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Abstract

In this paper, we hypothesize that the biaxial mechanical properties of the aorta may be dependent
on arterial location. To demonstrate any possible position-related difference, our study analyzed and
compared the biaxial mechanical properties of the ascending thoracic aorta, descending thoracic
aorta and infrarenal abdominal aorta stemming from the same porcine subjects, and reported values
of constitutive parameters for well-known strain energy functions, showing how these mechanical
properties are affected by location along the aorta.

When comparing ascending thoracic aorta, descending thoracic aorta and infrarenal abdominal
aorta, abdominal tissues were found to be stiffer and highly anisotropic. We found that the aorta
changed from a more isotropic to a more anisotropic tissue and became progressively less compliant
and stiffer with the distance to the heart. We observed substantial differences in the anisotropy
parameter between aortic samples where abdominal samples were more anisotropic and nonlinear
than the thoracic samples.

The phenomenological model was not able to capture the passive biaxial properties of each specific
porcine aorta over a wide range of biaxial deformations, showing the best prediction root mean square
error ε = 0.2621 for ascending thoracic samples and, especially, the worst for the infrarenal abdominal
samples ε = 0.3780. The micro-structured model with Bingham orientation density function was able
to better predict biaxial deformations (ε = 0.1372 for ascending thoracic aorta samples). The root
mean square error of the micro-structural model and the micro-structured model with von Mises
orientation density function were similar for all positions.

Key words: Biaxial testing, Ascending thoracic aorta, Descending thoracic aorta, Infrarenal
abdominal aorta, Constitutive modeling, Digital Image Correlation.
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1 Introduction

Aorta mechanical properties vary along the aortic tree, generally agreeing that aortic stiffness
increases with increasing distance from the heart (Guo and Kassab, 2003, Hang and Fung,
1995, Kim et al., 2013, Peña et al., 2015). Parameters such as aortic wall thickness, moisture
content, and the location of the specimen along the aorta may influence the mechanical response.
The fact that vessels differ so significantly in terms of anatomic characteristics is commonly
attributed to the heterogeneity of blood flow within their territories during the arterial tree
development phase (Dinardo et al., 2014). Determining the effect of position on gross mechanical
properties has both experimental and clinical applications (Garćıa et al., 2011). Specifically,
inflation (Lillie et al., 2012, Kim and Baek, 2011), planar biaxial (Zeinali-Davarani et al., 2013,
Kamenskiy et al., 1998, Polzer et al., 2015) and uniaxial (Lally et al., 2004, Silver et al., 2003,
Peña et al., 2015) testing are preferable in-vitro mechanical test protocols for vascular tissue.
The aorta has been studied with great interest partially due to its large size, and partially due
to its propensity to develop disease such as atherosclerotic process, dissection, and aneurysm.
Here, animal models remain popular in clinical hypothesis testing, where specifically the pig
aorta has a central role. In some cases, the validation of these models based only on uniaxial
test data is inappropriate as biological and biomaterial membranes generally develop multiaxial
stress states during real-life loading conditions. However, despite numerous studies on aortic
properties, there is still little quantification of this effect by biaxial tests. Research to date has
been limited by equibiaxial tests of descending aorta (Zeinali-Davarani et al., 2009, Peña et al.,
2015), which found that distal thoracic samples are stiffer than proximal ones and anisotropy
was more remarkable in lower thoracic aorta. There is limited data on the mechanical properties
of ascending (Vorp et al., 2003, Guo and Kassab, 2004, Choudhury et al., 2009) and abdominal
aorta (deGeest et al., 2004, Haskett et al., 2010, Kamenskiy et al., 1998). However, only Haskett
et al. (2010) compared the ascending, descending and abdominal aorta biaxial mechanical
properties.

To reproduce the mechanical behavior of these kinds of material, many constitutive models have
been proposed for soft tissues (Fung, 1993, Holzapfel et al., 2000, Humphrey, 2002, Weiss et al.,
1996). The preferred methodology to describe and reproduce its complex mechanical response is
the definition of a strain energy function (SEF) from which the stress response is derived, see e.g.
(Alastrué et al., 2009, Holzapfel et al., 2000, Zullinger et al., 2004, Gasser et al., 2006, Holzapfel
and Ogden, 2010, Sokolis, 2010) and references therein. Although phenomenological models may
reproduce the biomechanical properties of the vascular tissue, their material parameters lack
a clear physical meaning. Moreover, these models are unreliable for predictions beyond the
strain range used in parameter estimation (Polzer et al., 2015). Most these constitutive models
simplify the micro-structure and assume fibers to be set out symmetrically relative to vessel
axis, with a preferred orientation, yielding macroscopic orthotropic constitutive law for each
layer (Rhodin, 1980). The response of fibers are typically assumed to be governed by exponential
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2



functions (Holzapfel et al., 2000, 2005). However, structurally-motivated material models may
provide increased insights into the underlying mechanics and physics of arteries and could
overcome this drawback (Weisbecker et al., 2015). The work by Gasser et al. (2006) included
micro-structural information in the model by means of the assumption of a fiber orientation
von Mises distribution function. Other models which assume the geometrical features of fibers
follow a typical continuous distribution such as β-distribution with primarily planar array
(Lanir, 1979, Hollander et al., 2011); more recently, models including fiber dispersion from
a micro-structurally based approach have been proposed using axially symmetric von Mises
orientation distribution function (ODF) around two preferred mean direction (Alastrué et al.,
2009). More recently, Alastrué et al. (2010) proposed the use of the Bingham ODF for the
incorporation of anisotropy in the micro-structurally based models. One of the main advantages
of the Bingham ODF is the possibility of considering three different concentration parameters
in three orthogonal directions of the space. These orientations can be easily correlated with the
three main directions of a blood vessel: circumferential, radial and axial. Experimental studies
have demonstrated that the non-symmetric Bingham ODF is more suitable to model aneurysms
(Gasser et al., 2012), carotid (Sáez et al., 2016) and aorta (Polzer et al., 2015).

We hypothesized that the ascending aorta exhibits more isotropic biomechanical responses
than descending and abdominal aorta with similar stiffness on circumferential and longitudinal
directions to the artery. This behavior is more difficult to reproduce with the classical phe-
nomenological strain energy functions used in the literature, and the micro-structurally based
models fitted the experimental data very well. The aim of this study is to employ biaxial test
methods to identify and quantify the effect of aortic region on the mechanical characteristics
of the artery. Furthermore, our aim is (a) to investigate if changes to the mechanical properties
are dependent on position and (b) to quantify these differences by estimation of the mechan-
ical constitutive parameters by least-square fitting the recorded in-vitro biaxial test results.
Since pigs are often used as models for cardiovascular studies, we designed the present study
to analyze the mechanical behavior of porcine aortas.

