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ABSTRACT 

 

Functional materials for the sorption enhanced reforming process for H2 production 

coupled to a Cu/CuO chemical loop have been synthesized. The performance of CuO-

based materials supported on Al2O3, MgAl2O4 and ZrO2 and synthesized by different 

routes has been analyzed. Highly stable materials supported on Al2O3 or MgAl2O4 

synthesized by co-precipitation and mechanical mixing with sufficient Cu loads (around 

65 %wt.) have been successfully developed. However, it has been found that co-

precipitation under these conditions is not a suitable route for ZrO2. Spray-drying and 

deposition precipitation did not provide the best chemical features to the materials. As 

the Ca/Cu process is operated in fixed bed reactors, the best candidates were pelletized 

and their stability was again assessed. Pellets with high chemical and mechanical 

stability, high oxygen transport capacity and good mechanical properties have been 

finally obtained by co-precipitation. The good homogeneity that provides this route 

would allow an easy scaling up. 

 

 

Keywords: H2 production, CO2 capture, Ca-Cu looping process, CuO-based materials  
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1. INTRODUCTION 

 

Hydrogen is an essential raw material used in chemical and refining industries for the 

manufacture of commodity chemicals like ammonia, methanol and fuels. H2 can also be 

used as a clean source of energy to replace conventional fossil fuels in electricity 

generation. The demand of H2 required from chemical and energy industries is 

increasing progressively 1. On the other hand, greenhouse gases as CO2, produced 

mainly in fossil fuel combustion, have increased their concentration in the atmosphere 

during the last decades and they are the main cause of the global warming. Therefore, it 

is necessary to develop new CO2 capture technologies to mitigate the CO2 emissions 

from large scale power plants and industrial processes in order to fulfill strict 

forthcoming environmental regulations 1, 2.  

Steam Methane Reforming (SMR) is the most widely used technology to produce H2 at 

commercial scale, producing around 50 % of the H2 worldwide 3, 4, but at the expense of 

significant CO2 emissions (9,1 - 8,9 kg CO2 per kg H2). The modern H2 production plant 

is a stepped process where the reforming reactor is followed by a High Temperature 

Shift (HTS) reactor to maximize CO conversion and H2 production 5, 6. Finally, a 

pressure swing adsorption (PSA) unit is also needed when H2 purities higher than 95 

%vol. 7, 8 are pursued. At this point, hydrogen production combined with CO2 capture 

and permanent CO2 storage is presented as one of the potential routes to decarbonize the 

energy and industrial sectors. Although there are well-established routes to capture CO2 

in a concentrated form suitable for geological storage, the development of new 

technologies that allows the CO2 capture cost to be reduced is also needed. In this 

context, the sorption enhanced methane reforming (SER) is a novel process of H2 

production that combines a reforming catalyst with a CO2 sorbent (usually CaO) aiming 
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at removing the CO2 as soon as it is formed 9.  Eq. (1) expresses the global reaction for 

the SER process using CH4 as fuel and CaO as CO2 sorbent. According to Le 

Chatelier’s principle, the presence of the CO2 sorbent shifts the equilibrium to the right 

achieving practically complete methane and CO conversions which leads to a higher 

hydrogen yield at relatively mild conditions of pressure and temperature. In addition, 

the final reaction is slightly exothermic because it combines one very endothermic 

reaction (steam reforming) with two exothermic reactions (shift and carbonation 

reactions).  

CH4(g) + CaO(s) + 2H2O(g) �  CaCO3(s) + 4H2(g)         ∆H298K= -13.7 kJ mol-1            (1) 

CaCO3(s) �  CaO(s) + CO2(g)                                 ∆H298K= +178.5 kJ mol-1               (2) 

 

Multicycle operation of SER process requires the continuous regeneration of the sorbent 

by calcining the CaCO3, Eq. (2), into CaO and CO2 . This is a highly endothermic 

reaction (∆H298K= 178.5 kJ mol-1) and it has to be performed in a CO2 rich environment 

if the process aims at capturing the CO2. In this way, an additional energy input is 

needed to reach the calcination temperature imposed by the equilibrium 9. Among 

different alternatives proposed in the literature to reduce the energy penalty due to the 

sorbent regeneration 10-15, a new process known as Ca/Cu looping process was proposed 

16. This process makes use of a Cu/CuO chemical loop to solve the endothermic CaCO3 

calcination and to generate a CO2 concentrated stream suitable for further purification 

and storage. At the same time, the process produces pressurized H2 from CH4 by steam 

reforming in presence of a CaO-based sorbent  
7, 9. The key point of this new technology 

lies in the fact of using the exothermic reaction of CuO reduction with additional CH4 or 

other fuel gas to supply the energy for CaCO3 calcination. In this way, the gas stream 
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that leaves the calciner will be ideally comprised of CO2 and H2O which can be easily 

separated by condensation.  

The basic Ca-Cu looping process consists of a sequence of three reaction steps (see 

Figure 1), which are adiabatically carried out in fixed-bed reactors operating in parallel. 

In the first stage (stage A), an enriched stream of H2 is produced by the sorption 

enhanced reforming of methane in the presence of a reforming catalyst, a CaO-based 

sorbent and a copper-based solid (that acts as inert in this stage). This takes place at 600 

ºC - 750 ºC, steam-to-carbon molar ratios between 2.5 and 5, and pressures between 10 

bar and 35 bar in order to achieve high H2 production yields with high CO2 capture 

efficiencies 17. In the next stage (stage B), the copper-based material is oxidized with 

diluted air at high pressure. A low oxygen concentration in the feed moderates the 

increase of temperature during the oxidation of Cu to CuO, thereby avoiding the 

decomposition of CaCO3 by partial calcination 18. In the following reaction stage (stage 

C), the calcination of the CaCO3 formed during the SER is accomplished by means of 

the simultaneous reduction of CuO with a gaseous fuel at atmospheric pressure. A 

suitable CuO/CaCO3 molar ratio in bed composition has to be selected to ensure that the 

heat released during CuO reduction is sufficient to completely decompose the CaCO3 

without any external energy supply 19-21. 

A detailed conceptual design of the process based on literature data was carried out by 

Fernández et al. 9. In this work, simple reaction models served to define a range of 

operation conditions for the process in terms of Cu/Ca ratios and suitable operation 

pressures and temperatures for the different process stages.   
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6 

 

Figure 1. General scheme of the novel Ca/Cu reforming process. 

 

A general layout of a complete H2 production plant based on this process was designed 

by Martínez et al.  21 and promising results in terms of H2 equivalent efficiencies were 

predicted by the model.  Recently, experimental results in a pseudo-adiabatic fixed bed 

reactor were reported and confirmed the feasibility of supporting the calcination 

reaction of CaCO3 with the exothermic reduction of CuO with H2 
22. Moreover, a 

relevant number of papers have been published describing in detail the different stages 

of the process 23-28.  

