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ABSTRACT  27 

Mine wastes from abandoned exploitations are sources of high concentrations of 28 

hazardous metal(oid)s. Although these contaminants can be attenuated by sorbing to 29 

secondary minerals, in this work we identified a mechanism for long-distance 30 

dispersion of arsenic and metals through their association to mobile colloids. We 31 

characterize the colloids and their sorbed contaminants using spectrometric and 32 

physicochemical fractionation techniques. Mechanical action through erosion may 33 

release and transport high concentrations of colloid-associated metal(oid)s towards 34 

nearby stream waters, promoting their dispersion from the contamination source. Poorly 35 

crystalline ferrihydrite acts as the principal As-sorbing mineral, but in this study we find 36 

that this nanomineral does not mobilize As independently, rather, it is transported as 37 

surface coatings bound to mineral particles, perhaps through electrostatic biding 38 

interactions due to opposing surface charges at acidic to circumneutral pH values. This 39 

association is very stable and effective in carrying along metal(oid)s in concentrations 40 

above regulatory levels. The unlimited source of toxic elements in mine residues causes 41 

ongoing, decades-long mobilization of toxic elements into stream waters. The 42 

ferrihydrite-clay colloidal composites and their high mobility limit the attenuating role 43 

that iron oxides alone show through adsorption of metal(oid)s and their immobilization 44 

in situ. This may have important implications for the potential bioavailability of these 45 

contaminants, as well as for the use of this water for human consumption. 46 

 47 

 48 

 49 

 50 

1. INTRODUCTION 51 
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Current mines are typically designed to mitigate potential environmental impacts. 52 

However, waste dumps and tailings are common leftovers from discontinued mines 53 

(Courtin-Nomade et al., 2016). Abandoned mine wastes originally containing high 54 

sulfide concentrations are of particular concern as they become active and harmful point 55 

sources of As and other metals. Chronic exposure to low/moderate inorganic As from 56 

drinking water has been associated with increased cardiovascular mortality (Medrano et 57 

al., 2010). Knowledge of the mechanisms of contaminant release, mobility, and natural 58 

attenuation is crucial to minimize the consequences associated with mine wastes, or to 59 

devise remediation strategies.  60 

Although As can be naturally attenuated in mining environments by associating to iron 61 

(hydr)oxides or hydroxy-sulfates, or by precipitating as scorodite (FeAsO4·2H2O) 62 

(Courtin-Nomade et al., 2016) and other metal arsenates (Villalobos et al., 2010), 63 

colloidal particles of these minerals may be released from mining wastes and act as As 64 

carriers in surface runoff (Gomez-Gonzalez et al., 2016). Colloid-associated As may be 65 

transported and reach geochemical conditions that are different from those at the source 66 

(e.g., higher pH) thus promoting its release and bioavailability.  Accordingly, none of 67 

these natural As scavengers could be considered as completely effective trapping 68 

systems in contact with flowing water because of their small particle sizes (except 69 

perhaps jarosites) (Doucet et al., 2007). This association of As to mineral colloids is 70 

important for the transport of this element in the environment and differs from the 71 

mobility behavior of both dissolved phases and of larger As-containing particles. Co-72 

transport of contaminants by colloids has been recognized as an efficient mechanism of 73 

trace metal and organic chemical mobility (Kretzschmar et al., 1999), but little attention 74 

has been paid to As speciation in the actual mobile colloidal particles (Bauer and 75 
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Blodau, 2009) and to the As partitioning between colloids and dissolved fractions 76 

(Serrano et al., 2015).  77 

Asymmetric flow field-flow fractionation (AF4) has been used to separate and 78 

characterize mobile colloids from natural samples (Bolea et al., 2010; Laborda et al., 79 

2011; Baalousha et al. 2011). The mild separation conditions in absence of stationary 80 

phases contribute to the preservation of the original colloid size distribution and it can 81 

be coupled to an ICP-MS to obtain the elemental composition of the colloidal phases 82 

(Neubauer et al., 2013). Direct insight into the speciation of colloidal As and Fe can 83 

additionally be gained using X-ray absorption spectroscopy (XAS), which has been 84 

used to assess the As and Fe speciation in natural samples (O'Day et al., 2004: Voegelin 85 

et al. 2007; Chen et al. 2009) including dispersible soil colloids (Serrano et al., 2015). 86 

Recently, Gomez-Gonzalez et al. (2016) combined both techniques to demonstrate that 87 

the mineral nature of the dispersible colloidal fraction obtained after leaching scorodite-88 

rich mine residues and sediments (Serrano et al., 2015) were similar to those colloids 89 

released by simulated rainfall experiments performed in the field. Both scorodite and 90 

Fe(III)-oxyhydroxides were identified as mineral carriers that can transport As long 91 

distances from the source. 92 

Although the role of Fe-oxide nanoparticles as carrier phases has received attention 93 

(Bauer and Blodau, 2009; Kretzschmar et al., 1999), composite mineral colloidal 94 

assemblages may have an important role in the transport of metal(loid)s in the soil-95 

water system, but they have scarcely been investigated. In this study, we determine the 96 