2 Experiments

Porcine aortas (n=7) were harvested postmortem from approximately 3.5 ± 0.6 months-old
female pigs, sacrificed for other studies that did not interfere with the aorta or the circulation
system. The experiments on these swines were approved by the Ethical Committee for Animal
Research of the University of Zaragoza and all procedures were carried out in accordance with
the “Principles of Laboratory Animal Care” (86/609/EEC Norm). After artery harvesting and
cleaning by removing excess connective tissue, they were kept frozen at -20◦C until testing. Once
defrosted, samples were preserved in ion-free PSS (0.9% NaCl) at 4 [◦C] until preparation of
testing samples was carried out. The aorta was subdivided into three parts: ascending thoracic
(ATA), descending thoracic aorta (DTA) and infrarenal abdominal aorta (IAA). For this study,
the analyzed specimens were obtained from the proximal region of each considered part (Peña
et al., 2015). Samples were inspected for potential damage during slaughtering or harvesting.
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Square specimens, approximately 25×25 [mm], were cut from the ATA, DTA and IAA using
a punch cutter and a scalpel. The specimens were prepared with their sides aligned in the
circumferential and axial directions of the artery (Figure 1.a). A Mitutoyo Digimatic micrometer
was used to measure the length, width and thickness of the samples using the average of three
measurements for each sample.

2.1 Mechanical testing

Tests were carried out in a high precision drive system adapted for biological specimens Instron
BioPulsTM low-force planar-biaxial testing system. Square specimens were mounted in the
planar-biaxial machine by connecting four carriages by noddles clamps, immersed in a bath
filled with PBS and maintained at 37 oC by a heater-circulation. Noddles attaching the specimen
were located as close as possible to the edges to minimize the edge effects on strain measurement
(Figure 1.b). Load controlled tests were performed at three peak tension (15, 30 and 60 kPa)
ratios in circumferential and longitudinal directions (Pc : Pl) corresponding to 0.5:0.5, 1:0.5,
0.5:1, 1:1, 2:1, 1:2, 2:2 tests at stress rates of approximately 2 kPa/s (Tong et al., 2011). An
engineering stress (first Piola Kirchhoff stress tensor P) of 30 kPa served as a reference in the
protocol. The experiment was stopped when tearing began at the noddles or when a final 2:2
protocol was applied. Samples were preconditioned through 10 loading cycles for each stress
ratio, and the last cycle (tenth) was used for subsequent analysis. In turn, each measuring cycle
comprises a loading and unloading curve. In order to obtain reproducible results, a preload of
5 [mN] to each specimen was applied.

[Fig. 1 about here.]

For the deformation measurements during biaxial testing, several randomized markers were
placed on the surface of the vessel and the lengths between the two markers in each direction
were measured by a Digital Image Correlation (DIC) Strain Master LaVision System equipped
with two high performance digital cameras with a megapixel sensor (2.5 [µm] ± 0.5%). The
deformation gradient F was also measured optically by tracking the movements of markers
(Figure 1.b).

Shear strains were computed and were small, and were not accounted for in the constitutive
model. With negligible shear components and the incompressibility assumption, the first Piola
Kirchhoff stresses (engineering stress) were determined as Pθθ =

Fθ

tzwz
and Pzz =

Fz

tθwθ
, where tθ,z

and wθ,z are the initial thickness and width respectively. Fθ,z and λθ,z are the load registered by
the biaxial machine and stretch measured by DIC technique in circumferential and longitudinal
directions.

It would be helpful to measure the non-linearity and anisotropy of the samples in order to
define certain levels of stress for which the corresponding stretches in the longitudinal and the
circumferential directions can be compared at equibiaixal tension state. These values correspond
to 30 and 60 kPa of engineering stress. Anisotropy was analyzed by the difference in longitudinal
and circumferential stretches divided by their average value (Kamenskiy et al., 1998).
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2.2 Statistical analysis

A statistical analysis was performed to study possible significant variations in the mechanical
behavior of aorta along the position of the vessel. Therefore, the mechanical properties for the
ATA, DTA and IAA were compared for both circumferential and longitudinal directions. Normal
distribution of the variables was tested using Shapiro-Wilk test. The values were divided into
three groups, corresponding to the ATA, DTA and IAA samples and all groups were compared
by means of an independent one-tailed t-test. In cases of non-normal distribution, the Mann-
Whitney test was used. p < 0.05 was established to indicate statistical significance.

3 Constitutive modeling

Stress-stretch curves resulting from the tensile tests were used to fit several constitutive models.
The fitted data were restricted to the elastic range, so data acquired after noticeable variations
in the curve slope were neglected for the fitting procedure. Arterial tissue subject to loading
exhibits strong nonlinearity, large strains and anisotropy, so the SEF is used to reproduce the
mechanical behavior of the aortas. In order to generate constitutive mechanical parameters that
could be used on computational simulations, each of the biaxial specimens tested was fitted to
four constitutive models proposed in the literature.

3.1 Phenomenological model

The strong nonlinearity motivated the use of an exponential function for describing the strain
energy stored in the collagen fibers that was previously proposed by Holzapfel et al. (2000).
The main hypothesis was that each family of fibers represents the main direction of collagen
bundles that are orientated in a helicoidal manner. Both families of fibers were assumed to
have the same mechanical response and the anisotropy directions were assumed to be helically
oriented at ±θ degrees relative to circumferential direction (Holzapfel et al., 2000). Here, θ is
treated as a phenomenological variable. The SEF proposed by the authors was

Ψ = µ (I1 − 3)+
∑
i=4,6

{
k1
2k2

exp
(
k2 [Ii − 1]2

]
− 1

}
, (1)

where
I4 = λ2θ cos

2(θ) + λ2z sin
2(θ), I6 = λ2θ cos

2(−θ) + λ2z sin
2(−θ). (2)

In this equation I1 represents the first invariant of the Cauchy-Green tensor (Spencer, 1971)
characterizing the isotropic mechanical response of the elastin (Gundiah et al., 2009, Lillie
et al., 2010). µ > 0, k1 > 0 are stress-like parameters and k2 > 0 is dimensionless. The SEF
represents the strain energy stored in a composite material reinforced in two preferred directions
represented by the invariants I4 > 1 and I6 > 1 where it has been assumed that the strain energy
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corresponding to the anisotropic terms only contributes to the global mechanical response of
the tissue when stretched. A total of 4 elastic parameters (µ, k1, k2, θ) should be fitted.