A key aspect for the future development of the process is to have materials with 

optimum properties for cyclic operation 21. With respect to the reforming catalyst, in 

principle, a commercial Ni-based catalyst has been proposed in the works by Fernández 

et al. 9, 23, 24 although more active materials currently under development could also be 

considered.  The ratio Cu/Ca in the process will be determined by the requirements in 

the calcination step 7, and in order to reduce the thermal ballast of the inert fractions 

comprising the materials, it is necessary to maximize the active phase content of both 

the CaO based and the Cu-based materials 7, 9. Some recent works are oriented to the 

development of composite materials containing CaO and CuO 29-34 and/or CaO and Ni 

acting as reforming catalyst 35-39. With respect to the CaO-CuO composites, the results 

indicate that the progress of the carbonation reaction in the combined material might 
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affect negatively the kinetics of the oxidation reaction of Cu 31. In addition, recent 

studies 30 produced mixed pellets with a Cu content around 50%wt. finding that the 

content of Cu/CuO has a significant influence on the cyclic performance of the CaO. 

The authors observed that the composites showed good reactivity for CuO but loss in 

CO2 capture capacity after cycling. Moreover, the mechanical stability of the composite 

materials might be affected along cycling 34. In general, these materials are still 

immature with respect to the use of individual pellets and important efforts on their 

development are required.   

Focusing exclusively on CuO-based materials, a number of authors have published their 

results about CuO-based materials tested in Chemical Looping Combustion (CLC) 40-52 , 

Chemical Looping with Oxygen Uncoupling (CLOU) 52-59, Chemical Looping 

Reforming (CLR) 60, 61 and Ca/Cu looping 22, 29, 34, 62 processes. Most of the work has 

focused on the development of oxygen carriers for CLC processes. The CLC technology 

has been confirmed by Lyngfelt et al. 63 that can be operated in a number of different 

units from 0.3 to 120 kW, with more than 4000 hours of operation using different 

oxygen carriers and wide variety of CuO-based oxygen carriers for CLC applications 

has been summarized in a review prepared by Adánez et al. 64. The materials were 

prepared by different synthesis routes like freeze granulation, impregnation, extrusion, 

spray-drying, co-precipitation or mechanical mixing. The majority of the published 

works has referred to the use of Al2O3 as support 40, 41, 50, 53, 62, 65-69. Several authors have 

recently developed high loaded CuO-based particles (around 70%wt. of Cu) by co-

precipitation 50, 68 and they discovered that pH and the precipitating agent have a strong 

influence on the chemical structure of the materials 50. They have tested their materials 

under 25 cycles and the results suggested that CuO reacted with Al2O3 to form fully 

reducible CuAl2O4 
49, 50.  Other promising results with materials onto Al2O3 has 
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obtained by Song et al. 51 that have reported a synthesis method based on layered double 

hidroxides (LDHs) precursors that improve the reactivity and stability of the materials 

achieving the homogeneous mix of the elements at molecular level. Mainly in order to 

avoid the formation of intermediates, other alternative support materials have been 

reported in the literature as MgAl2O4 
54, 65, 66, ZrO2 

59, 65, 70, CeO2 
52, 71 , TiO2 

72, SiO2 
60, 

65 and combined metal oxides like CuO-Fe2O3 
73. Regarding to the use of MgAl2O4 as 

support, Imtiaz et al. 58 has analyzed the effect of cycles on materials with Cu contents 

until 72%wt. and they found stable and close to the theoretical values for oxygen 

transport capacities during 25 cycles.   

Since the Ca/Cu looping process is a relatively new concept, there are not many works 

published so far about Cu materials specifically designed and tested in fixed bed 

reactors. Most of the research has been developed in lab scale packed bed reactors using 

a mixture of CaO and existing commercial pellets of a Cu based material 22. Although 

this work has shown promising results for the Ca/Cu looping process, additional efforts 

on the development of the pellets with high chemical and mechanical stability are still 

needed. In general, these new materials should have a high CuO load because the 

calcination enthalpy is considerably higher than the CuO reduction enthalpy. In 

agreement with the mass and energy balances of the process 9 materials with Cu loads 

between 55 to 70%wt. would be suitable candidates for the process. Therefore the 

development of highly stable CuO-based materials in pellet form that can be 

successfully adapted to reducing and oxidizing conditions, keeping oxygen transport 

capacity and mechanical strength during long number of cycles is an essential point in 

order to select the optimal CuO-based materials to achieve the highest energy yields 

during the calcination step of the Ca/Cu looping process.  
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Even though there are numerous studies about oxygen carriers for CLC or CLC-CLOU 

applications, there is still a need to evaluate how the synthesis route, the Cu load, and 

the particle or pellet form, might affect the performance of the materials under relevant 

conditions for Ca/Cu looping process. Therefore, the main objective of this paper is the 

development of stable CuO-based materials with suitable Cu contents for the Ca/Cu 

looping process. The effect that the inert support (Al2O3, MgAl2O4 and ZrO2), the route 

of synthesis and the Cu load in the material has on the stability in terms of oxygen 

transport capacity (OTC) of the solids along oxidation/reduction cycles has been 

evaluated. The materials have been tested in powder and also pellet form, the latter 

being the final form in which the material will be introduced in the process 9. The 

mechanical properties of the pellets after 150 cycles have been also evaluated.  

 

2. EXPERIMENTAL  

 

In this work, a wide range of CuO-based materials with Cu loads between 48.1 to 75.0 

%wt., supported on Al2O3, MgAl2O4 and ZrO2 and prepared by different synthesis 

routes, were analyzed. The range of Cu loads of materials has been selected in 

agreement with the mass and energy balances of the Ca/Cu looping process 9, that 

suggested that materials with Cu loads between 55 to 70%wt. would be suitable 

candidates for the process. The performance of the materials was evaluated in powder 

form (with up to 100 redox cycles in a TGA apparatus) and the most promising 

materials were also pelletized and tested in pellet form. The materials were texturally 

and physically characterized.  

 

2.1. Description of the synthesis routes 
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10 

Different synthesis routes were followed to prepare the Cu-based materials over Al2O3, 

MgAl2O4 and ZrO2 as inert support. The materials that use Al2O3 as support were 

prepared by Johnson Matthey PLC (JM), while the rest of materials were prepared at the 

Instituto de Carboquímica (ICB-CSIC). Specifically, CuO-based materials were 

synthesized by spray-drying (JM), co-precipitation (JM and ICB), deposition-

precipitation (JM) and mechanical mixing (JM). Figure 2 shows the steps followed in 

the synthesis routes evaluated in this research. All synthesis routes have common stages  

at the end of the process as for example drying and calcination steps. Specifically, 

regarding to the materials synthesized by ICB-CSIC via co-precipitation onto MgAl2O4 

and ZrO2, the calcination step during synthesis was carried out at 870 ºC during 2 hours 

using a heating rate of 50 ºC/min and the drying step was carried out at 120 ºC during 

12 hours.   

