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ABSTRACT 

BACKGROUND 

The commercial production of zeolite A mainly involves costly synthetic chemicals. However, 

cheaper raw materials such as clay minerals, coal ashes, natural zeolites, solid wastes and 

industrial sludge have been tested. Based on this, the objective of present study is synthesis of 

zeolite A from two sources of raw kaolins (Ansho and Bombowha) from Ethiopia and evaluation 

of its application in tannery wastewater treatment.  

RESULTS 

The synthesis result indicated high crystallinity (> 90%) of zeolite A using Ansho kaolin. Lower 

grade Bombowha kaolin yielded zeolite A with crystallinity of 80%. In the tannery wastewater 
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treatment study, a real sample having chromium concentration of 2036 mg/L was treated 

obtaining 99.8% removal and about 200 mg/g adsorption capacity of Cr(III) using 100 g/L and 5 

g/L adsorbent dose respectively. This indicated that the synthesized zeolite A has a great 

potential in Cr(III) removal from tannery wastewater. 

CONCLUSION 

In this study, zeolite A has been synthesized from two sources of kaolin from Ethiopia and has 

been evaluated in tannery wastewater treatment. The synthesis result indicated the formation of 

crystals of zeolite A with optimum crystallinity of 91% and the material exhibited chromium 

removal efficiency of 99.8%. 

 

Keywords: Zeolite A; kaolin; chromium; tannery wastewater 

Introduction 

The leather industry is becoming one of the major industrial sectors in Ethiopia that contributes 

substantially towards the national economy. According to the Ethiopian leather evaluation 2012 

report, there were 26 tanneries in Ethiopia employing chrome tanning.1 Tanning process using 

chromium compounds is one of the most common methods for processing of hides due to the 

rapid processing, low cost, and better quality of the finished leather products. The function of 

chromium salts in tanning processes is to form a complex with the collagen to make it 

hydrothermally stable.2 In this process about 60-70% of chromium reacts with the hides, leaving 

about 30-40% of the chromium as waste.3 The wastewater of tanning process is usually 

discharged, without proper treatment, into the sewerage system leading to one of the most 

recognized environmental problems in the leather industry.4  
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In nature, chromium occurs in two major stable oxidation states: Cr(III) and Cr(VI). The tanning 

process is commonly carried out using Cr(III), and later on, the secondary treatment may 

generate Cr(VI) that causes adverse effects for the human health. Several methods have been 

used for removal of chromium from tannery wastewater: biological methods, membrane 

technologies, chemical precipitation, ion exchange, and adsorption.5,6 Some of these adsorbents 

and ion exchangers are activated carbon, fly ash, peat, recycled alum sludge, peanut hulls, resins, 

biomaterials, clay materials and zeolites.7-11 Along with the known ion exchangers, zeolites are 

worth of a special attention due to their high exchange capacity, reasonable costs and 

environmental compatibility. Natural and synthetic zeolites have been tested in the removal of 

Cr(III) removal from tannery wastewater.10,11 When a zeolite is used for environmental 

mitigation purposes, usually demands large amounts of adsorbent, therefore, it has to have a 

competitive price with respect to other technologies. For this reason, it is preferable to synthesize 

zeolites from more economical sources such as natural aluminosilicates. Covarrubias C et al.12 

reported the synthesis of zeolite materials from kaolin and natural mordenites and their 

application for Cr(III) exchange. This study indicated that synthesized materials presented higher 

Cr(III) exchange capacity than commercial ones. Basaldella EI et al.13 also investigated the effect 

of pH changes on the ability of the synthetic zeolite A to remove Cr(III) from wastewater by ion 

exchange method. Their study demonstrated that the increase in pH during the ion exchange 

favored polymerization-precipitation of chromium species present in solution, which in turn, 

improved the metal removal capacity of zeolite A above the values expected for a pure cationic 

exchange reaction. Although different zeolite based materials have been used for the treatment of 

tannery wastewater, to our knowledge natural raw materials from Ethiopia have not yet been 

used in chromium removal from tannery wastewater. Therefore, the objective of the present 
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work is to synthesize zeolite A using kaolin from Ethiopia and investigate its removal efficiency 

of Cr(III) from tannery wastewater collected from domestic tanneries.  