3.2 Structural model

The GOH model (Gasser et al., 2006) extended the model of Holzapfel et al. (2000) by the
application of generalized structure tensor H = κ1+(1−3κ)M0 (where 1 is the identity tensor
and M0 = m0 ⊗ m0 is a structure tensor defined using unit vector m0 specifying the mean
orientation of fibers) and proposed a new constitutive model

Ψ = µ (I1 − 3)+
∑
i=4,6

[
k1
2k2

(
exp

{
k2Êi

]
} − 1

)]
, (3)

where

Êi = κI1 + (1− 3κ)Ii − 1 i = 4, 6 (4)

and κ ∈ [0, 1/3] is a dispersion parameter (the same for each collagen fiber family); when κ = 0,
the model is the same as the one published in Holzapfel et al. (2000), and when κ = 1/3 it
recovers an isotropic potential similar to that used in Demiray (1972). Note that the parameter
κ = 1

4

∫ π
0 ρ sin

3 θdθ could have histological meaning due to the fully characterized distribution
(Gasser et al., 2006). A total of 5 elastic parameters (µ, k1, k2, κ, θ) should be fitted.

3.3 Microfiber model

Alastrué et al. (2010) proposed a microfiber model (microsphere-based model) to account for the
dispersion of the collagen fibers around a preferential direction, overcoming the 1D limitation
of previous characterization of the collagen fiber. Consistent with the constrained mixture
approach (Humphrey and Rajagopal, 2003), we assume a free energy function of the form

Ψ = µ (I1 − 3) +Ψcoll, (5)

where the subscripts coll refers to collagen fibers contribution. Ψcoll is defined as the sum of
the contributions of each collagen family of fibrils as

Ψcoll =
N∑
j=1

[Ψcoll]
j =

N∑
j=1

⟨nρψcoll⟩j =
N∑
j=1

1

4π

∫
U2
(nρ[ψcoll])

jdA, (6)

where N denotes the number of families of collagen fibers, N = 2 according to the experimental
results of orientation of collagen fibers (Holzapfel et al., 2000), and applying a discretization
to the continuous orientation distribution on the unit sphere U2, [Ψcoll]

j corresponds to the

6



expression

[Ψcoll]
j =

m∑
i=1

nρ(ri; (λicoll) (7)

where ri are the unit vectors associated with the discretization on the microsphere over the unit
sphere U2, m is the number of discrete orientation vectors (Alastrué et al., 2009), λicoll = ∥F · ri∥
the stretch in ri direction and ψi

coll(λ
i
coll) the strain energy function associated with ri direction.

Using Equations (6 and (7)), this results in

Ψcoll =
N∑
j=1

m∑
i=1

(winρ[ψi
coll])

j, (8)

where wi
i=1,....m denotes related weighting factors and ρ is the orientation density function

(ODF) to take into account the fibrils dispersion (Alastrué et al., 2009).

The exponential-like strain energy function proposed by Holzapfel et al. (2000) was used to
deal with the fiber response

nψi
coll(λ

i
coll) =

c1coll
2c2coll

(ec2coll((λ
i
coll)

2−1)2 − 1) if λi ≥ 1 otherwise ψf i(λi) = 0, (9)

since it is usually considered that collagen fibers only affect global mechanical behavior in
tensile states, (Holzapfel et al., 2000). The affine kinematics define the collagen fiber stretch
λicoll = ∥ti∥ in the fiber direction ri.

3.3.1 bi-π-periodic von Mises ODF

One of the ODF applied most frequently is 3D bi-π-periodic von Mises ODF for incorporation
of anisotropy in a microsphere-based model with application to the modelling of the thoracic
aorta (Alastrué et al., 2010). This function is expressed as

ρ(θ) = ρ1(θ) + ρ2(θ), (10)

where θ = arccos(m.r) is the so-called mismatch angle and m the preferred mean orientation
of the collagen distribution, and

ρi(θ) = 4

√
b

2π

exp (b [cos(2 θ) + 1])

erfi(
√
2 b)

, (11)

where the positive concentration parameter b constitutes a measure of the degree of anisotropy.
Moreover, erfi(x) = − i erf(x) denotes the imaginary error function. Finally, c1coll and c2coll
are stress dimensional and dimensionless material parameters respectively. A total of 5 elastic
parameters (µ, k1, k2, κ, θ) should be fitted.
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3.3.2 Bingham ODF

We also used the Bingham ODF (Bingham, 1974) initially proposed by Alastrué et al. (2010) for
the incorporation of anisotropy in a microsphere-based model with application to the modelling
of the thoracic aorta. One of the main advantages of the Bingham ODF is the possibility of
considering three different concentration parameters in three orthogonal directions of the space.
These orientations can be easily correlated with the three main directions of a blood vessel:
circumferential, radial and axial. This function is expressed as

ρ(r;Z,Q)
dA

4π
= [F000(Z)]

−1exp(tr(Z ·Qt · r · rt ·Q))
dA

4π
, (12)

where Z is a diagonal matrix with eigenvalues κ1,2,3, Q ∈ Q3 defining the orientation of the
three principal orthogonal directions relative to the reference basis and

F000(Z) =
1

4π

∫
U2
exp(tr(Z · r · rt))dA. (13)

Thus, the probability of finding in a specific direction is controlled by the eigenvalues of Z,
which might be interpreted as concentration parameters. Specifically, the difference between
pairs of κ1,2,3– i.e., [κ1 − κ2], [κ1 − κ3] and [κ2 − κ3]– determines the shape of the distribution
over the surface of the unit sphere. Therefore, the value of one of these three parameters may
be fixed to a constant value without reducing the versatility and different distributions of the
family of fibers achieved for a constant value of κ3 and varying values of κ1 and κ2. A total of
5 elastic parameters (µ, k1, k2, κ1, κ2) should be fitted.

3.4 Parameter identification

We fit the mechanical behavior of the tissue at physiological loads using the 2:1, 1:2, 2:2
protocols. The tissue was assumed as incompressible (Carew et al., 1968), i.e. det(F) = λ1λ2λ3 =
1, where F represents the deformation gradient tensor and λi, i = 1, 2, 3, the stretches in the
principal directions. The fitting of the experimental data was developed by using a Nelder
and Mead type minimization algorithm (Nelder and R.Mead, 1965) that is a heuristic search
method that uses the concept of simplex by defining the objective function Eq.(14) using
HyperFit software (www.hyperfit.wz.cz). In this function, Pθθ and Pzz are the First Piola-
Kirchhoff (engineering) stress data obtained from the tests, PΨ

θθ =
∂Ψiso

∂λθ
and PΨ = ∂Ψiso

∂λz
are the

First Piola-Kirchhoff (engineering) for the ith point for a homogeneous pure biaxial state Ψ,
and n is the number of data points.