As solid-phase speciation in the dispersible (i.e., potentially detachable and mobile, 97 

<1000 nm) colloid fraction of soils along the stream that collects drainage from mine 98 

residues. The mineral phases and colloidal vectors involved in the As mobilization have 99 

been characterized and compared to the As-bearing phases present in the bulk 100 
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(i.e.<2mm) fraction of the soils. We propose a combined approach involving 101 

spectrometric and fractionation techniques to gain information on the size-dependent 102 

elemental composition of colloids, the nature of the colloidal carrier phase, and the 103 

speciation of the associated contaminants. 104 

 105 

2. EXPERIMENTAL 106 

2.1. Site description, sample collection and analyses 107 

The experiment was conducted along a stream gorge (NW Madrid, Spain) that collects 108 

water drainage from an abandoned mine in the Guadarrama mountain-range 109 

(40º52’04.48” N - 3º43’48.68” O, 1475 meters altitude), where metal(oid) 110 

contamination had been previously reported (Moreno-Jiménez et al., 2009). Massive 111 

pyritic residues (~500 m2 of surface, 3 meter-thick, 22 g kg-1 of As) remain on the soil 112 

surface and are subjected to weathering and erosion. There, 0-15 cm depth bulk samples 113 

were taken from (1) the arsenic-bearing waste-pile (WP), (2) four sampling points 114 

located at 28, 190, 410 and 815 m away from the WP along the gorge downstream (A-115 

B-C-D, respectively), and (3) adjacent to a semi-permanent water course (Figure S1). 116 

Additional undisturbed soil cores (5-cm diameter, 15-cm depth) were collected from the 117 

downstream locations (A-B-C-D) and kept under anoxic conditions. Stream water 118 

samples were collected from the exit of the abandoned mine (WP) and near the 119 

sampling locations. All samples were processed as described in the Supplementary 120 

Material (SM) where the main physicochemical properties are presented (Tables S1, 121 

S2a-b, S4). Additional observations and analyses were performed through 122 

environmental scanning (ESEM) and transmission electron microscopy (TEM). 123 

 124 
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2.2. Isolation of dispersible colloidal and dissolved fractions  125 

The maximum amount (mg kg-1 soil) of potentially releasable colloids from the samples 126 

was termed ‘dispersible colloidal fraction’ (DCF, ≤ 1000 nm) (Serrano et al., 2015). 127 

Two other fractions were isolated from the DCF upon ultrafiltration through 10 nm 128 

pore-size membranes: (i) the solid colloidal fraction (CF, 1000-10 nm) deposited onto 129 

the ultrafiltration membrane and (ii) the truly water soluble or dissolved fraction (DF, 130 

<10 nm) that passed through membranes. The experimental procedure is described in 131 

the SM.  132 

DCF aliquots were used for AF4-ICP-MS and TEM analyses, Mössbauer spectroscopy, 133 

and for colloidal mass and element quantification. Aqueous As and metal 134 

concentrations in the dissolved fraction (DF) were quantified by ICP-MS and the 135 

colloidal fraction (CF, 1000-10 nm) obtained upon ultrafiltration was analyzed by As 136 

and Fe K-edge XAS spectroscopy (Figure S2).  137 

 138 

2.3. Size characterization and element quantification by AF4–ICP-MS  139 

The DCFs from A-B-C-D were analyzed by AF4 (AF2000, Postnova Analytics) with a 140 

coupled UV-Vis diode array detector (Shimadzu, wavelength range: 200-650 nm). The 141 

AF4-UV-Vis system was coupled to an ICP-MS (ELAN DRC-e Perkin Elmer) to 142 

perform an on-line multi-element quantification. The instrumental conditions of the 143 

AF4-UV-Vis-ICP-MS system were previously tested (Serrano et al., 2015) and are 144 

described in the SM. 145 

 146 

2.4. As and Fe K-edge X-ray absorption spectroscopy (XAS) analyses  147 

Arsenic and Fe XAS measurements were done on bulk (<2 mm) soil samples and on 148 

their CF (1000-10 nm). EXAFS spectra were recorded at the BM25A beamline (ESRF, 149 
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France) (6 GeV, 100 mA, Si(111) monochromator crystals) at room temperature using a 150 

13-element Ge(Li) solid-state detector. The spectra were obtained by averaging 5-7 151 

replicate scans. Both soil and CFs from A to D sampling points were transported under 152 

anoxic conditions and measured inside a vacuum chamber to preserve the original As 153 

and Fe speciation. Reference and sample spectra were analyzed by linear combination 154 

fitting (LCF) using the code Athena (Ravel and Newville, 2005). Details about the XAS 155 

spectra collected, LCF analyses, and reference spectra are shown in the SM. 156 

 157 

2.5. Mössbauer spectroscopy analyses  158 

Room temperature 57Fe Mössbauer data of both bulk and colloidal samples were 159 

recorded in transmission mode using a conventional constant acceleration spectrometer 160 

and a 57Co(Rh) source, analyzing ~200 mg of each sample previously powdered and 161 

capsuled in polyvinyl chloride (PVC) holders which ensures an effective thickness of 5-162 