 

Experimental 

Materials and methods 

Two raw kaolin samples: Ansho and Bombowha kaolins were collected from a local ceramic 

factory (Hawassa ceramic factory). Commercial zeolite A was purchased from Industrias 

Químicas del Ebro (Spain) for comparison. Analytical grade NaOH pellets was purchased from 

Sigma Aldrich and 98% CaCl2·6H2O from BDH. Chromium wastewater was directly obtained 

from the research and development directorate of Leather Industry Development Institute (LIDI) 

of Ethiopia. 

Synthesis of zeolite A 

The synthesis of zeolite A was conducted using both raw and purified kaolins by hydrothermal 

and alkali fusion methods.14 In the purification of the raw kaolin, the physical method of 

purification which involves mechanical separation methods such as: sedimentation, ultrasonic 

suspension and magnetic separation have been used15. For the conventional hydrothermal 

synthesis; both raw and purified kaolins were used. The kaolin was first calcined at 600 oC for 3 

h. Then, the alkaline treatment was done with 3 mol/L NaOH with stirring at 50 oC for 1 h. For 

the synthesis involving alkali fusion method; the raw kaolin (1.25 g) was dry-mixed with NaOH 

(1.5 g) for 30 min followed by calcination at 600 oC during 1 h. Then the calcined product was 

ground and mixed with 12.5 mL of water and stirred at 50 oC for 1h for gel formation. In both 
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methods, the gel formed undergoes aging at room temperature in static condition followed by 

crystallization for 3 h at 100 oC. The reaction mixtures were filtered and washed with distilled 

water to remove excess alkali until the pH of the filtrate dropped below 10. Then, the samples 

were oven dried overnight at 80 ºC. For hydrothermal synthesis method, both raw and purified 

kaolins were used; products have been labelled as “R” and “P”, respectively. For alkali fusion 

only raw kaolin was used and the final products were labelled with “F”. “A” and “B” in the 

samples codes refers to the Ansho and Bombowha type of kaolins, respectively. Aging is 

indicated as 1G or 3G for the synthesis involving gel aging accordingly to the time spent (either 

1h or 3h). The final label "3 h" refers to crystallization time.  

Characterization techniques 

Powder X-ray diffraction (XRD) patterns of the starting kaolin and synthetic zeolite A were 

collected with a Philips X’PERT diffractometer equipped with an X’Celerator detector and using 

Cu Kα radiation. The morphology was studied by Scanning Electron Microscopy (SEM) using a 

NOVA NANO SEM 230 (FEI). Inductively Coupled Plasma Optical Emission Spectrometry 

(ICP-OES) Optima 3300 DV model was used to determine chemical weight percent composition 

of the samples. The Cation Exchange Capacity (CEC) of the Na-form of synthesized samples of 

zeolite A has been studied by GLP 22 multimeter Calcium ion selective electrode. Analytik Jena 

ZEEnit700 P model flame atomic absorption spectrophotometer (FAAS) was used to measure 

the concentration of chromium before and after adsorption experiment. Scanning transmission 

electron microscopy (STEM) was performed in a spherical aberration corrected (Cs-corrected) 

FEI Titan XFEG, which was operated at 300 kV equipped with a corrector for the electron probe 

allowing a maximum resolution of 0.8 Å. The microscope was also equipped with an EDS 

detector (EDAX) and a Gatan Tridiem energy filter.  
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Chromium (III) adsorption experiments 

Adsorption experiments were carried out in batch mode at a temperature of 25 ± 0.5 ºC, with 

continuous stirring at 500 rpm. A total of 10 mL of wastewater was treated with varying 

adsorbent dosage from 2 g/L to 100 g/L and a total contact time of 24 h. All mixing vessels were 

kept sealed throughout the duration of each test in order to minimize evaporation of water. 