Spray-drying (SP) Co-precipitation (COP) 

  

Deposition - precipitation (DP) 

 

 

Mechanical mixing (MM) 

 

Figure 2. Synthesis routes of CuO-based materials. 
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11 

Co-precipitation (COP): The CuO-based materials synthesized by co-precipitation were 

prepared following a specific co-precipitation method to achieve Cu contents between 

48.1 to 75.0 %wt. Cu nitrate and Al or Mg or Zr nitrate solutions were mixed to 

synthesized the solids with a specific Cu load. Subsequently, the pH of the solutions 

was adjusted adding Na2CO3. The resulting mixture was stirred and filtered. During the 

filtration, the precipitate was washed several times with distilled water to remove excess 

nitrate and alkali ions. After that, the cake was dried and subsequently calcined in a 

muffle furnace. In the case of the materials synthesized by ICB-CSIC onto MgAl2O4 

and ZrO2, an specific amount of the Al and Mg or Zr nitrate solutions were mixed and 

shaken, adjusting the pH to 9,8 with Na2CO3 and calcining the sample at 870 ºC during 

2 hours.  

Spray-drying (SD): In the solids prepared via spray-drying, the copper nitrate solution 

was added to boehmite slurry. Then, the slurry was fed to a spray dryer and finally the 

material was also calcined in a muffle furnace.  

Deposition - precipitation (DP): By this procedure, the copper nitrate solution was 

initially heated. In the same way, alumina was slurried in water and also heated 

adjusting the pH with Na2CO3. Secondly, the hot nitrate solution was fed to the pH and 

temperature controlled alumina slurry to obtain a precipitate. The precipitate was 

washed, filtered, dried and calcined.  

Mechanical mixing (MM): This route consists of mixing copper oxide and alumina 

directly in a ball mill followed by the calcination of the sample. 

Table 1 compiles a list of selected materials synthesized by SD, COP, DP and MM onto 

the different support materials. These materials were selected to be analyzed and 

characterized in detail among 25 materials initially tested in the TGA. 
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Moreover, some of the most promising materials were pelletized to test the mechanical 

stability in long periods of operation as the Ca/Cu reforming process requires.  

 

Table 1: List and physical and chemical properties of selected CuO-based materials supported 

on Al2O3, MgAl2O4 and ZrO2. 

 CuO- based materials 

Crystal size(nm)-Fresh 

samples 

Crystal size(nm)-

Cycled samples 

 

Reference 

Support- 

Synthesis 

Cu 

%wt. 

OTC 

exp.* 

OTC 

theor. 

SBET m2 

g-1 
ρ kgm-3 ε (%) CuO 

CuAl2O4, 

MgAl2O4 or 

ZrO2 

CuO 

CuAl2O4, 

MgAl2O4 

or ZrO2 

Cu75Al_SD Al2O3-SD 75.0 0.187 0.189 6.2 5980  58.2 24.42 
CuO: 27.47, Cu: 104.39,    

Cu2O: 3.96, CuAl2O4: 12.24 

Cu65Al_COP Al2O3-COP 65.5 0.164 0.164 20.5 5560 60 66.09 23.09 61.3 22.3 

Cu63Al_DP Al2O3-DP 63.0 0.157 0.159 17.3 5550  106.71 23.48 
CuO: 27.53, Cu: 94.63,    

Cu2O: 27.67, CuAl2O4: 14.51 

Cu60Al_MM Al2O3-MM 60.4 0.151 0.151 21.4 5580  57.9 24.16 62.6 23.72 

Cu70MgAl_

COP 

MgAl2O4-

COP 
69.0 0.174 0.176 12.1 5715  91.7 19.6 107.7 40.8 

Cu65MgAl_

COP 

MgAl2O4- 

COP 
65.0 0.163 0.163 20.9 5510 75 86.6 14.2 63.1 42.3 

Cu60MgAl_

COP 

MgAl2O4-

COP 
59.7 0.151 0.151 13.7 6116  70.74 15.9 60.4 44.5 

Cu72Zr_COP ZrO2-COP 72.4 0.08 0.181 5.1 6231  130.0 72.5 144.5 112.3 

Cu67Zr_COP ZrO2-COP 67.3 0.144 0.169 4.1 6122  114.4 42.94 120.82 92.34 

Cu48Zr_COP ZrO2-COP 48.1 0.111 0.121 1.7 6116  75.75 54.33 86.54 100.94 

Methods of synthesis: SD (spray-drying), COP (co-precipitation), DP: (deposition -precipitation), MM (mechanical mixing). 

*OTC exp.: average of the values collected up to 100 cycles. In the case of the material Cu72Zr_COP the values were collected until 25 cycles. 

It is important to highlight that in the case of two cycled samples (Cu75Al_SD and Cu63Al_DP) it has been found the presence of CuO, Cu, Cu2O and 

CuAl2O4 as these samples could be partially reduced. 

 

2.2. Characterization  

The CuO-based fresh materials were analyzed by ICP-OES in order to determine their 

Cu content. The device used in these analysis was a Spectroblue apparatus of Ametek. 

All fresh and cycled samples were also characterized by X-ray diffraction (XRD) to 

identify crystalline species present in the solids and the average crystallite sizes before 

and after cycling. The device used for these analyses was an X-ray diffractometer 

Bruker AXS D8ADVANCE that employs CuKα radiation. The fresh materials were 
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characterized by TPR analysis to study the main temperatures of reducible species 

present in each CuO-based material. The analysis was carried out in a PulseChemisorb 

700 supplied by Micromeritics. Specific surface area was calculated by N2 

physisorption applying the BET method in an Micromeritics ASAP 2020 apparatus and 

the solid density by He picnometry has been determined in a Micromeritics ACCUPYC 

II device. Also, some pictures of samples were taken after TGA cycling to show 

possible signs of agglomeration.  Finally, the selected materials in powder and pellet 

form, were analyzed using SEM and EDX techniques to assess the dispersion of active 

phase and inert support.  Scanning electron microscopy (SEM) coupled to energy 

dispersive X-ray (EDX) using a Hitachi S-3400 N were applied in order to determine 

the morphology and copper distribution in the samples. A Shimpo Dynamometer (FTS-

20X) has been used to determine the horizontal crushing strength (HCS) of the selected 

pellets. This device measures the force needed to crush individual pellets, up to 100 N 

and the measurements served to calculate the average HCS value reported in the 

manuscript.  