χ2 = Σn
i=1

[(
Pθθ − PΨ

θθ

)2
i
+

(
Pzz − PΨ

zz

)2
i

]
. (14)
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4 Results

4.1 Biaxial behavior

A Tracking program (Strain Master LaVision System) was used for biaxial tensile stretch anal-
ysis. For each test, a user-defined grid was layered over the initial image of the sample and
lengths between two markers in each direction were measured by a Digital Image Correlation
(DIC), see Figure 2.a. A strain field plot derived from the grid displacement was used to assess
alignment of experimental setup, strain uniformity on the center of the sample and neglected
shear strains values (Figure 2). Measured shear strains on the center of the sample were found
to be significantly lower than axial strains (by approximately two orders of magnitude) and
were considered negligible (Figure 2.d).

[Fig. 2 about here.]

A representative biaxial mechanical response (Piola-Kirchhoff stress vs. stretch derived by DIC)
are plotted in Figures 3, 4 and 5 for ATA, DTA and IAA for specimen VII, respectively.
Tested specimens did not tear or exhibit signs of preliminary damage during testing. Generally,
the force-controlled testing protocol allowed us to reach maximum stresses up to 60 kPa, but
few sample stresses up to 120 kPa. The aorta revealed nonlinear, anisotropic and viscoelastic
behavior (hysteresis formation) with a stiffer behavior and larger hysteresis in the abdominal
part than in the ascending and descending aorta with stiffer behavior in the circumferential than
in the longitudinal direction. For the ATA and DTA, the curves exhibit nearly elastic behavior
with small hystereses. For the IAA, although the arterial specimens were of muscular type,
hystereses were relatively small if we compare with other muscle arteries such as carotid (Garćıa
et al., 2013). Softening between subsequent stress levels was clearly visible in the IAA (Figure
5.a) and is practically neglected for ATA and DTA wall, Figures 3.a and 4.a, respectively.
The main softening occurred in the first cycle when the permanent stretch was increased.
However, the elimination of this residual stretch resulted in similar material properties for
each increased stress level. For the ATA, the permanent stretch is 1.0 showing a lower or null
softening phenomena.

[Fig. 3 about here.]

A typical preconditioning behavior during equibiaxial loading at stress levels of 2:2 (60:60 kPa)
is depicted in Figures 3.b, 4.b and 5.b for ATA, DTA and IAA, respectively, which was consistent
in all tested specimens. The curves were stable and repeatable after a few preconditioning cycles,
in particular three to four cycles were enough to precondition the ATA and DTA tissue and
five to seven cycles for IAA tissue.

[Fig. 4 about here.]

Figures 3.c, 4.c and 5.c show a representative biaxial stress test behavior with different stress
ratios between circumferential and longitudinal directions (0.5:0.5, 1:0.5, 0.5:1, 1:1, 2:1, 1:2,
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2:2) for ATA, DTA and IAA, respectively. The protocols 0.5:1 and 1:2 clearly depicted the
anisotropy of the tissue where the circumferential data shows a compression stretch (λ < 1.0).

[Fig. 5 about here.]

A plot of axial stretch versus circumferential stretch at different ratios of specimen VII for
ATA, DTA and IAA samples are presented in Figures 3.d, 4.d and 5.d for the tenth cycle. The
permanent set commented above is clearly observed in the pictures, showing high values on
the longitudinal direction. The stiffer behavior of the distal samples is also depicted. For ATA
samples the maximum stretch are 1.1 and 1.12 for circumferential and longitudinal directions
for 2:2 protocol, the equivalent values for the DTA are 1.17 and 1.38, and for the IAA were 1.095
and 1.165. These results demonstrated that ascending thoracic aorta shows a quasi-isotropic
response.

Finally, Figures 3.e and .f, 4.e and .f and 5.e and .f show the mean and standard deviation of the
equibiaxial 2:2 experimental data for whole samples in circumferential (e) and (f) longitudinal
directions. For all positions, the standard deviation is lower for the circumferential direction
than longitudinal one. It is notable that longitudinal direction is stiffer than the circumferential
one for specimens III, V and VI for ATA.

The average biaxial Cauchy stress-stretch behavior obtained from all considered aortic speci-
mens (n=7) was computed and plotted in Figure 6. A stiffer response in circumferential direc-
tions is evident in the IAA region compared to the ATA (p < 0.01) and DTA region (p < 0.05),
particularly at higher stretches, see Table 1, where stretches at 30 kPa and 60 kPa for all curves
and the anisotropy parameter for ATA, DTA and IAA samples are summarized. In contrast,
the longitudinal tests show similar stress-stretch curves for all locations. The statistical anal-
ysis revealed significant differences between the mechanical behavior from ATA, DTA to IAA
samples in circumferential directions(p < 0.05). In the case of the tensile tests in longitudinal
direction, there are no significant differences between all locations (p = 0.73 for ATA to DTA,
p = 0.32 for ATA to IAA and p = 0.49 for DTA to IAA).

[Fig. 6 about here.]

[Table 1 about here.]

4.2 Constitutive parameters

Due to little softening effect, only the three last protocols (2:1, 1:2, 2:2) were considered for
the fitting procedure. The experimental data were fitted using the proposed SEFs following the
procedure explained in Section 3.4. The results of the fitting to the SEFs for ATA, DTA and IAA
samples are shown in Tables 2, 3 and 4, respectively. Our results on the descriptive capacity of
SEFs models indicated that the worst fitting was with the HGO SEF for all positions, especially
for the IAA samples, showing a mean RMSE of ε >0.25 (ε = 0.2621, ε = 0.2668 and ε = 0.3780
for ATA, DTA and IAA samples, respectively). On the contrary, the best fitting was with the

10



micro-structured model with Bingham ODF function showing a mean RMSE of ε = 0.1372,
ε = 0.1767 and ε = 0.3166 for ATA, DTA and IAA samples, respectively. The RMSE of the
GOH model and the micro-structured model with von Mises ODF function were similar for all
positions. It is remarkable that all the considered SEF present a questionable fitting for IAA
with ε > 0.3. Regarding the predictive capacity of the material models, the fitted material
constants using only the equibiaxial test (2:2) demonstrated a good predictive result for the
biaxial tests (2:1 and 1:2), data not shown, with a “predictive” error, εerror < 10%, (relative
difference between the best fit of the equibiaxial test and the ε for the reproduction of the
biaxial curves) for the Bingham micro-structured model only.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