10 mg Fe cm-2 per sample. The velocity scale was calibrated using a 6 µm-thick α-Fe 163 

foil. The isomer shifts were referred to the centroid of the spectrum of α-Fe. The fitting 164 

hyperfine parameters are summarized in Table S7. 165 

 166 

3. RESULTS  167 

3.1. Bulk soil sample characterization 168 

3.1.1. Physicochemical properties and metal(oid) concentrations 169 

The WP shows high electrical conductivity (EC, 237 µS cm-1), low pH (3.5) and total 170 

organic carbon (TOC) (0.2%) in comparison with the downstream samples (A, B, C, D) 171 

which presented circumneutral pH, EC in the range 19-55 µS cm-1 and TOC values 172 

from 1.5-5.5% (Table S1).  173 
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All samples contained quartz and albite as principle minerals in the <2-mm fraction 174 

(Table S2a). Their <2-μm fractions (Table S2b) were dominated by montmorillonite 175 

and jarosite in the WP, and by illite, and either kaolinite, or microcline and albite in the 176 

downstream soils. 177 

The As, Fe and Pb pseudo-total concentrations were highest in the WP and decreased 178 

with distance from the contamination focus (Table 1). Conversely, Al, Mn and Zn 179 

concentrations were lowest in the WP but they also decreased with distance starting 180 

from point A downstream. This could be the result of the enhanced mineral acidic 181 

dissolution at the WP and the subsequent element enrichment at the closest point (A). 182 

 183 

3.1.2. Element fractionation in solid phase: Sequential extraction procedure 184 

Common to all samples is the absence of bioavailable, or exchangeable, As (step I) 185 

(Table S4). In the WP, 74% of the total As was extracted in step IV (targeting poorly 186 

crystalline Fe-oxyhydroxides). Riverbed soils showed different As solid phase 187 

distribution than the WP. The fraction of As extracted from step II (strongly adsorbed 188 

complexes) was similar in samples A and B (~22% of total As) but decreased at the 189 

farthest distance from the WP (point D). The As extracted in step III (amorphous Fe 190 

hydroxides, carbonates and volatile sulfurs) represented on average 20% of the total 191 

amount in samples A and C but decreased to 9% in point D. The As fraction extracted 192 

from step IV decreased downstream from 26% to 13% of the total As content. 193 

Conversely, the fraction of As associated to crystalline Fe-oxyhydroxides increased 194 

with distance to the WP from 8% to 33% and 25% in samples C and D, respectively. 195 

The farthest sample from the WP (D) showed a significant contribution of residual 196 

fraction (40%). 197 
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Iron was mostly extracted in steps III (32%) and IV (24%) (amorphous and weakly 198 

crystalline Fe-oxyhydroxides, respectively) in the WP. The riverbed soils showed a 199 

large residual Fe fraction from 23% (B) to 74% (D). Similarly, Al was mostly extracted 200 

in step III, varying from 20% (WP) to 64% (C). Similar to Fe, sample D stood out for 201 

the amount of Al in the residual fraction (43%), but residual Al was also high in the WP 202 

(61%) (Table S4). 203 

 204 

3.1.3. Observations and analysis through scanning electron microscopy 205 

The WP was characterized by As-Ag-bearing mineralized veins of quartz that also 206 

contained silica and Fe-oxides together with primary sulfide and sulfosalts such as 207 

arsenopyrite, pyrite and scorodite (Figure S3a-b). Large quartz and feldspar grains were 208 

abundant in samples downstream. Arsenic was found associated to Fe-oxyhydroxides 209 

showing low As/Fe concentration ratios by EDX in selected particles (Figure S3c-d-e). 210 

The EDX indicated the highest As/Fe ratio in the WP sample, while downstream 211 

samples presented decreasing As content with distance to the contamination focus. In 212 

sample D (Figure S3f), organic microparticles with important Mn and As content were 213 

detected.  214 

 215 

3.1.4. Speciation of Fe-mineral phases: Mössbauer spectroscopy 216 

All Mössbauer spectra were dominated by an intense paramagnetic doublet whose 217 

parameters can be associated to Fe(III) in octahedral oxygen coordination (Maddock, 218 

1985), and by a less intense second doublet corresponding to Fe(II)-octahedral (Figure 219 

S6).  220 

Iron content in the WP was mainly Fe(III), 16% of whose total content corresponded to 221 

goethite and 81% to a Fe(III)-illite/Fe(III)-(hydr)oxides mixture, other than goethite 222 
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(Table S7). From the WP downstream, the ratio Fe(II)/Fe(III) was lowest in sample A 223 

(0.14), increased to 0.27 in sample B, but decreased to 0.18 in in sample D (Table 2). 224 