 

2.3. Apparatus 

A thermogravimetric analyzer (TGA-CI Electronics Ltd.) was used to determine each 

material’s chemical and mechanical stability under oxidizing and reducing conditions. 

This equipment consists of two concentrically-arranged quartz tubes located inside a 

furnace. Each sample was introduced in a platinum basket placed at the bottom of this 

device. Up to 100 oxidation/reduction cycles were performed on the materials in 

powder form (average particle size of 75µm) under isothermal conditions at 870 ºC. 

Around 15 mg of sample in powder form of each material were loaded in the platinum 

basket in every test. A constant total flow of 280 ml/min of gas was fed in at the top of 
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the reactor, after being preheated by flowing through the external reactor tube along the 

furnace with a space velocity of 0.012 m/s. Reaction temperature and gas composition 

were maintained constant in each test. Reduction and oxidation cycles were performed 

by a gas stream comprised of 20 vol% H2 in N2 and 20 vol% O2 in N2 respectively, 

using a N2 purge between each reduction and oxidation stage. A constant N2 flow 

passed through the head of the thermobalance to prevent any damage of the apparatus. 

The materials were collected after testing to be characterized. The Cu content in each 

material was calculated from the amount of oxygen reacting during successive 

reduction/oxidation cycles in the TGA. These values were later corroborated by the ICP 

data obtained in the laboratory.  

The oxygen transfer capacity (OTC) and the active copper load of the materials were 

calculated from the data obtained in the TGA by the following formulas:  

��� = ����	�
��
���

 ∙ 100                                                                                                (3) 

���� = ���	�(�)
���∙���

                                                                                                              (4) 

��� = �(�)	�
��
���∙���

                                                                                                              (5) 

Where mox is the weight of the material completely oxidized, mred is the weight of the 

material completely reduced and m(t) is the instantaneous sample weight. 

As it was mentioned before, some of the materials in powder form that presented the 

best chemical behavior were pelletized in order to analyze their chemical and 

mechanical stability in a long number of reaction cycles. Each pellet was tested using 

the TGA and approximately 150 reduction/oxidation cycles were done at 870 ºC 

following the same procedure that was applied with the materials in powder form. 
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3. RESULTS AND DISCUSSION 

 

3.1. Characterization of oxygen carriers 

Figure 3(a) shows the X-ray diffractograms of fresh and cycled samples of CuO-based 

materials synthesized by different routes and onto different supports.  All the materials 

revealed that CuO is the more abundant species in the fresh material. It was also 

observed that a common feature of the materials supported on Al2O3 is the presence of 

CuAl2O4 in the crystalline structure. This compound was detected in all samples 

prepared by SD, COP and, DP. This species has been also detected by other authors that 

have been analyzed CuO-Al2O3 materials 66, 68, 74. However, in this study the formation 

of CuAl2O4 was not observed in the materials  prepared by mechanical mixing (MM). 

Hu et al. 74 studied the formation of copper aluminate spinel (CuAl2O4) and cuprous 

aluminate delaffosite (CuAlO2) in copper-laden sludge that is thermally treated with γ-

alumina and found four copper containing phases (CuO, Cu2O, CuAl2O4 and CuAlO2) 

in the investigated system. It was found that CuAl2O4 could be effectively formed 

between 850 ºC and 950 ºC by the γ-alumina precursor and CuAlO2 is formed at higher 

temperatures (>1100 ºC) in the copper-alumina system. The XRD analysis carried out 

by Chuang et al. 67 with CuO-based materials prepared by mechanical mixing, wet-

impregnation and co-precipitation revealed the presence of CuO and CuAl2O4 in fresh 

samples, but Al2O3 was not detected in any case. Although most of the initial Al2O3 

could be forming CuAl2O4 in the samples, another possible explanation could be that 

Al2O3 was always present in its amorphous form and could not be detected by XRD 40, 

58. Imtiaz et al. 58 also observed only the presence of CuO and CuAl2O4 in CuO-Al2O3 

solids prepared by co-precipitation. Therefore, it seems that the choice of a suitable 

route of synthesis of CuO based materials supported onto Al2O3, is a key aspect in order 
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to avoid the formation of copper aluminates. In this work, it has been confirmed that 

MM is a suitable method of preparation of this type of materials. Some of the ways in 

which CuAl2O4 can be formed from the decomposition of nitrate precursors occurs 

when aluminum nitrate forms amorphous alumina while heating or because the Cu and 

Al precursors are homogeneously mixed before heating 74. In this way, the MM allows 

to use α-Al2O3 as a support material directly with CuO while using other type of 

synthesis routes the Al and Cu precursors would be practically homogeneously 

distributed in the sample and amorphous alumina could be formed that could react with 

CuO at much lower temperatures to form CuAl2O4. On the other hand, the presence of 

CuAlO2, that could limit the amount of Cu that could be recovered as CuO in an 

oxidation cycle 69, has not been detected in any case. This means that fully CuO 

regeneration from CuAl2O4 is practically achieved in all cases. Therefore, the presence 

of CuAl2O4 in these samples is not a limiting step for the stability of the materials in 

agreement with results obtained by other authors 49, 50 that obtain stable reactivity for 

materials that also showed CuAl2O4 after synthesis. 

In any case, for the CuO-Al2O3 prepared materials through SD, COP and DP, in this 

work, the ratio of intensity for the CuO and CuAl2O4 peaks is maintained for the cycled 

samples, indicating that the proportion of species is stable along cycling. In this way, in 

agreement with the thermodynamic study carried out by Jacob et al. 75 stable CuAl2O4 

can be obtained at temperatures above 800 ºC.  

In contrast with the CuO onto Al2O3 materials, no interaction was observed when 

MgAl2O4 was used as support. In agreement with results published in the literature 40, 53, 

58, 73 these Cu-based materials were only comprised of CuO and the spinel MgAl2O4 

according to XRD analysis. The presence of alumina or magnesia was not detected in 

the case of MgAl2O4 materials, indicating that all the Al2O3 and MgO formed the 
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MgAl2O4 or existed in amorphous phases. The MgAl2O4 spinel results in a very stable 

structure and no interference with CuO is observed. 

In this way, it seems that the formation of the CuAl2O4 or MgAl2O4 spinels, 

respectively, using an appropriate calcination temperature after synthesis provides the 

material high stability and no interaction with the CuO active phase as stable cubic 

ordered structures for the spinels are formed in these conditions.  