A statistically-relevant difference between the ascending, descending and abdominal aortas was
found for the constitutive parameters for parameter µ for HGO and GOH models (p < 0.01),
and between ascending with descending and abdominal aortas, (p < 0.05) but not for descending
with abdominal ones for the micro-structured model with von Mises ODF function. In general,
the constitutive parameters µ decrease with position. For k1 parameter, there is no a clear
tendency and depends on the model. There is a statistical difference between ascending and
descending aortas (micro-structured models, p < 0.05), between ascending and descending
with abdominal aortas (HGO p < 0.05) and ascending with abdominal aortas(GOH p < 0.05).
The k2 parameter presents a significant decrease with all positions for HGO and GOH models
(p < 0.05) and an increase for micro-structured models with a significance between ascending
and descending aortas (p < 0.05). No position dependency for the θ parameter was found for all
models and positions (p > 0.41). The dispersion parameter κ for the GOH model decreases with
position, with a significance between ascending and descending positions (p < 0.05). On the
contrary, the concentration parameter b of von Mises ODF increases significantly with position
(p < 0.01). Note that κ is a dispersion parameter where κ = 0 means no dispersion (Gasser
et al., 2006) and b is a concentration parameter where b = 0 represents maximum dispersion with
random/isotropic fiber distribution (Alastrué et al., 2009). Finally, the constitutive parameters
κ1 and κ2 of the Bingham ODF function increase statistically with position for ATA, DTA and
IAA samples (p < 0.05). Note that κ1 and κ2 describe the degree of anisotropy and represent
the concentration of fiber orientations around specific principal axis 1 (circumferential) or 2
(longitudinal).

5 Discussion

In this paper, we hypothesize that the biaxial mechanical properties of the aorta may be depen-
dent on arterial location. To demonstrate any possible position-related difference, our study an-
alyzed and compared the biaxial mechanical properties of the ascending thoracic aorta (ATA),
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descending thoracic aorta (DTA) and infrarenal abdominal aorta (IAA) stemming from the
same porcine subjects and reported values of constitutive parameters for well-known SEFs,
showing how these mechanical properties are affected by location along the aorta.

Our results showed that the excised porcine aorta is non-linear and anisotropic with the lon-
gitudinal direction being more compliant. When comparing ascending thoracic aorta (ATA),
descending thoracic aorta (DTA) and infrarenal abdominal aorta (IAA), IAA tissues were found
to be stiffer and highly anisotropic. We found that the aorta changed from a more isotropic to
a more anisotropic tissue and became progressively less compliant and stiffer with distance to
the heart. We observed substantial differences in the anisotropy parameter between ATA, DTA
and IAA samples where IAA samples were more anisotropic and nonlinear than the ATA and
DTA samples. Similar results were presented by Choudhury et al. (2009) which did not find
significant anisotropy for ascending thoracic aorta. However, Kamenskiy et al. (1998), Polzer
et al. (2015) and Zeinali-Davarani et al. (2013) found anisotropy properties for descending aorta,
and deGeest et al. (2004), Haskett et al. (2010) and Weisbecker et al. (2012) for abdominal
aorta. The statistical analysis revealed significant differences between the mechanical behavior
of ATA, DTA and IAA locations in circumferential direction, but not in the longitudinal one.
This observation is consistent with the results of Peña et al. (2015) which found significant
differences between the mechanical behavior of proximal and distal locations along the thoracic
aorta in circumferential directions, but not in the longitudinal one. A hypothesis of this finding
is due to the fact the degree of fiber alignment was also found to increase along the length
of the aorta but to be primarily in circumferential direction (Schriefl et al., 2012). Similarly,
Zeinali-Davarani et al. (2015) demonstrated that the degree of collagen undulation was a factor
leading to the difference in mechanical properties along the thoracic aorta.

Hysteresis were relatively small, i.e. the specimens behaved nearly elastically. Moreover, pre-
conditioning was finished typically after only a few loading-unloading cycles. In particular three
to four cycles were enough to precondition the ATA and DTA tissue and five to seven cycles for
more muscular IAA tissue. There is no equivalent analysis in the literature. Only Weisbecker
et al. (2012) analyze the effct of the preconditioning on the mechanical properties of human
descending thoracic and abdominal aortas. However, this analysis was only at the mechanical
parameters of the model proposed by the authors and there is no proof analysis of the curves.
Our finding is in accordance with Weisbecker et al. (2012) , that found more softening and
preconditioning effect on abdominal aortas than descending thoracic ones. This effect is totally
removed under collagen digestion and increased with elastase treatment on the media from the
human thoracic aorta, Weisbecker et al. (2013). This effect would be increased on the abdomi-
nal aorta where preconditioning on healthy tissue is higher than on descending thoracic aorta,
and could help to understand the effect of abdominal aneurysm on mechanical properties of
abdominal aorta (Pierce et al., 2015).

Several constitutive models for arteries have been proposed in the literature and overviews are
provided on some reviews (Humphrey, 1995, Holzapfel and Ogden, 2010). In this work, we study
a series of constitutive models, some with a phenomenological approach and others which are
micro-structural and physically-oriented, describing the features of the arterial wall with greater
accuracy. We aim to examine the advantages and limitations of phenomenological versus more
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micro-structural oriented approaches. In this direction, the stress-stretch curves obtained were
fitted with a hyperelastic anisotropic models which are well-known in the literature, (Holzapfel
et al., 2000, Gasser et al., 2006, Alastrué et al., 2009, 2010), providing a reasonable approxi-
mation of the experimental data. The phenomenological model (Holzapfel et al., 2000) was not
able to capture the passive biaxial properties of each specific porcine aorta over a wide range
of biaxial deformations, showing the best prediction mean RMSE ε = 0.2621 for ATA samples
and, especially, the worst for the IAA samples ε = 0.3780. The micro-structural model with
Bingham ODF function was able to better predict the biaxial deformations (ε = 0.1372 for
ATA samples). The RMSE of the GOH model and the micro-structured model with von Mises
ODF function were similar for all positions.