Control experiments were carried out in the absence of adsorbent. All samples were filtered prior 

to analysis. The first few milliliters of the filtered samples were discarded in order to minimize 

the effect of any adsorption that may occur on the filter paper. The pH of all the samples was 

measured, but the solution was not buffered. The adsorbed chromium was determined by mass 

balance according to the following equation 1: 

0

0RemovalCr  %
C

CC e−= x 100     (1) 

Where; Co and Ce are the concentration of Cr(III) in the sample solution before and after the 

treatment (when equilibrium is achieved). 

Adsorption capacity (qe) which is defined as the amount of adsorbate retained per mass of 

adsorbent was calculated using the following expression 2: 

( )
m

VCCq e
e

0−=       (2) 

Where V is the volume of solution treated and m the mass of adsorbent utilized. 
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Kinetic study of the removal of Cr(III) from tannery wastewater 

The kinetic study for Cr(III) removal from tannery wastewater was carried out in batch with 

different contact times at room temperature and fixing the dosage rate to 25 g/L (1.25 g in 50 

mL). Samples of the treated wastewater were collected at different time intervals (from 10 to 

2880 min), then the solid phase was separated by filtration through a Whatman filter paper and 

the filtrate was analyzed for chromium.  

 

Results and discussion  

Synthesis of Zeolite A 

The X-ray diffraction patterns of the starting raw Ansho and Bombowha kaolins, metakaolins 

and synthetic products are depicted in Figure 1. Profiles labelled as (a) show the XRD profiles of 

the raw kaolins indicating the presence of kaolinite (K), having a layered structure with d100 at 

12.34º and d200 24.64º, and the characteristic diffraction intensity of quartz (Q) and Mica (M) at 

2θ value of 26.6 and 8.9º, which are the common impurities found in kaolins. Profiles (b) show 

the XRD patterns of metakaolin formed after calcination at 600 oC for 3 h exhibiting the 

disappearance of the diffraction peaks of kaolin, accompanied by the appearance of amorphous 

aluminosilicate (a broad featureless bulge extends between 2θ of 15 to 40º), which is the 

characteristic X ray diffraction pattern of metakaolin.16 Profiles (c) show the synthetic zeolites 

obtained using 3 mol/L concentration of NaOH. The XRD profiles of the synthetic sample fit 

well to the profile of the commercial zeolite A (profile d, dotted line) and the literature value,17 

although the presence of traces of Quartz could be detected in the patterns. The percentage 
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crystallinity data (% CXRD) calculated by comparing the sum of the five most intense peaks (d442 

at 21.67º, d622 at 23.99º, d642 at 27.11º, d820 at 29.94ºand d664 at 34.18º) using the commercial 

zeolite A (CZA) as reference are compiled in Table 1. Optimum crystallinity of 91% was 

attained by the synthesis involving alkali fusion using raw Ansho kaolin, A-F-3M-3G-3h most 

probably due to the major conversion of the quartz into zeolite A using this method. Comparable 

crystallinity of 90% was also achieved using purified Ansho kaolin in the conventional 

hydrothermal synthesis method, A-P-3M-3G-3h. For the low grade Bombowha kaolin, optimum 

crystallinity of 84% was attained using alkali fusion with raw kaolin, B-F-3M-1G-3h. The 

conventional hydrothermal synthesis method revealed optimum crystallinity of 75% with the 

purified kaolin, B-P-3M-1G-3h. For both types of kaolins, purification of the starting kaolin 

resulted in the improvement in the crystallinity of the final zeolite A regardless of the method 

used, due to the efficient removal of Mica and Quartz.15 The effect of aging time (1G and 3G) in 

the final quality is also evidenced by the data in Table 1. Moreover, for the same synthesis 

method, regardless of the type of kaolins and purification, the aging step enhances the 

crystallinity of the final zeolite A once again due to the efficient incorporation of the remaning 

traces of Quartz as part of the zeolite. For Ansho kaolin based synthetic products: A-F-3M-3G-

3h and A-P-3M-3G-3h, the SEM (Figure 2) confirmed the typical cubic shaped crystals of 

zeolite A with rounded edges with an average particle size of 3.0 µm. However, for Bombowha 

kaolin based synthetic products: B-F-3M-1G-3h and B-P-3M-1G-3h, slightly sharp edges of 

cubic crystals of zeolite A having average particle size of 3.0 µm (Figure 2). The ICP-OES 

analyses indicated Si/Al =1 for the best synthetic products for both types of kaolins (Table 1). 