Regarding to the CuO-based materials with ZrO2 as support, no formation of 

intermediate species was detected by XRD, as well as other authors that have been 

tested ZrO2 materials 73. However, we have discovered that the lattice parameters of the 

ZrO2 phase found for these type of materials ( a = 5.20 - 5.31 Å, b = 5.20 - 5.22 Å, c = 

5.14 - 5.20 Å, β = 99º) correspond with the presence of monoclinic ZrO2 (m-ZrO2) in 

agreement with the values determined for this kind of chemical structure in the literature 

76. The structure m-ZrO2 have been identified in all fresh and cycled samples of ZrO2 

solids, and this structure would not be suitable to obtain highly stable materials as it has 

been also reported by other authors 77, 78. Therefore it seems that the modification of the 

ZrO2 structure has a direct influence on the CuO reduction, and positive results have 

been found for catalysts in which the tetragonal surface of ZrO2 (t-ZrO2) has been 

identified instead of the monoclinic (m-ZrO2) 78. Several authors, have studied the 

tetragonal to monoclinic transformation 77, 79 and it seems that grain size, oxygen 

vacancies and compressive stress are important factors. CuO-ZrO2 catalysts with 

tetragonal ZrO2 were succesfully synthesized in the work published by Liu et al. 80. 

Although their materials were prepared using a different method and lower Cu contents, 

the calcinations temperature during synthesis was rather low (450 ºC) than the 

temperature used in our solids (up to 800 ºC). Therefore, this elevated temperature 

could be related to the change from the tetragonal to the monoclinic phase of the ZrO2. 
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Table 1 also compiles the crystallite sizes for the different materials before and after 

cycling as well as the specific surface area (m2 g-1) and true density (kg m-3). Regarding 

into the route of synthesis followed for the materials onto Al2O3, DP results in very high 

CuO crystals with respect to the other procedures that showed similar CuO crystals. On 

the other hand, materials with similar Cu loads (65%wt.) showed different size in CuO 

crystals depending on the support used. Then, the CuO crystal sizes were 66.1 nm for 

Al2O3, 86.6 nm for MgAl2O4 and 114.4 nm for materials onto ZrO2. In addition, taking 

into account the materials with different Cu load prepared by the same route (COP) onto 

MgAl2O4 or ZrO2, respectively, in general an increase on the CuO crystals is related 

with the increase in CuO content in the material. These results are in agreement with 

other works in which the growth of CuO crystals with the increase of Cu load has been 

also observed 81, 82. Then, the growth of the CuO crystals could be related with the 

formation of bulk CuO, instead of highly dispersed Cu species 81 and the decrease in the 

strength of the MgAl2O4 or ZrO2 lattice associated with this increase in the Cu load. 

Moreover, another aspect to remark for solids onto ZrO2 by COP, is the high size of the 

ZrO2 crystals (42.94 nm) related with monoclinic ZrO2 with respect to the MgAl2O4 

(14.2 nm) or Al2O3 (23.09 nm) crystals. Therefore the lowest ratios between the size of 

CuO and ZrO2 crystals were found for ZrO2 compounds that can be directly related with 

the monoclinic structure of ZrO2, suggest clearly that the synthesis route for ZrO2 solids 

must be modified. Moreover, taking into account the crystal sizes of the cycled samples 

of the CuO-ZrO2 materials that are detailed in Table 1, it has been always observed an 

increase in the CuO and ZrO2 crystals after cycling which could negatively affect the 

chemical stability of these materials.  

Figure 3(b) shows the comparison between the results obtained from the TPR analysis 

for the materials onto the different supports. While the materials supported onto Al2O3 
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present two differentiated H2 uptake peaks, the materials onto MgAl2O4 or ZrO2 showed 

an only H2 consumption peak. While pure CuO shows CuO reduction peaks around 350 

ºC, in the case of the addition of supports to the CuO matrix, this value could be 

reduced 83.   

All the materials shows a main H2 consumption peak around 275 ºC and the total 

consumption of H2 was very similar for the materials with the same Cu load into the 

different supports. However, in the case of the Al2O3 materials the two peaks are 

associated with the reduction of two different copper species. The main H2 uptake peak  

is related to the reduction of a well-dispersed CuO, and the second minor peak at 

temperatures close to 400 ºC is attributed to the presence of CuAl2O4 in the materials.  

Moreover, as it can be extracted from this figure, materials onto Al2O3 and ZrO2 

showed more defined peaks associated with CuO reduction than materials onto 

MgAl2O4 that presented wider peaks associated with this reaction. It seems that this 

aspect could be related with some kind of interaction between the CuO and the 

MgAl2O4 that facilitates the reduction of copper species in the material 84. 

Comparing between synthesis routes, there are minor variations on the temperature at 

which the peaks present their maximum, although similar well-defined peaks for CuO 

were observed in the case of the materials prepared by COP as well as MM. It is also 

important to take into account that the solid synthesized by DP presents a non-defined 

peak for CuO formed by two little bends. This fact could be associated with the 

reduction of Cu(II) and Cu(I) species. Regarding to the peak at higher temperature, the 

MM materials presented the smallest peak, that indicates the presence of an small 

amount of CuAl2O4 undetected by XRD analysis. For the case of materials onto 

MgAl2O4 and ZrO2, there is only one reduction peak in the range 250-350 ºC, that is 

wider for the materials onto MgAl2O4. On the other hand, the temperature associated 
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with the reduction of Cu2+ of the different CuO-based materials with similar Cu 

contents has varied slightly depending on the support. In this way, these temperatures 

have been determined as 220 - 230 ºC for materials onto Al2O3, 248 ºC for materials 

onto MgAl2O4 and 266 ºC for materials onto ZrO2.  

 

a) 
            Cu65Al_COP                             Cu63Al_DP                                 Cu75Al_SD 

 
              CuAl60_MM                             Cu65MgAl_COP                        Cu48Zr_COP  

 
 
b)  

 
 

Figure 3: a) XRD tests before and after TGA operation for solids synthesized by different 

techniques; b) TPR data for solids on different supports and prepared through different 

synthesis procedures: (left) Al2O3 as support, (center) MgAl2O4 as support and (right) ZrO2 as 

support. 

 

Regarding to the BET surface area, Table 1 shows that the materials supported on 

MgAl2O4 or Al2O3 (synthesized by SD, COP, DP and MM) with Cu loads around 

65%wt. presented similar values (close to 20 m2 g-1). However, the solids onto Al2O3 

prepared by SD as well as the materials supported on ZrO2 presented much lower 
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(below 7 m2 g-1) surface areas. In the case of the SD method, the low specific surface 

areas that show this kind of materials could be related with the absence of the strongly 

basic sites because no adjustment of the pH was carried out during the synthesis, and 

some authors have reported that the pH strongly influenced the structure of the oxygen 

carriers 50. Other works in the literature have shown a progressive and important 

decrease in the values of the specific surface areas of CuO-ZrO2 materials as the Cu 

load in the materials increased 85. Águila et al. 81 showed that an increase in the Cu load 

favored the formation of large CuO particles, but the concentration of the dispersed 

copper species would remain constant which indicated a stabilization of the dispersed 

CuO species on some zirconia surface sites. Other published works showed an increase 

of specific surface areas for Cu loads up to 30 %wt. and a decrease in the BET surface 

area when the Cu content was over 50 %wt. 86. The increase of surface area with an 

increase in Cu content was interpreted as being due to the contribution of the copper 

species to the tetragonal zirconia formation which indicates that the Cu is 

monodispersely distributed on the surface of ZrO2. However, when the Cu content is 

greater than a certain value, copper could be incorporated in the zirconia lattice and 

amorphous composites could be obtained. 