However, despite the error results it is worth mentioning the fundamental fact of physically
motivated results. The phenomenological model (Holzapfel et al., 2000) predicted a mean fiber
orientation of θATA = 55.4371o, θDTA = 72.3025o and θdist = 79.77o without dispersion. This
fiber orientation does not match with the experimental observations in Schriefl et al. (2012)
where collagen fibers were observed mainly along θ ≈ 45o of circumferential direction with
high dispersion for both descending and abdominal locations. Furthermore, with regards to the
measure of the fiber dispersion, κ ≈ 0.3 for GOH model and b ≈ 0, the micro-structured model
with von Mises ODF function and mean fiber orientation are in keeping with the dispersed
distribution obtained in the experimental results of Schriefl et al. (2012). In accordance with
Schriefl et al. (2012), the micro-structural model with Bingham ODF function showed κ1 −
κ2 ≈ 0 meaning high dispersion around the circumferential direction. However, in spite of
the good fitting results of GOH model, only the micro-stuctured materials models showed
a “predictive” error, εerror < 10%.Regarding the parameter estimation analysis, the larger
the number of parameters, the more flexible and better fitting (in terms of residual error),
as would be expected. However, too many parameters not only increase the complexity of
the model (Zeinali-Davarani et al., 2009) but also increment the disadvantages of ill-posed
problems. In this regard we agree that the main goal in constitutive models should be to include
physically motivated aspects and, as much as possible, to feed these models with experimental
data obtained from histological analysis, polarized light microscopy (Schriefl et al., 2012) or
other quantitative experimental techniques (Rezakhaniha et al., 2012).

Limitations to our study need to be acknowledged before closing. Regarding the experimen-
tal analysis, a small number of tissue samples (n=7) were investigated, hence a meaningful
correlation between biomechanical properties of the different arterial tissues with related ge-
ometrical parameters could not be quantified. All mechanical properties were reported under
the assumption of homogeneity that clearly is not the case for arteries. Porcine tissues make
a convenient test model. However, biaxial material and structural differences were observed
between the human and porcine tissues (Martin et al., 2011). Aortas were kept frozen at -20oC
until testing. No significant difference was found between the elastic modulus of porcine aortic
tissue before and after freezing at -20oC and was unaffected by storage time (O’Leary et al.,
2014). However, freezing of the artery specimens kills smooth muscle cells, and the mechanical
properties measured in the present study is those of deactivated tissues without smooth muscle
tone even though the experiments were performed in 37oC. We assumed that the smooth muscle
in the segments was in resting (noncontracted) state. The hysteresis would be relatively small
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in this study due to we used frozen specimens whose smooth muscle activity is completely lost.
Finally, the noddles clamps induced additional tissue damage, so the maximum load before
rupture is lower than uniaxial tests, and the data obtained with biaxial testing are lower for
describing the essential nonlinearity and anisotropy of these materials under physiologic loads.

With regards to material fitting, only data in the range used to fit the model is theoretically
predictable. The anisotropy of the elastin, which has been shown to play a non-negligible me-
chanical role (Zeinali-Davarani et al., 2009, Zou and Zhang, 2009, 2011)), was not considered.
The waviness of collagen fibers was not included by a probability density function for the re-
cruitment stretch at which the fiber starts to bear load (Weisbecker et al., 2015). Our model
captures only the passive mechanical behavior aortic tissues. The present formulation does not
take into account viscoelastic effects, since after preconditioning most tissues demonstrated rel-
atively narrow hysteresis. Finally, we assume the individual tissues as incompressible materials
(Carew et al., 1968). However, there is data in the literature that reveal that ovine aortic tissue
is highly compressible, showing an effective Poisson’s ratio of 0.44 (Nolan and McGarry, 2016).
We do not have enough information to check this hypothesis.

Current study underscores the need for further studies on the layer-specific mechanical tests
and micro-stuctured constitutive models that take into account experimental data obtained
from histological analysis with the help of advanced microscopic imaging (Weisbecker et al.,
2015).
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Specimen λ30
θ λ30

z A30 λ60
θ λ60

z A60

ATA 1.075 ± 0.030 1.103 ± 0.047 0.036 ± 0.020 1.119 ± 0.044 1.144 ± 0.052 0.050 ± 0.024

DTA 1.064 ± 0.024 1.110 ± 0.048 0.043 ± 0.040 1.089 ± 0.028 1.136 ± 0.053 0.046 ± 0.047

IAA 1.030 ± 0.036 1.127 ± 0.045 0.104 ± 0.036 1.048 ± 0.042 1.15 ± 0.048 0.112 ± 0.041

Table 1
Circumferential (λ30

θ , λ60
θ ) and longitudinal (λ30

z , λ60
z ) stretches and anisotropy measurements corresponding

to 30 kPa and 60 kPa during equibiaxial test (2:2), respectively. Anisotropy (A30 and A60) was analyzed
by the difference in longitudinal and circumferential stretches at each stress level (30 kPa and 60 kPa
respectively) divided by their average value. Values are presented as Average ± Standard Deviation
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HGO Model