Minor presence of hematite was detected in points C and D. 225 

 226 

3.1.5. As speciation of bulk soils: X-ray absorption spectroscopy 227 

Linear combination fitting (LCF) analyses of As spectra, acquired in anoxic conditions, 228 

indicated the adsorption of As on Fe(III)-oxyhydroxides, such as ferrihydrite and 229 

goethite (Table 3, Figure 1). Also, significant contributions of scorodite (26%) and As-230 

jarosite (17%) were found in the WP. 231 

 232 

3.2. Characterization of the colloidal fraction of contaminated soils  233 

3.2.1. Colloid-mass and metal(loid) quantification  234 

All soil samples released a larger mass of colloids than the WP (Table 4b). Colloidal 235 

mass in the DCF varied little from A (~9200 mg kg-1) to D (~7900 mg kg-1). The As 236 

colloidal concentration of the samples decreased from ~10000 mg kg-1 in A to ~1350 237 

mg kg-1 in D, similar to the WP (1434 mg kg-1). The DCF of downstream samples 238 

showed larger concentrations of all metal(oid)s analyzed than the DCF obtained from 239 

the WP (Table 4a). The metal(oid)s contained in the DCFs were mainly associated to 240 

the (solid) CF (1000-10 nm), i.e. minor concentrations of the elements remained in the 241 

DF, and thus the percentage of the element concentration found in the CF to that in the 242 

DCF (CF/DCF in Table 4a) is 100% for Fe and Al, and over 80% for the rest of 243 

analyzed elements in all soils. All metal(oid)s concentrations in the DCF from A-B-C-D 244 

decreased with distance from the WP while their fractions in the DF were low and 245 

remained constant along the river creek except for the Cu which decreased in samples C 246 

and D. For example, As concentration in the DCF decreased from 9.6 mg L-1 in A near 247 
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the WP, to 1.3 mg L-1 in D. However, As concentrations in the DF remained close to 0.2 248 

mg L-1 in all samples collected along the river banks. Overall, the ratios of element 249 

concentration in DCFs to that in their corresponding bulk samples were low (2-4%) for 250 

all elements except for Al (17-31%) (Table 4a)  251 

 252 

3.2.2. DCF size distribution and associated metal(loid)s: AF4-ICP-MS and TEM 253 

The DCF size distribution and the associated As, Fe, and Al contents of downstream 254 

samples were analyzed by AF4-UV-vis-ICP-MS. Low pH and high EC of WP sample 255 

prevented its size-characterization due to the strong interaction with the AF4 channel 256 

membrane (Gomez-Gonzalez et al., 2016). 257 

The size maxima of the colloidal distributions did not change with distance along the 258 

stream over the samples A to D (Table 5). Iron and As concentration maxima were 259 

associated to colloid mean sizes of 260±30 nm and 257±36 nm, respectively, and 260 

differed little to that of Al, 263±30 nm (Table 5, Figure 2a). These size ranges were 261 

further confirmed as colloid particles 200-300 nm large were frequently observed in the 262 

DCF by TEM analyses (Figure 2b). The EDX indicated the importance of Al- and Fe-263 

bearing phases in the As mobilization (Table S5).  264 

 265 

3.2.3. Colloidal Arsenic and Fe XAS speciation  266 

The As K-edge EXAFS spectra acquired over the CF (1000-10 nm) of the samples 267 

pointed to ferrihydrite [Fe10O14(OH)2] as the main As-bearing phase in downstream 268 

samples (Table 3, Figure 1), accompanied by low contributions of goethite [α-269 

FeO(OH)] in A and B, beudantite [PbFe3(OH)6 SO4 AsO4] in C, and jarosite in D. In the 270 

WP, in addition to ferrihydrite and goethite, there was a significant contribution of 271 

scorodite (≈36%).  272 
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The Fe k-edge EXAFS spectra showed similar Fe-clays in the colloidal fraction of all 273 

samples. In the WP there were similar contributions of smectite [Ca0.17(Al, Fe, Mg)2(Si, 274 

Al)4O10(OH)2·nH2O], schwertmannite [Fe8O8(OH)6(SO4)·nH2O] and plumbo-jarosite 275 

[PbFe6(SO4)4(OH)12]. All A-B-C zones showed the main presence of schwertmannite in 276 

the CF and minor contributions of Fe-phyllosilicates (smectite and illite [(K, H3O)(Al, 277 

Mg, Fe)2(Si, Al)4O10[(OH)2, H2O]]) and (plumbo)jarosite (Table 3, Figure 1). 278 

 279 

4. DISCUSSION 280 

4.1. Arsenic spreading and environmental impact 281 

The massive sulfarsenide residues dumped on the soil surface near the creek are an 282 

important source of metal(oid) contamination in the mine surroundings, especially 283 

downstream. At about one kilometer downstream from the WP, As concentration is 43 284 

times higher than the regional legal threshold (24 mg kg-1, Moreno-Jimenez et al. 2009).  285 

Primary As-bearing mineral assemblages, mainly pyrite-like minerals, are transformed 286 

to authigenic minerals such as goethite and scorodite, the main products of low-287 

temperature meteorization of the WP, and minor fractions of jarosite, plumbojarosite, 288 

and schwertmannite. Atmospheric oxidation of pyrite begins within minutes of 289 

exposure, resulting in the production of Fe-oxyhydroxides and sulfate species (Chandra 290 

and Gerson, 2010). The extent of oxidation is naturally controlled by access of mine 291 

wastes to oxygenated water, which is enhanced by specific geographical characteristics 292 

of the area such as its high topographic relief, and alternation of dry and wet climate 293 

