hz, 1H, CHpyr), 7.98 (m, 6H, CHpyr), 7.07 (d, 3JH,H = 2.0 Hz, 1H, CHimid), 6.88 (d, 
3JH,H = 2.0 Hz, 1H, CHimid), 5.99 (d, 3JH,H = 14.5 Hz, 1H, CHH), 5.18 (d, 3JH,H = 14.5 Hz, 1H, CHH), 

3,94 (s, 3H, N-CH3), 1.71 (s, 15H, CH3, Cp*). 
13C NMR (101 MHz, CDCl3): δ 156.3 (Ccarbene-Ir), [142.3, 

141.2, 132.6, 130.9, 130.3, 129.8, 127.8, 126.1, 125.5, 125.2, 125.1, 124.3, 124.0, 123.5, 121.9, 121.6, 

121.2, 120.6] (Cpyr, CHimid), 90.5 (Cp*), 51.8 (CH2), 37.8 (N-CH3), 9.5 (CH3-Cp*). HRMS ESI-TOF-

MS (positive mode): [M - K]+ monoisotopic peak 567.0309; calc. 567.0305, εr: 0.7 ppm. 

 

Synthesis of 3. In a Schlenk, a mixture of imidazolium salt 1 (95 mg, 0.250 mmol) and potassium tert-

butoxide (33 mg, 0.280 mmol) was cooled to 0 ºC, in an ice bath. Freshly distilled tetrahydrofuran (5 

mL) was added, and the mixture was stirred for 10 min and allowed to reach room temperature. Then, 

[Cp*IrCl2]2 (100 mg, 0.125 mmol) and KCl (243 mg, 3.25 mmol) were added and the reaction mixture 

was stirred for 4 h at room temperature. The resulting suspension was filtered through celite and the 

solvent was removed under reduced pressure. The crude solid was purified by column chromatography. 

An elution with a mixture of dichloromethane and acetone (9:1) produced the separation of a yellow 

band containing the desired product. Precipitation from dichloromethane/hexane produced an 

analytically pure yellow solid. Yield: 111 mg, 64%.1H NMR (300 MHz, CDCl3): δ 8.37 (d, 3JH,H = 9.2 

Hz, 1H, CHpyr), 8.25 – 8.02 (m, 7H, CHpyr), 7.84 (d, 3JH,H = 7.8 Hz, 1H, CHpyr), 6.90 (d, 3JH,H = 2.1 Hz, 

1H, CHimid), 6.66, 6.28 (AB, 3JAB = 15.1 Hz, 2H, CH2), 6.65 (d, 3JH,H = 2.1 Hz, 1H, CHimid), 4.07 (s, 3H, 

NCH3), 1.62 (s, 15H, C(CH3)5).
13C{1H} NMR (75 MHz, CDCl3): δ 157.1 (Ccarbene-Ir), [131.2, 131.1, 

130.7, 129.8, 129.0, 128.6, 127.7, 127.2, 126.2, 125.9, 125.6, 125.5, 124.7, 123.1, 122.5, 122.3] (Cpyr, 

CHimid), 88.9 (C(CH3)5), 52.1 (CH2),  38.9 (NCH3), 9.2 (C(CH3)5). Anal. Calcd. for C31H31N2IrCl2 

(694.71 g/mol): C, 53.59; H, 4.49; N, 4.03. Found: C, 53.67; H, 4.27; N, 4.37. Electrospray MS. (Cone 
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20 V) (m/z, fragment): 659.3 [M - Cl]+. HRMS ESI-TOF-MS (positive mode): [M - Cl]+ monoisotopic 

peak 659.1803; calc. 659.1798, εr: 0.8 ppm. 

 

Synthesis of 3-rGO. A suspension of 90 mg of rGO in 10 mL of CH2Cl2 was immersed in an 

ultrasounds bath for 30 min. Then, 10 mg of 3 was added to the mixture and the resulting suspension 

was stirred at room temperature for 10 h. The black solid was isolated by filtration and washed with 2 x 

15 mL of CH2Cl2 producing the hybrid material as a black solid. The exact amount of supported 

complex was determined by ICP-MS analysis. The results accounted for 6.5 wt% of complex 3 in the 

hybrid material 3-rGO. The hybrid material was characterized by UV/Vis, FTIR, XPS and HRTEM 

(See Supporting Information for details). 

 

General procedure for the catalytic dehydrogenative coupling of silanes and alcohols. 

The catalytic experiments were performed in a 25 mL round bottom flask using 0.5 mmol of silane, 1 

mL of alcohol, and a catalyst (0.05 – 1.00 mol %). The flash was heated at 30 ºC in an initial nitrogen 

atmosphere. The system was connected to a pressure transducer for monitoring the reaction or was 

connected to an inverted water-filled burette that was used to collect the released gas. The yields and 

conversions were determined by GC analysis using anisole as internal standard. Isolated yields were 

determined by solvent evaporation and analysis by 1H NMR spectroscopy using 1,3,5-

trimethoxybenzene as the external standard. 
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