Specimen µ k1 k2 θ R2 ε

I 0.0491 0.0014 13.3111 51.45 0.5797 0.3473

II 0.0649 0.0086 14.2597 86.52 0.7170 0.2628

III 0.0751 0.0010 42.4897 90 0.6957 0.2547

IV 0.0496 0.0291 14.3696 70.21 0.7777 0.2492

V 0.0947 0.0013 36.6047 0.88 0.7915 0.2385

VI 0.0885 0.0001 76.9745 89 0.7496 0.2491

VII 0.1042 0.0156 15.4189 0 0.8172 0.2334

Mean 0.0751 0.0081 30.4897 55.4371 0.7326 0.2621

SD 0.0217 0.0108 23.7617 39.9397 0.0795 0.03882

GOH Model

Specimen µ k1 k2 κ θ R2 ε

I 0.0102 0.1597 38.4863 0.3168 0 0.6964 0.2435

II 0.0208 0.6296 0.0010 0.3244 0 0.7483 0.2345

III 0.0298 0.5284 0.0010 0.3333 0 0.7233 0.2342

IV 0.0391 0.0010 189.9870 0.1145 82.09 0.8303 0.2283

V 0.0300 1.1446 0.0010 0.3304 13.20 0.8455 0.1882

VI 0.0313 0.6674 0.001 0.3333 90 0.8310 0.2003

VII 0.0293 1.8021 0.3175 0.333 0 0.8161 0.1844

Mean 0.0268 0.5217 38.0795 0.2921 30.8816 0.7791 0.2215

SD 0.0100 0.4057 75.9946 0.0872 43.1067 0.0642 0.0219

Microfiber Von Mises Model

Specimen µ k1 k2 b θ R2 ε

I 0.0011 0.1100 0.1569 0 88.80 0.7654 0.2797

II 0.0011 0.2312 0.001 0 87.24 0.8412 0.2348

III 0.0014 0.2084 0.3632 0 55.34 0.7982 0.2453

IV 0.0010 0.2779 0.9266 0 61.28 0.8646 0.2040

V 0.001 0.2768 2.9591 0.1774 0 0.9722 0.0947

VI 0.001 0.2701 0.7339 0 25.31 0.8977 0.1711

VII 0.001 0.3324 0.6507 0 17.86 0.6392 0.3164

Mean 0.0010 0.2438 0.8273 0.0253 47.9757 0.8255 0.2208

SD

Microfiber Bingham model

Specimen µ k1 k2 κ1 κ2 R2 ε

I 0.0010 0.04600 1.7403 8.6308 7.6538 0.9227 0.1598

II 0.0013 0.1874 2.1677 0.9100 0.0319 0.9801 0.0789

III 0.0462 0.1100 0.0123 0 0 0.8683 0.2081

IV 0.0010 0.2826 0.001 0.5428 0 0.9555 0.1223

V 0.0012 0.2993 0.0011 0.2373 0 0.9743 0.09248

VI 0.0010 0.2509 0.7153 0 0 0.9118 0.1620

VII 0.0305 0.2653 0.0056 1.1022 0 0.9182 0.1676

Mean 0.0086 0.1960 0.7729 1.7201 1.2809 0.9354 0.1372

SD 0.0184 0.1011 0.9648 3.4034 3.1220 0.04274 0.0485

Table 2
Material constants obtained for the ascending thoracic aorta (ATA) curves. Constants µ and k1 in MPa, θ
in degrees, k2, ρ, κ, b, κ1 and κ2 are dimensionless.
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HGO Model

Specimen µ k1 k2 θ R2 ε

I 0.0531 0.0051 16.4048 63.31 0.9382 0.1458

II 0.001 0.0175 1.7351 80.15 0.6592 0.3459

III 0.0145 0.0117 3.0238 78.11 0.8329 0.2626

IV 0.0314 0.01363 8.5495 72.82 0.7947 0.3048

V 0.0263 0.0134 11.2069 79.88 0.8750 0.2486

VI 0.0435 0.0037 93.9559 57.43 0.8295 0.2316

VIIa 0.0129 0.0038 6.7227 67.58 0.6670 0.4269

VIIb 0.0010 0.0150 2.7861 79.14 0.2827 0.1686

Mean 0.0229 0.0104 18.0481 72.3025 0.7349 0.2668

SD 0.01908 0.0054 31.0638 8.6528 0.2063 0.0919

GOH Model

Specimen µ k1 k2 κ θ R2 ε

I 0.0262 0.0117 26.06 0.1125 59.83 0.9415 0.1422

II 0.0054 0.0654 7.6320 0.2726 20 0.6858 0.3431

III 0.0078 0.0947 4.6290 0.2885 1.5 0.8680 0.1701

IV 0.0146 0.1906 11.1502 0.2848 17.69 0.8200 0.2875

V 0.001 0.3552 0.0014 0.2742 74 0.8840 0.2256

VI 0.0210 0.0862 660.0371 0.2712 0.0 0.8494 0.2139

VIIa 0.0064 0.0258 18.9642 0.2531 0.0 0.6668 0.4268

VIIb 0.0025 0.1035 6.7001 0.2895 0.0 0.8558 0.2663

Mean 0.0106 0.1166 91.8967 0.2558 21.6275 0.8214 0.2594

SD 0.0090 0.1107 229.7130 0.0590 29.3472 0.0961 0.0931

Microfiber Von Mises Model

Specimen µ k1 k2 b θ R2 ε

I 0.0021 0.1742 0.0010 0.2155 48.31 0.9362 0.0995

II 0.0015 0.0511 0.0016 1.2059 42.66 0.7827 0.3385

III 0.0016 0.0630 0.5198 0.5402 12.60 0.9670 0.1305

IV 0.0016 0.1224 0.8446 0.6631 11.34 0.9048 0.2371

V 0.0010 0.1033 3.0416 0.8904 41.82 0.9516 0.1806

VI 0.0028 0.1318 13.0384 0.6237 38.01 0.96281 0.1192

VIIa 0.0037 0.0426 0.0012 0.9761 40.56 0.6912 0.4821

VIIb 0.0010 0.0565 0.0011 0.8537 12.83 0.8936 0.2918

Mean 0.0019 0.0931 2.1811 0.74607 33.6471 0.8862 0.2349

SD 0.0009 0.0472 4.5067 0.3029 15.0599 0.0987 0.1312

Microfiber Bingham model

Specimen µ k1 k2 κ1 κ2 R2 ε

I 0.0342 0.0604 7.2772 0.5158 0.0005 0.9821 0.0812

II 0.0010 0.0288 1.2392 8.7994 6.6073 0.8435 0.1734

III 0.001 0.0503 0.5371 2.4282 1.4002 0.9696 0.1308

IV 0.0011 0.1153 0.8676 1.6350 0.3303 0.9013 0.2220

V 0.001 0.1129 2.8115 1.2928 0.0 0.9508 0.1806

VI 0.0010 0.1365 11.6631 5.4277 4.5481 0.9568 0.1230

VIIa 0.001 0.0361 1.7047 1.9521 0.0 0.7633 0.3207

VIIb 0.0011 0.0198 2.2892 14.9106 12.7635 0.9503 0.1823

Mean 0.0051 0.0700 3.5487 4.6202 3.2062 0.9147 0.1767

SD 0.0117 0.0449 3.9072 4.9679 4.5837 0.0756 0.0726

Table 3
Material constants obtained for the descending thoracic aorta (DTA) curves. Constants µ and k1 in MPa, θ
in degrees, k2, ρ, κ, b, κ1 and κ2 are dimensionless.
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HGO Model