(Majzlan et al., 2014). The microbial activity may also play a significant role in As-294 

bearing mineral dissolution and As transformations in the soil-water system (Lloyd and 295 

Oremland, 2006). 296 
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This process is confirmed by EXAFS, indicating that As is only present as As(V) in 297 

both WP and downstream samples (Table 3). Fe-Mössbauer spectroscopy shows major 298 

proportions of structural Fe(III) over Fe(II) indicating the high oxidation state at the 299 

surface of the originally pyritic wastes (Table 2). Furthermore, As partitioning in the 300 

solid phase of the WP samples shows the largest proportion of As bound to poorly 301 

crystalline Fe-oxyhydroxide minerals (Fraction IV, 74%), and no As is associated to the 302 

most bioavailable or soluble fraction (Table S4). Similar to Slowey et al. (2007), no 303 

primary minerals were detected in the mobilizable CF in the WP and samples 304 

downstream.  305 

The lower As total concentration downstream (Table 1), relative to that in the WP, is the 306 

result of geochemical mechanisms that constrain the As release into water. Arsenic(V) 307 

association to Fe-(hydr)oxides may be found in the WP in either large particles or 308 

strongly-bound colloidal aggregates with limited dispersibility. Thus, reduced amounts 309 

of As travel downstream from the WP relative to the large As pool in the WP. Although 310 

no reclamation has been performed in the residues and affected soils, acid release from 311 

pyrite oxidation is neutralized along the creek to circumneutral values due to 312 

endogenous calcite hosted in neighboring granite and the existence of hidden 313 

interstratified marble banks into the gneiss series. At pH>6, ferrihydrite formation is 314 

favorable (Hayes et al., 2014) and can exert a metal trapping role (Fritzsche et al., 2011) 315 

attenuating As toxicity. The sequential extractions also indicate an increasing proportion 316 

of As coprecipitation with crystalline Fe-oxyhydroxides in soil samples with distance 317 

from the WP (Table S4) consistent with the As retention through stable inner-sphere 318 

complexes. 319 

However, our results show a remarkable metal(oid) pollution of the soil-water system in 320 

the area. Thus, sorption onto mineral phases at the source does not prevent the release 321 
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and transport of As and other metals. One potential mechanism is the transport of 322 

colloid-size reactive particles rich in As and the subsequent downstream spreading of 323 

the element (Bauer and Blodau, 2009). Even though As concentration in the DCF 324 

represents approximately 3% of total As concentration in the samples (Table 4) this 325 

fraction might justify the contamination downstream over time taking into account that 326 

at the circumneutral pH of the running water and soil samples (Table 1), minor 327 

concentrations of As are encountered as truly dissolved. Subsequent organic acid-328 

promoted dissolution or seasonal reductive dissolution of Fe-oxyhydroxides containing 329 

As(V) (Slowey et al., 2007) may release As in fresh water. Accordingly, both bulk and 330 

colloidal As concentrations in soils decrease with distance while As concentration in 331 

stream water tend to increase downstream.  332 

 333 

4.2. The potential role of composite mineral vectors in As transport. 334 

Iron oxides play a role as both attenuating phases and geochemical carriers of As and 335 

metals in soil-water systems. Both mechanisms may coexist and the extent of each one 336 

depends on the concentration and transport behavior of the carrier phase, the carrier-337 

contaminant association, and on particle settling and deposition processes in riverine 338 

systems (Hassellöv and von der Kammer, 2008). According to EXAFS, As-colloidal 339 

mobilization from the WP can be conducted by three potential carriers: ferrihydrite (or a 340 

mixture of it with schwertmannite), scorodite and goethite (Table 3). Among them, 341 

ferrihydrite is the largest contributor due to its high affinity for As(V) under oxic 342 

conditions (Dixit and Hering, 2003) and its prompt formation and stability at neutral pH 343 

values (Hayes et al., 2014). Ferrihydrite is the first metastable Fe phase to precipitate 344 

upon pyrite oxidation. Its transformation kinetics is retarded in sulfate-rich semi-arid 345 

environments. This allows this phase to persist over decades of weathering, even at 346 
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lower pHs than those predicted in its stability field (Hayes et al., 2014), although other 347 

phases such as schwertmannite are more stable at acid conditions. At pH<4, 348 

schwertmannite is an important host mineral for As released by acid mine-drainage 349 

(Acero et al., 2006), while at pH>5 sorption of As on ferrihydrite or poorly crystalline 350 

Fe-oxyhydroxide predominates (Carlson et al., 2002). The nanocrystalline structure of 351 

schwertmannite (Fernandez-Martinez et al., 2010) is corroborated by the fact that this 352 

phase is only detected by Fe-EXAFS in the CF (Table 3). Also, the high TOC (Table 353 