The porosity of the samples prepared by COP with similar Cu load (around 65%wt) has 

been determined and high values have been obtained for the Al2O3 (60%) and MgAl2O4 

(75%) materials in powder form. Although the porosity of the pellets have decreased 

with respect to the materials in powder form (P_Cu65Al_COP_a = 48% and 

P_Cu65MgAl_COP = 43%), this values are considered suitable for this kind of 

materials.  Finally, regarding to the CuO-samples density, the data obtained from He 

picnometry are in the expected range for these type of materials as it can be appreciated 

in Table 1 (5500 - 6200 kg m-3).  
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3.2. Chemical and mechanical stability  

3.2.1. Materials in powder form. 

The chemical stability of the synthesized materials was evaluated in the TGA apparatus 

described in the experimental section. Approximately, 100 reduction/oxidation cycles 

were performed for each CuO-based material. The materials were tested according to 

the routines described in the experimental section. The theoretical OTC values and the 

experimental OTC values for each material at cycle 100 have been added to Table 1. 

Highly stable OTC values were obtained for the materials synthesized by COP onto 

Al2O3 and MgAl2O4 with 65%wt. of Cu load or below, but a dramatic decrease in the 

experimental OTC values was determined for the materials onto ZrO2 with 72%wt. of 

Cu. In addition, Figure 4 shows the evolution of the OTC for materials with different Cu 

loads and onto the three supports tested in terms of the number of reaction cycles. 

According to this Figure, considering the materials with the highest Cu load for each 

support (over 70 %wt. Cu), the materials supported on Al2O3 and MgAl2O4 presented a 

fairly stable OTC and lost less than 5% of their initial transport capacity even after long 

periods of operation. In contrast a dramatic decrease in OTC nearly from the first cycle 

is well appreciated for the material supported on ZrO2 and it is reduced by 60 % after 25 

reaction cycles. Only the reduction of the Cu load below 50 %wt. resulted in stable 

materials for the system CuO-ZrO2 since, as previously mentioned, limited by the 

formation of m-ZrO2. The materials prepared by the different synthesis routes (DP, 

MM, COP) onto Al2O3 and MgAl2O4 with Cu contents around 65 %wt. and below, 

presented a highly stable oxygen transport capacity (losses below 1%).   
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Figure 4. Oxygen transport capacity (mg O transported/mg oxidized solid) in oxidation-

reduction cycles: (left) CuO/Al2O3, (center) CuO/MgAl2O4 and (right) CuO/ZrO2 material. 

With respect to the individual conversion curves on each cycle, Figure 5a shows 

examples of oxidation conversion curves for cycles 20 and 100 for materials with 

different Cu load and onto the different supports tested. With respect to the cycle 20, 

slight differences appear on the slope of the oxidation conversion curve among the 

materials supported onto Al2O3. A small second slope in the oxidation conversion was 

observed in all the materials except in the solid synthesized by COP. The differences in 

materials conversion curves at cycle 100 increased, and the oxidation curves for the 

materials synthesized by DP and MM, although were very similar along cycles, 

revealed that there could be other species in the materials due to the existence of a 

change in the slope of the Cu conversion curve for conversions higher than 0.9. This 

aspect is likely associated to the formation of small quantities of CuAl2O4 during the 

course of the oxidation reaction. Finally the SD material presented an important 

reduction on the oxidation reaction rate with cycles and the shape of the curve might 

indicate that diffusion phenomena might play a role during the oxidation of the material 

as the shape of the curve resembles the oxidation curves of the materials in which a 

collapse of the original chemical structure is produced. This is caused because the inert 

content in the material is not high enough to provide a high long-term chemical stability 

and mechanical stresses are caused between the active phase and the support. In the 
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past, some authors tested materials with 100%wt. of Cu load and they observed a 

dramatic decrease in the chemical stability with cycles 40. Therefore, the morphological 

changes in the chemical structure of the materials with too high Cu loads after cycles, 

can cause a difficulty for the O2 to access to the Cu active sites and the diffusion of the 

gas can become important during the oxidation reaction. 

 

In contrast, the COP material oxidation curve is almost unaltered with respect to cycle 

20. Focusing on materials that use MgAl2O4 as support, materials with Cu contents up 

to 65 %wt. presented almost identical conversion curves at cycles 20 and 100, while the 

material with the highest Cu load (70 %wt.) presented a slight decrease in OTC.  Also 

its oxidation conversion curve at cycle 100 presented an important decrease in reaction 

rate for conversions higher than 0.85. With respect to materials supported on ZrO2, and 

in line with the data from Figure 4 for ZrO2 materials, it can be observed that the 

material with the highest Cu load presented an oxidation conversion curve with a very 

slow reaction rate from the initial cycles, and as the number of reaction cycles 

proceeded only the material with Cu contents below 50 %wt. maintained the reactivity.  

Figure 5b shows the reduction conversion curves of the different materials grouped by 

material support. During the first minute of these curves, a pure N2 stream was feed to 

the TGA. A practically negligible loss in the weight of the samples is observed in this 

period which means that the CLOU effect is avoided under the operating conditions. 

After the first minute, a stream with 20 vol% of H2 in N2 was passed through the sample 

and very similar reduction conversion curves were obtained for all materials despite of 

its support or synthesis method, achieving total conversion in less than one minute. 

However, in the case of the materials onto Al2O3 prepared by SD, in agreement with the 
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results obtained on the oxidation reaction curves, the reduction reaction rate was a bit 

slower than for the materials onto Al2O3 prepared by other synthesis routes. 