The table also includes the cation exchange capacity (CEC) results which revealed optimum 

calcium exchange capacity in those samples with highest crystallinity. Given the requirements of 
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the market, the best synthetic products (A-F-3M-3G-3h, A-R-3M-3G-3h, A-P-3M-3G-3h and B-

F-3M-1G-3h) were tested in detergent formulation following the commercial method 

implemented by Ethiopian detergents manufacturers.18 However, for this particular chromium 

removal work, the requirements in the quality of the final zeolite are not crucial, thus a low 

quality zeolite A obtained from the low grade type Bombowha kaolin (B-R-3M-3h) was used 

trying to add value to a cheap low quality material.14 The synthetic product exhibited low 

crystallinity of 64% and its morphological analysis from SEM (Figure 3) shows the formation of 

cubic crystals of zeolite having sharp edges in comparison with the rounded edges of crystals of 

the commercial zeolite A. The ICP elemental analysis result of the synthetic zeolite A shows a 

Si/Al = 1.1, which is in a good agreement with the Si/Al ratio of commercial zeolite A (Si/Al = 

1). This in turn results in a maximum content of sodium ions which can be easily exchanged for 

chromium cations and its removal to the minimum limit. 

Adsorption results 

For the present study, the collected tannery wastewater contains Cr(III) concentration of 2036 

mg/L. This indicates that the concentration of chromium in the wastewater is higher than 1000 

fold to its maximum limits that could be released into the environment so it needs great attention 

from health and environmental aspects.  

Effect of adsorbent dosage 

The effect of adsorbent dosage on the removal of chromium from the tannery wastewater is 

plotted in Figure 4. The results indicated that the adsorption efficiency increase with the 

increments in the dose from 2 to 100 g/L keeping temperature (25 oC) and contact time (24 h) 

constant. Maximum removal was observed with adsorbent dose of 100 mg/L. Increasing the 
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percentage of adsorption with adsorbent dose is expected given the increase in adsorbent surface 

area and availability of more adsorption sites.19 However, the adsorption capacity (qe) decreases 

while increasing the adsorbent dosage. The drop in adsorption capacity while increasing the 

adsorbent dose can be attributed to adsorption sites that remain unsaturated since the number of 

available adsorption sites has increased.20 The variation of pH slightly increased from initial pH 

4 to pH 4.5-4.7 for the adsorbent doses of 2g/L and 100g/L. This insignificant pH change from 

the lower adsorbent dosage to the higher adsorbent dosage eliminates the possibility of Cr(III) 

removal mechanism by polymerization–precipitation as suggested by Basaldella EI et al.13 

Adsorption kinetics 

Adsorption kinetics describes the solute uptake rate as a function of the contact time of the 

adsorbate on the adsorbent. Kinetics of adsorption is shown in Figure 5 as adsorption capacity at 

different contact times. The experimental results showed rapid initial adsorption rate for the first 

3 h followed by a slower rate until an asymptote is reached at about qt= 80 mg/g. A similar trend 

has been reported by Choudhury TR et al21. in which there was no significant change in 

equilibrium concentration after 6 h for the adsorption of Cr(III) from aqueous solution by 

groundnut shell. Further contact time (48 h adsorption) did not give significant change which 

indicates the equilibrium point is attained. Adsorption kinetics was modeled by several kinetic 

models22. The experimental data fitted best to a pseudo-second order kinetics, where the rate of 

adsorption is proportional to the square of the driving force, that is the difference between the 

adsorption capacity at a time t, qt and the adsorption capacity at infinite time, or at equilibrium 

qe:  