S1) of the samples downstream might explain its occurrence at pH>5 and the absence of 354 

As bound to schwertmannite as described by Vithana et al. (2014). Moreover, nanosized 355 

schwertmannite might have been transported as suspended material downstream as 356 

suggested by Yu et al. (1999) who also found traces of this mineral at pH>6. 357 

Scorodite is only detected in the <2 mm and colloid fractions of the WP sample. 358 

Although this mineral is mobilizable through surface runoff (Gomez-Gonzalez et al., 359 

2016), at neutral pH, it dissolves incongruently forming Fe-hydroxide and arsenate 360 

oxyanions (Harvey et al., 2006) and thus contributes to the accumulation of Fe-phases, 361 

which subsequently may sequester soluble As. The role of goethite as potential As-362 

carrier seems secondary as compared to ferrihydrite. It was found in the WP colloid-size 363 

fraction (Table 3) and reduced contributions in the closest sampling points to the wastes 364 

(A and B). Ferrihydrite slowly transforms to more thermodynamically stable goethite in 365 

the presence of As (Ford, 2002). This could explain the increasing contribution of As 366 

bound to goethite in the total soil fraction with distance from the WP (Table 3), 367 

suggesting that As-bound goethite may be found in particles larger than the DCF. 368 

Nevertheless, Mössbauer spectroscopy conducted at room temperature suggests the only 369 

presence of goethite in the WP. The contribution of phases such as ferrihydrite or 370 
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lepidocrocite could not be discarded unless a significant number of Mössbauer spectra 371 

were acquired at low temperature.  372 

Although our results show the role of ferrihydrite as the main As-sorbing mineral in the 373 

bulk samples, colloidal As concentration represents less than 3% of the total As 374 

concentration in all samples. This indicates that ferrihydrite is mainly encountered as 375 

coating or within bigger size aggregates, and in both cases with less reactivity and more 376 

stability than in its nano-sized form, which likely limits its transformation to more 377 

crystalline phases. Pure Fe-oxide minerals are positively charged under environmental 378 

pH conditions and thus, are promptly deposited on the generally negatively charged 379 

surface of stationary grains (e.g., clays) in soils and sediments (Hassellöv and von der 380 

Kammer, 2008).  381 

This points out the potential role of composite Fe-oxyhydroxides and phyllosilicate 382 

mineral vectors as element carriers in riverine soil-water systems, acting as mineral 383 

assemblages as described by Grosbois et al. (2011).  The proposed mechanism would be 384 

for As being attached to Fe-oxyhydroxide phases, which in turn use clays as an effective 385 

physical transport media. Moreover, this role is performed regardless of the carrier 386 

mineral particle size, although there is a slight enrichment in As bound to ferrihydrite in 387 

the colloid-size fraction as compared to that of total soil fraction (>2mm). This is 388 

supported by the fact that colloidal As mean peak size matches up with that of Fe and 389 

Al in the AF4-fractograms (Figure 2) suggesting that both elements are linked to As. 390 

Comparing the element’s total concentrations and those found in the DCF and CF 391 

(Table 4a), it is evident that the DCF becomes enriched in Al (20% or higher) while the 392 

rest of the analyzed elements are present in minor proportions relative to their bulk total 393 

concentrations. While the term, ‘nanovector’ (Hamon et al. 2005) describes the colloidal 394 
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transport of metal(oid)s in soil-water systems, it may be composed of more than one 395 

type of mineral phases for metal(oid) pollution in mine affected soil-water systems.  396 

 397 

5. CONCLUSIONS 398 

This work shows a potential mechanism of metal(loid) dispersion from mine wastes to 399 

adjacent soils and stream waters via long-distance transport of colloidal material.  400 

The well-known role of Fe-oxyhydroxide phases as As scavenger may be limited when 401 

they precipitate as surface coatings of dispersible colloid-size mineral particles that can 402 

readily be transferred along water courses from point sources of contamination to 403 

adjacent non-polluted sites.  404 

The study was performed on the bulk (<2 mm) soils and their dispersible colloidal 405 

fractions (<1000 nm) combining sequential chemical extractions, fractionation and 406 

spectrometry techniques, and showed that the dispersion occurs by isolated Fe-407 

oxyhydroxide colloids or by greater size, stable aggregates of Fe-oxyhydroxide-clay 408 

mineral composite vectors. This mobilization mechanism and the physical carrier 409 

mineral phases can be identified by combining XAS (to confirm As-Fe oxide binding) 410 

and fractionation and elemental analysis (AF4-ICP-MS). 411 

The unlimited As source provided by the accumulation of pyrite-rich mine residues 412 

along with the decades-long mobilization of toxic elements into stream water (and its 413 

potential transfer to subsurface water) pose important risks for human health. High 414 

contents of negatively-charged clay minerals may also contribute to cationic metal-415 

bound colloid mobilization along streams. 416 

 417 
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 427 

FIGURE CAPTIONS 428 

1– Arsenic K-edge EXAFS spectra of (a) bulk samples and (b) colloidal fractions. Iron 429 