On view of the characterization results and the experimental data from Figure 4 and the 

experimental curves presented in Figure 5, it seems that the materials onto Al2O3 and 

MgAl2O4 with Cu contents between 60 to 65 %wt. could be suitable for the Ca/Cu 

process in terms of chemical stability. At this point the materials supported onto ZrO2 

were discarded from further study as the development of suitable CuO-based materials 

onto this support should be investigated at lower calcination temperatures during 

synthesis in order to obtain the structure t- ZrO2. However the Ca/Cu  looping process 

takes place at high temperatures and therefore the formation of m- ZrO2 during 

operation would be also possible so the use of this support in this kind of processes 

should be avoided. Moreover, the Cu load that would allow for a stable material on 

ZrO2 with the current m-ZrO2 structure in the material would introduce an excessive 

inert fraction in the reactors which would affect negatively the process energy 

balances9.   
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a) 

 
                 Cycle = 20                              Cycle = 20                              Cycle = 20 

 

  
                  Cycle = 100                             Cycle = 100                           Cycle = 100 

 

 

b) 

 
                    Cycle = 100                             Cycle = 100                           Cycle = 100 

 

Figure 5: a) Oxidation reaction curves of CuO-based materials depending on the material 

support (T=870ºC, 20vol% O2, cycle number=20 and 100): (left) Al2O3, (center) MgAl2O4, 

(right) ZrO2. b) Reduction reaction curves of CuO-based materials depending on the material 

support(T=870ºC, 20vol% H2, cycle number=100): (left) Al2O3, (center) MgAl2O4, (right) ZrO2. 

 

All the materials were examined after testing in the TGA to observe any sign of 

agglomeration caused by the redox cycles. In this way, the samples onto Al2O3 and 
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MgAl2O4 prepared by COP were not affected in any case by agglomeration phenomena. 

On the other hand, the samples synthesized by MM tended to form an external hard 

layer that was breakable but in contrast, high agglomeration was observed in SD and DP 

samples after the reduction/oxidation cycles. 

In view of the experimental results obtained at this point, COP has been selected as a 

suitable route to produce materials with the best long term performance. Thereby, the 

materials with Cu loads around 65%wt. either onto Al2O3 or MgAl2O4 were the COP 

materials with the highest Cu content that also presented high chemical stability. 

In Figure 6a the SEM images of fresh samples of  the selected CuO-based materials in 

powder form are shown in a scale of 10 µm. The SEM analysis carried out to the 

selected samples with Cu loads around 65 %wt. in oxidized form showed that there is a 

homogeneous dispersion of CuO on to the inert support in both solids. The light areas of 

SEM images are related with the presence of Cu, and the dark grey zones indicate the 

presence of Al and/or Mg. It can be appreciated in the Figure that copper particles were 

a bit smaller than the particles of the material used as support. Regardless the support 

used, the MgAl2O4 material showed substantially smaller particles than the Al2O3. 

Finally, both materials presented a homogeneous dispersion of the compounds 

throughout all the sample. 

 

3.2.2. Materials in pellet form 

The materials selected in powder form as optimal candidates for the Ca/Cu looping 

process were pelletized in order to analyze their mechanical stability. In addition the Cu 

material with the highest Cu load (70 %wt.) onto MgAl2O4 was also pelletized to 

determine the limit of Cu load that can reach this type of materials. In this way three 

types of pellets (P_Cu65Al_COPa, P_Cu65Al_COPb, P_Cu65Al_COPc) were prepared 
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from the Cu65Al_COP powder, whose main difference was the pellet density. Small 

quantities of a material used as a binder was incorporated during the preparation of the 

pellets onto Al2O3, and therefore the Cu content in these pellets decreased a bit (Cu load 

around 60%wt.) with respect to the pellets supported on to MgAl2O4 (without binder 

material). In addition, pellets from the Cu65MgAl_COP and Cu70MgAl_COP materials 

were also prepared (P_Cu65MgAl_COP, P_Cu70MgAl_COP). Table 2 details the main 

characteristics of the pellets.  

 

Table 2: Characteristics of pellets supported on Al2O3 and MgAl2O4 made from the selected 

powdered materials. The dimensions of the pellets are: diameter = height = 3.3·10
-3
 m for the 

pellets onto Al2O3 and diameter = height = 3.0·10-3 m for the pellets onto MgAl2O4. 

 

Reference Origin material ρ (kg m-3) %wt. Cu ε (%) OTC (mgO mg solid-1) 

P_Cu65Al_COP_a Cu65Al_COP 2300 59.4 48 0.149 

P_Cu65Al_COP_b Cu65Al_COP 2900 57.5  0.143 

P_Cu65Al_COP_c Cu65Al_COP 2540 58.8 43 0.148 

P_Cu70MgAl_COP Cu70MgAl_COP 2160 69.0  0.174 

P_Cu65MgAl_COP Cu65MgAl_COP 2260 65.0  0.160 

 

 

The materials were cut and the cross-section was analyzed by SEM-EDX to determine 

their homogeneity. Figure 6(b) shows an example of the SEM images, photographs and 

EDX figures obtained for the two different pellets produced with the different supports 

(P_Cu65Al_COP and P_Cu65MgAl_COP). The EDX applied to the pellets diameter 

showed an homogeneous dispersion of the Cu2+, Al3+ and Mg2+ ions when present.  In 
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the mapping obtained by EDX to the Cu and Al elements individually, can be 

appreciated a uniform distribution of the elements throughout both pellets. 

 

a)                 
                          Cu65Al_COP                                                               Cu65MgAl_COP 

                                                                 
b) 

P_Cu65Al_COP_a P_Cu65MgAl_COP 

  

  

  

            
 

Figure 6: a) SEM images for fresh selected materials in powder form; b) SEM and EDX 

analysis for fresh pellets: SEM images (first row), photographs (second row) and EDX figures 

(third row). 
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Following a similar procedure as done for the materials in powder form the evolution of 

pellets oxygen transport capacity with the number of reaction cycles was assessed in the 

TGA apparatus described in the experimental section. Figure 7a (left) shows the 

evolution of OTC (mg O/mg oxidized material) during more than 150 reaction cycles of 

the COP materials with 65 %wt. of Cu load on to Al2O3 and MgAl2O4. According to the 

Figure, both materials presented highly stable oxygen transport capacity with maximum 

losses of 1% of OTC in the last cycles.  

It must be highlighted that the materials in pellet form showed similar OTC values to 

the powders which means that all the Cu remains active during the oxidation and 

reduction reactions and there is no formation of inaccessible sites of copper inside the 

pellet along the cycles. In the case of the OTC of the pellet onto Al2O3, the value has 

been slightly reduced with respect to the pellet onto MgAl2O4 due to the addition of 

small quantities of binder as it has been mentioned in the previous paragraphs. 

Regarding to the oxidation conversion curves of the pellets supported on Al2O3 

synthesized by Johnson Matthey for cycles 50 and 100 (Figure 7 (a, right)), it can be 

observed that all the pellets reach complete conversion in less than 4 minutes but slight 

differences on the slope of the curves among the materials can be appreciated. These 

differences are more relevant during the 50th cycle being the P_Cu65Al_COP_b which 

presents the smaller slope followed by P_Cu65Al_COP_c. In addition, these pellets that 

have the greatest values of density presented slightly slower reaction rates at the initial 

cycles which could be due to the decrease in porosity of these materials and therefore 

the slightly greater difficulty to the O2 to access to the Cu active sites. 