( )2
2 te

t qqk
dt
dq −=     (3) 
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The fitting yielded the parameters: kinetic constant: k2 = 3.6x10-3 g mg-1 h-1 and adsorption 

capacity at t = ∞, qe = 82.3 mg/g 

Adsorption isotherm and adsorption mechanism 

Adsorption data are usually described by adsorption isotherms which relate adsorption capacity 

(qe) to the equilibrium adsorbate concentration in the bulk fluid phase (Ce). Figure 6 shows a 

representation of qe versus Ce for the adsorption of Cr(III) onto the zeolite A synthesized from 

kaolin (B-R-3M-3h), and onto commercial zeolite A for comparison. Both adsorption isotherms 

show an S-shape and present asymptotes at ca. 200 mg/g. At moderate Ce, commercial zeolite 

displays significantly higher adsorption capacities, which is consistent to higher crystallinity, but 

for the highest equilibrium concentrations (low dosage rates), the curves seem to converge and 

present similar qe values.  

However, the equilibrium data did not fit to any of the models proposed in the literature. 

Moreover, the S-shape of the graphics is very unusual for adsorption processes indicating the 

coexistence of different mechanisms of Cr removal. In addition, from the theoretical cation 

exchange capacity (CEC) of Na form of this zeolite A, the expected maximum adsorption 

capacity for Cr(III) is about 95 mg/g of zeolite. However, the experimental result obtained 

indicated that the Cr(III) adsorption capacity was about 200 mg/g at the lower adsorption doses 

(Figure 4). This unexpected high adsorption capacity attained at the lower adsorbent dose was 

further investigated by studying the XRD pattern of Cr(III) exchanged zeolite A in order to 

verify whether the zeolite remains stable or whether it collapses leading to pure surface 

adsorption. The XRD profiles of the zeolite A recovered after the adsorption experiment at 

different adsorbent doses are shown in Figure 7. The XRD results indicate that at lower dosages 

(5 and 10 g/L) the synthetic zeolite A loses its crystallinity. This situation may favor the co-
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precipitation of Cr(III) in the form of chromium silicate, Cr2(SiO3)3 or other amorphous solid 

material that augmented an apparent adsorption capacity of the lower adsorbent doses up to 200 

mg/g. However, for the higher adsorbent doses (25, 50, 75 and 100 g/L), the XRD profile shows 

the zeolite remained crystalline after chromium removal experiment. Moreover, from Figure 4 it 

is possible to see that the adsorption capacities for the higher adsorbent doses are less than the 

theoretical cation exchange capacity (95 mg/g). So it is possible to say the removal mechanism is 

merely due to ion exchange for the higher adsorbent doses. As the dosage rate is smaller, Ce is 

higher and the values of qe for both curves become similar to each other, which can be explained 

if the adsorption does no longer depend on ion exchange but probably on precipitation of 

Cr2(SiO3)3 or other species.  

The situation observed for the synthetic zeolite A is also true for the commercial zeolite A used 

in the Cr(III) removal from tannery wastewater. The XRD analysis of the low dosage (5 g/L) 

indicated the absence of the characteristic peaks of zeolite A (Figure 8). For the higher doses (25, 

50 and 100 g/L), zeolite A survived to the adsorption of Cr(III). Hence, the higher adsorption 

capacity attained at the lower adsorbent doses for both synthetic and commercial zeolite A 

verified that the removal mechanism is not merely ion exchange. Pansini M et al10. similarly 

reported structural collapse during chromium removal from wastewater by ion exchange using 

zeolitic rock containing phillipsite and chabazite. Their assumption for the structural collapse 

may be caused in some instances by the unfavorable environment determined by the presence of 

Brønsted acid and may be also due to the framework-cation interaction. 