K-edge EXAFS spectra of (c) colloidal fractions. Black lines, experimental data; red 430 

lines, LCF results (Table 3 for LCF values). 431 

2– (a) AF4-ICP-MS analyses of the downstream DCFs showing the distribution of 432 

aluminum (black), iron (red) and arsenic (blue) associated to the colloids. (b) TEM 433 

images of the DCF isolated from A, B, C and D (EDX analyses confirmed the presence 434 

of As associated to Fe-oxyhydroxides in all cases (Table S5)). 435 
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Table 1 – Elemental concentrations of soil/sediment and stream waters 

Soil/sediment 
Al Mn Fe Cu Zn As Pb 

As/Fe b 
mg kg-1 a 

WP 1550 364 6.9x104 369 365 2.2x104 3213 0.23 
A 4120 957 3.4x104 1886 1525 3313 448 0.07 
B 2930 838 2.3x104 1383 1172 2278 354 0.07 
C 2440 668 2.1x104 360 1331 816 172 0.03 
D 2140 467 1.9x104 281 1167 1041 182 0.04 

Stream 
waters pH c EC 

µS cm-1 
Mn Fe As Pb 

µg L-1 d 

WP 3.92 237 204±8.8 250±31 32±1.7 14±0.3 
A 6.88 49.7 7.1±0.8 60±10 67±6.1 0.52±0.06 
B 7.01 46.0 2.8±0.1 90±17 92±11 0.88±0.03 
C 6.90 47.8 1.7±0.2 69±8.9 108±10 0.75±0.03 
D 7.23 47.3 1.8±0.4 56±4.8 87±2.2 0.24±0.01 

a Pseudo-total concentrations of soils were measured by ICP-OES after aqua-regia addition and microwave-assisted 
digestion. Standard deviations of the ICP-OES determinations for each analyzed element are: Al = ± 13.1 mg kg-1, 
Mn = ± 1.2 mg kg-1, Fe = ± 7.2 mg kg-1, Cu = ± 0.7 mg kg-1, Zn = ± 1.0 mg kg-1, As = ± 0.3 mg kg-1, Pb = ± 2.4 mg 
kg-1 
b Arsenic/Iron molar ratio 
c pH and electrical conductivity (EC) of stream samples were also analyzed 
d Pseudo-total concentrations of stream waters were measured by ICP-MS after aqua-regia addition and microwave-
assisted digestion. Standard deviations (n=3) are presented in the table 
 
 
 
 
 
 
 
 
 
Table 2 – Relative areas of the different components identified in the Mössbauer 
spectra 

Sample 
Fe(III) 
doublet 

Fe(II) 
doublet 

Fe(III) 
hematite 

Fe(III) 
goethite Fe(II)/ 

Fe(III) a 
% 

WP 81 3  16 0.03 

A 88 12   0.14 

B 79 21   0.27 

C 64 17 19  0.20 

D 63 15 22  0.18 
a Fe(II)/Fe(III) molar ratio after fitting the areas of the Mössbauer spectra 
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Table 3 – Linear combination fit results for As and Fe K-edge EXAFS spectra of 
soil/sediments and CF samples 

Soil/sediment - As EXAFS a 

Sample 
As-FH b Scorodite  As-Jar c As-Goe d Total  R  

factor e red χ2 f 
% 

WP 56.0 26.2 16.9  99.1 0.010 0.171 
A 97.3   1.6 98.9 0.014 0.330 
B 70.5   23.1 93.6 0.021 0.487 
C 85.8   11.0 96.8 0.021 0.489 
D 70.7   22.1 92.8 0.052 1.08 

CF - As EXAFS a 

Sample 
As-FH b Scor. As-Goed Beudan. As-Jar c Total 

(%) 
 R  

factore 
red χ2 f 

% 
WP 50.8 35.9 15.1   101.8 0.017 0.438 
A 97.1  6.3   103.4 0.017 0.456 
B 92.3  7.8   100.1 0.022 0.552 
C 90.1   13.4  103.5 0.091 2.53 
D 96.3    4.2 100.5 0.041 1.02 

CF -Fe EXAFS g 

Sample 
Smectite  Schwert. Pb-Jaros. Illite  Jarosite Total 

(%) 
R  

factore 
red χ2 f % 

WP 36.2 34.2 33.9   104.3 0.008 0.100 
A  57.0  26.4 16.3 110.0 0.020 0.194 
B 15.6 62.9 16.0   94.5 0.006 0.058 
C  58.0  26.9 20.9 105.8 0.008 0.090 

a Linear combination fit (LCF) was applied over the k-range: 2-10.5 Å-1 on the As-EXAFS spectra 
b Arsenic(V) sorbed to ferrihydrite 
c Arsenic(V) sorbed to jarosite 
d Arsenic(V) sorbed to goethite 
e Normalized sum of the squared residuals of the fit [R = ∑(data-fit)2 / ∑data2)] 
f Goodness-of-fit was assessed by the χ2 statistic [= (F factor) / (no. of points – no. of variables)] 
g Linear combination fit (LCF) was applied over the k-range: 2-7 Å-1 on the Fe-EXAFS spectra 
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Table 4 – (a) Pseudo-total element concentrations of DCF and DF. (b) Colloidal mass 
of each DCF and their corresponding As and Fe concentrations per mass of colloid. 