However it can be observed that the slope of the oxidation conversion of the three 

pellets is practically the same in the 100th cycle which means that the oxygen is able to 

easily access inside the pellet as long as the cycles proceed. As well as the reduction 
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conversion curves of the materials in powder form, no remarkable differences were 

detected among materials in the reduction curves of the pellets as these curves were 

highly repetitive in terms of the number of cycles and the reduction occurred very fast.  

In view of the results obtained for the chemical stability of the pellets with 65 %wt. onto 

Al2O3, a similar study was carried out for the pellet with 65 %wt. onto MgAl2O4. 

Besides, the mechanical stability of the material with 70 %wt. onto MgAl2O4 was 

tested. Figure 7 (b, left) shows the evolution of OTC (mg O/mg oxidized material) 

during more than 150 reaction cycles of the COP materials with 65 and 70 %wt. of Cu 

load onto MgAl2O4. According to this Figure, the OTC of the pellet with 65 %wt. of Cu 

load remained highly stable along 150 cycles. However, the loss in the OTC in the 

pellet with 70%wt. of Cu can be clearly appreciated and it descends slowly and 

progressively from cycle 1 to cycle 150. Then, there seems to be a limit in Cu content to 

obtain highly stable materials and this limit has been found around 70%wt of Cu load 

for the Al2O3 and MgAl2O4 supports. It seems that an increase up to 70%wt. of Cu load 

in the material results in a non-homogeneous mixture between the different phases 

present in the material. This aspect together with the decrease in hardness of the pellet 

due to the reduction of spinel content 87, which is required in a certain proportion since 

it allows the improvement of the mechanical properties of the pellet, makes that there is 

a maximum Cu load in the materials that should not be exceeded to develop highly 

stable materials.  
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a) 

 
                                                                     Cycle = 50                             Cycle = 150 

b) 

 
                                                                           Cycle=50                               Cycle=150 

 
         
Figure 7: a) Left: OTC for pellets with Cu load around 65%wt. on to Al2O3 and MgAl2O4 

during approximately 150 oxidation-reduction cycles. Right: Oxidation curves for pellets with 

different characteristics made from the powdered material Cu65Al_COP with 20vol% O2 at 

870ºC (cycles = 50 and 100); b) Left: OTC for pellets on to MgAl2O4 with 65%wt. and 70%wt. 

during approximately 150 oxidation-reduction cycles. Right: Oxidation curves for CuO-Al2O3 

and CuO-MgAl2O4 pellets with 20vol% O2 at 870ºC: (left) cycle = 50, (right) cycle = 150. 

 

Finally, an additional study was carried out in order to analyze the mechanical strength 

of several pellets after cycles in oxidized and reduced conditions. Three pellets made 

from the powdered material synthesized by COP and supported on Al2O3 with 65wt% 

of Cu load, but with different physical properties (P_Cu65Al_COP_a, 

P_Cu65Al_COP_b and P_Cu65Al_COP_c), were tested in a Shimpo Dynamometer to 

determine the horizontal crushing strength after several number of cycles (10, 50, 75, 
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100, 200), both in oxidized and reduced forms. In Figure 8a the values of horizontal 

crushing strength (HCS) of oxidized and reduced pellets tested for different redox 

cycles are plotted.  

The oxidized pellets followed a progressive trend of increase in strength during the first 

35 - 45 cycles, achieving values of HCS up to 55 N in all cases. After this period, during 

the cycles 60 - 100 two pellets (P_CuAl_COP_b and P_CuAl_COP_c) lose strength 

until values around 60 N and other keep similar values during these cycles 

(P_CuAl_COP_a). In this way, the pellet P_Cu65Al_b, that is the material with the 

highest density, showed the highest increase on strength (until 80 N approximately) 

however the prompt drop in HCS was also produced in oxidized and reduced forms. 

On the other hand, the reduced pellets were initially hardest than the oxidized and 

although the pellet with the greater density showed a rapid drop, the other pellets 

keeping similar values of HCS for 80 cycles. 

Therefore the pellet with the lowest density (P_Cu65Al_COP_a) presented the best 

mechanical behavior in multiple cycles. The HCS values for both oxidized and reduced 

pellet of P_Cu65Al_COP_a after 175 cycles are reported in Figure 8b. As it can be 

concluded by this study, the pellet with the lowest density is associated also with the 

highest porosity value which would decrease the thermal shock resistance produced 

during cycles. It is also interesting to highlight that the HCS values of this pellet during 

the course of the cycles in oxidized and reduced forms were very similar which is a very 

important aspect in order to develop materials with high mechanical resistance to 

oxidizing and reducing conditions at high temperature. 
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a) 

 
b) 

 
 

Figure 8: a) Horizontal crushing strength in 100 cycles of oxidized pellets (left) and reduced 

pellets (right); b) Horizontal crushing strength in oxidized and reduced pellets of S0397-1047-2 

along 175 cycles. 

 

 

4. CONCLUSIONS 

 

Materials with Cu contents between 48 %wt. to 75 %wt. supported onto Al2O3, 

MgAl2O4 and ZrO2 were synthesized by SP, COP, DEP and MM. Highly stable 

materials with Cu loads around 65%wt. onto Al2O3 and MgAl2O4 has been obtained by 

COP. The results confirmed a good dispersion between the active phase and the support 

in both, materials in powder and pellet form. It is essential not to exceed the amount of 

boundary copper that the material is capable of containing in order to obtain a good 

dispersion of the different phases inside the material as an increase until 70%wt. of Cu 

in pellets meant a marked decrease in oxidation reaction rate after cycles. On the other 
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hand,  materials onto ZrO2 with similar Cu content by COP showed a progressive lost in 

oxygen transport capacities from the first cycles which it has been associated to the  

formation of monoclinic ZrO2. On the other hand, SD and DP were not a suitable routes 

for this kind of materials as materials by SD presented low specific surface areas and 

the DP method resulted in materials with very large CuO crystals.  

The evolution of the OTC of the selected materials in powder form was fairly stable 

along 100 reduction/oxidation cycles. In the same way, the mechanical stability of the 

pellets during 150 cycles has been successfully confirmed and the oxygen transport 

capacity was evaluated finding a maximum loss of 1% in the last cycles. Similar HCS 

values and no agglomeration signs along multiple cycles were found for the pellets 

which is a very important result since the point of view of the mechanical stability and 

therefore these pellets are suitable candidates for the Ca/Cu process. Moreover, the 

scaling up of the co-precipitation procedure would not present too many difficulties 

because of the simplicity of the equipment and the good homogeneity obtained by this 

method. 
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Highly loaded CuO-Al2O3 pellet with long-term chemical and mechanical stability 

 

 

Page 41 of 41

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