Specimen µ k1 k2 θ R2 ε

I 0.0156 0.0553 12.6284 73.78 0.6439 0.3681

II 0.0010 0.0342 7.5036 89 0.7871 0.4180

III 0.0001 0.0449 2.8768 78.43 0.8488 0.2345

IV 0.0009 0.0333 7.6543 89 0.7907 0.4165

V 0.0019 0.1343 8.8924 77.54 0.3365 0.5150

VI 0.0001 0.0226 0.001 84.53 0.4185 0.3456

VIIa 0.0016 0.0610 7.3177 78.30 0.8289 0.2995

VIIb 0.0129 0.0038 6.7220 67.58 0.6670 0.4269

Mean 0.0042 0.0486 6.6995 79.77 0.6651 0.3780

SD 0.0062 0.0390 3.8057 7.4301 0.1929 0.0863

GOH Model

Specimen µ k1 k2 κ θ R2 ε

I 0.0038 0.4072 0.0140 0.2169 61.07 0.7709 0.2920

II 0.001 0.7722 0.001 0.3185 0 0.8596 0.3431

III 0.0014 0.1873 0.0010 0.2066 65.54 0.8765 0.2095

IV 0.0009 0.7729 0.001 0.3183 7.02 0.8597 0.3423

V 0.0361 0.1163 0.0001 0 0 0.3857 0.5058

VI 0.0009 0.0212 0.0009 0.0019 83.98 0.5734 0.3557

VIIa 0.0023 0.4724 0.001 0.2499 63.04 0.8559 0.2788

VIIb 0.0064 0.0258 18.9679 0.2531 0 0.6680 0.4213

Mean 0.0066 0.3469 2.3733 0.1956 35.0812 0.7312 0.3435

SD 0.0120 0.3092 6.7052 0.1269 6.3621 0.1770 0.0905

Microfiber Von Mises Model

Specimen µ k1 k2 b θ R2 ε

I 0.0011 0.1027 10.0179 5.7195 61.38 0.8699 0.2147

II 0.0010 0.1166 5.4504 1.774 21.50 0.8174 0.3785

III 0.0010 0.0549 3.3565 8.0044 67.83 0.8977 0.1802

IV 0.0011 0.0365 11.9555 8.7805 73.32 0.9338 0.2337

V 0.0014 0.2168 3.1256 6.5461 65.80 0.5419 0.4488

VI 0.0013 0.0487 0.0046 0.6089 31.62 0.5765 0.3785

VIIa 0.0010 0.1806 0.0010 0.8553 0 0.7130 0.3537

VIIb 0.0010 0.0362 1.6980 1.2902 39.00 0.7442 0.4195

Mean 0.0011 0.0991 4.4511 4.1973 45.0562 0.7618 0.3259

SD 0.0001 0.0688 4.44672 3.4164 26.2309 0.1455 0.1016

Microfiber Bingham model

Specimen µ k1 k2 κ1 κ2 R2 ε

I 0.001 0.1307 0.0010 14.1782 11.5926 0.6954 0.3485

II 0.0052 0.0708 5.7774 12.9714 9.6194 0.8141 0.3118

III 0.0010 0.0707 0.6437 14.998 12.36 0.7104 0.2702

IV 0.0018 0.0729 5.4166 14.9998 11.7925 0.8085 0.2409

V 0.0010 0.2687 4.4931 9.9572 6.6388 0.5063 0.4104

VI 0.0005 0.02591 0.0028 16.0015 15.0984 0.5843 0.2722

VIIa 0.001 0.0751 5.9988 14.9213 13.0486 0.7760 0.2794

VIIb 0.0010 0.0361 3.4276 1.7047 1.9520 0.7663 0.3997

Mean 0.0011 0.0991 4.4511 4.1973 45.0562 0.7618 0.3259

SD 0.0001 0.0688 4.4467 3.4164 26.2309 0.1455 0.1016

Table 4
Material constants obtained for the infrarenal abdominal aorta (IAA) curves. Constants µ and k1 in MPa,
θ in degrees, k2, ρ, κ, b, κ1 and κ2 are dimensionless.
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(a) Biaxial setup (b) Biaxial DIC grid

Fig. 1. (a) Representative image of the specimen mounted in a biaxial tensile testing device after the
application of a pre-load. (b) Application of a grid on the surface of the vessel and the lengths between the
two markers in each direction were measured by a Digital Image Correlation (DIC) Strain Master LaVision
System.
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(a) Deformed grid (b) Longitudinal strain field

(c) Circumferential strain field (d) Shear strain field

Fig. 2. Representative (specimen XX) equibiaxial analysis (2:2) showing (a) the deformed grid, the (b)
circumferential, (c) longitudinal and (d) shear strain map at the end of the experiment.
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(c) Biaxial

1 1.02 1.04 1.06 1.08 1.1
0.95

1

1.05

1.1

1.15

λθ [−]

λ z [−
]

 

 

0.5:0.5
1:1
1:0.5
0.5:1
2:2
2:1
1:2

(d) Stretch (e) Circumferential (f) Longitudinal

Fig. 3. Representative (specimen VIIa) Piola-Kirchhoff stress vs. stretch behavior for the porcine ascending
thoracic aorta (ATA) specimens: (a) typical preconditioned equibiaxial properties at subsequently increased
stress levels ranging from 15 to 60 [kPa]; (b) representative preconditioning behavior in terms of loading-un-
loading cycles at 60 [kPa]; (c) typical biaxial behavior at different ratios 0.5:0.5, 1:0.5, 0.5:1, 1:1, 2:1, 1:2,
2:2; (d) typical axial stretch versus circumferential stretch at different ratios; (e) whole equibiaxial 2:2 ex-
perimental data samples in circumferential and (f) longitudinal directions. Colored areas represent p>0:1
and p<0:9 of the equibiaxial 2:2 experimental data.
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Fig. 4. Representative (specimen VIIa) Piola-Kirchhoff stress vs. stretch behavior for the porcine descending
thoracic aorta (DTA) specimens: (a) typical preconditioned equibiaxial properties at subsequently increased
stress levels ranging from 15 to 60 [kPa]; (b) representative preconditioning behavior in terms of loading-un-
loading cycles at 60 [kPa]; (c) typical biaxial behavior at different ratios 0.5:0.5, 1:0.5, 0.5:1, 1:1, 2:1, 1:2,
2:2; (d) typical axial stretch versus circumferential stretch at different ratios; (e) whole equibiaxial 2:2 ex-
perimental data samples in circumferential and (f) longitudinal directions. Colored areas represent p>0:1
and p<0:9 of the equibiaxial 2:2 experimental data.
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Fig. 5. Representative (specimen VIIb) Piola-Kirchhoff stress vs. stretch behavior for the distal parts of
porcine infrarenal abdominal aorta (IAA) specimens: (a) typical preconditioned equibiaxial properties at
subsequently increased stress levels ranging from 15 to 60 [kPa]; (b) representative preconditioning behavior
in terms of loading-unloading cycles at 60 [kPa]; (c) typical biaxial behavior at different ratios 0.5:0.5, 1:0.5,
0.5:1, 1:1, 2:1, 1:2, 2:2; (d) typical axial stretch versus circumferential stretch at different ratios; (e) whole
equibiaxial 2:2 experimental data samples in circumferential and (f) longitudinal directions. Colored areas
represent p>0:1 and p<0:9 of the equibiaxial 2:2 experimental data.
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Fig. 6. Average biaxial Cauchy stress-stretch behavior obtained from all considered aortic specimens
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