   Sample As Al Fe Cu Zn Pb 
mg L-1 a 

WP DCF 0.23±0.05 0.73±0.06 1.13±0.22 0.22±0.01 0.39±0.04 0.04±0.01 
 DF 0.03±0.01 0.64±0.08 0.74±0.29 0.23±0.02 0.39±0.04 0.01±0.01 
 CF b 0.20 0.09 0.39 - c - c 0.03 

CF/DCF d 87% 12% 34% 0% 0% 75% 
DCF/bulk e 0.01% 0.5% 0.02% 0.6% 1% 0.01% 

A DCF 9.58±0.16 84±0.19 81±0.54 3.85±0.12 3.68±0.11 1.59±0.38 
 DF 0.21±0.03 0.05±0.04 0.03±0.03 0.21±0.04 0.12±0.02 0.01±0.01 
 CF 9.37 ~ 84 ~ 81 3.64 3.56 1.58 

CF/DCF  98% 100% 100% 95% 97% 99% 
DCF/bulk 3% 20% 2% 2% 2% 4% 

B DCF 7.54±0.19 68±0.21 55±0.60 4.80±0.17 4.12±0.24 1.44±0.35 
 DF 0.20±0.06 0.08±0.07 0.03±0.03 0.23±0.05 0.18±0.01 0.01±0.01 
 CF 7.34 ~ 68 ~ 55 4.57 3.94 1.43 

CF/DCF  97% 100% 100% 95% 96% 99% 
DCF/bulk 3% 23% 2% 3% 4% 4% 

C DCF 2.31±0.18 76±0.27 47±0.46 0.87±0.08 4.40±0.19 0.60±0.37 
 DF 0.22±0.07 0.05±0.02 0.03±0.03 0.06±0.01 0.35±0.03 0.01±0.01 
 CF 2.09 ~ 76 ~ 47 0.81 4.05 0.59 

CF/DCF  90% 100% 100% 93% 92% 98% 
DCF/bulk 3% 31% 2% 2% 3% 3% 

D DCF 1.29±0.21 37±0.15 24±0.31 0.46±0.16 1.92±0.07 0.32±0.21 
 DF 0.23±0.07 0.06±0.05 0.03±0.03 0.04±0.01 0.18±0.02 0.01±0.01 
 CF 1.06 ~ 37 ~ 24 0.42 1.74 0.31 

CF/DCF  82% 100% 100% 91% 91% 97% 
DCF/bulk 1% 17% 1% 2% 2% 2% 

 Sample Colloids As Fe 
As / Fe h 

mg kg-1 f mg kg coloid-1 g 
WP 1395 ± 313 1434 2796 0.15 
A 9206 ± 367 10178 87987 0.09 
B 7744 ± 639 9478 71021 0.10 
C 7989 ± 496 2616 58830 0.04 
D 7869 ± 488 1347 30498 0.04 

a Pseudo-total concentrations ± standard deviations (n = 3) of the ICP-OES determinations after aqua-regia addition 
and microwave-assisted digestion (Soil:Ultrapure water relationship = 4g/40 mL) 
b The concentration of the colloidal fraction (CF, 1000-10 nm) is calculated as the difference between the 
dispersible colloidal fraction (DCF, < 1000 nm) and the dissolved fraction (DF, < 10 nm) 
c Most or all of the metal(loid) is present only in the DF 
d Relative contribution of the element concentration in the colloidal fraction (CF) to that in the dispersible colloidal 
fraction (DCF)  
e Relative contribution of the element concentration in the dispersible colloidal fraction (DCF) to that in  the bulk 
concentration, after transforming the DCF concentration to mg kg-1  
f Colloidal mass calculated following the procedure described by Plathe et al. (2010), ± standard deviations (n = 3) 
g Arsenic and iron concentrations in the colloidal fraction (CF, Table 9b) per kilogram of colloid 
h Arsenic and iron molar ratio in the colloidal fraction 
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Table 5 – Maximum of colloidal sizes and recoveries of the DCF determined by AF4 a 

Sample 
AF4-ICP-MS 

Al As Fe 
nm  b %  c nm  b %  c nm  b %  c 

A 264 71.9 257 67.8 254 68.2 
B 306 48.7 307 53.8 305 40.4 
C 234 56.3 221 55.5 238 43.6 
D 251 45.7 245 52.0 246 41.3 

a The data shown are the average values of three replicates 
b Maximum of size of the distribution found by AF4 
c Recoveries (in percentage) obtained for the DCF analyzed 
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HIGHLIGHTS 

• Long-distance dispersion of arsenic through mobile colloids is demonstrated 
• Ferrihydrite found as thin coatings on clay minerals acts as arsenic sorbing 

phase 

• This association carries other metals in concentrations above regulatory levels 
• This association limits the role of iron oxides to attenuate arsenic pollution 