The relative percent crystallinities (CXRD) calculated for zeolite A after adsorption experiments 

are summarized in Table 2. The data from the table shows that as the adsorbent dose increases, 

the crystallinity increases for both synthetic and commercial zeolite A. Further electron 
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microscopy studies were carried out in order to understand the adsorption of chromium by the 

synthetic zeolite A. Spherical aberration (Cs) corrected Scanning Transmission Electron 

Microscopy coupled with High Angular Annular Dark Field detector (Cs-corrected STEM-

HAADF) instead of conventional TEM23 was chosen due to the high analytical power of this 

mode, while maintaining atomic resolution using the Cs corrector in the condenser system. 

Besides, it has to be mentioned that low silica zeolite like zeolite A is extremely unstable under 

the electron beam24 due to the large amount of water contained in the structure. Thus; a precise 

control on the exposure to the electron beam has to be taken into account. Figure 9 shows Cs-

corrected STEM-HAADF images of the synthetic zeolite A. The image shows the perfectly 

arranged structure of zeolite matching with the overlaid model (representing in blue the “T” 

atoms, Si and Al). The dark contrast in this mode corresponds to the parts of the material with no 

electron density, i.e., zeolite alpha cages, linked to each other by sodalite cages, in which the four 

member rings can be clearly observed in brighter contrasts. The zeolitic framework of the 

chromium ion-exchanged material (Figure 10) is exactly the same, meaning that in this particular 

sample (100 g/L) the crystallinity of the zeolite A remains stable. The EDS spectrum, which 

displays the composition of Cr-exchanged zeolite A shows the presence of Cr in addition to the 

zeolite framework elements (O, Si, Al, Na) which corroborates the absorption of chromium. 

However, it is not possible to observe any contrast inside the cages, probably due to the low 

amount of Cr atoms that do not yield sufficient electron density to inverse the contrast. 

Conclusion  

In this work, the synthesis of zeolite A using kaolin from Ethiopia and evaluation of its 

application in the removal of chromium from tannery wastewater was undertaken. The synthesis 

of zeolite A has conducted by the conventional hydrothermal synthesis and alkali fusion methods 
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using both raw and purified kaolins. For this particular tannery wastewater treatment, the lowest 

quality type of zeolite A made from the low grade raw type kaolin has been used. Based on this, 

the removal of Cr(III) from tannery wastewater having initial concentration of 2036 mg/L was 

conducted. The study result shows maximum removal of 99.8% with adsorbent dose of 100 g/L 

and adsorption capacity of 200 mg/g was obtained by adsorbent dose of 5 mg/L. The kinetics 

study result indicated that the maximum adsorption was attained in the first 3 h adsorption and 

the experimental data fitted best to pseudo-second order kinetics. Moreover, the adsorption 

isotherm data could not fit to any of the adsorption models probably due to the different removal 

mechanism attained at different adsorbent doses.  
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Table 1. Percent crystallinity (% CXRD), Si/Al ratio determined by ICP-OES elemental analysis 
and calcium exchange capacity (CEC) of synthetic zeolite A. 

Sample % CXRD Si/Al  CEC  

(mg CaCO3/g) 

A-F-3M-3G-3h 91 1.0 310 

A-P-3M-3G-3h 90 1.0 295 

A-R-3M-3G-3h 74 1.0 290 

A-P-3M-3h 72 1.1 280 

A-R-3M-3h 62 1.1 160 

B-F-3M-1G-3h 84 1.0 300 

B-P-3M-1G-3h 75 1.0 250 

B-R-3M-1G-3h 66 1.1 230 

B-P-3M-3h 68 1.1 190 

B-R-3M-3h 64 1.1 150 
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Table 2. Percent crystallinity (CXRD) of ZA (B-R-3M-3h) and commercial zeolite A (CZA) 

after Cr(III) removal. 

Adsorbent dose (g/L) CXRD (%) 

B-R-3M-3h CZA 

100 40 25 

75 34 - 

50 25 24 

25 19 17 

10 9 - 

5 - - 
 

  

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
FIGURE CAPTIONS 

 

Figure 1. XRD patterns of Ansho (A) and Bombowha (B) raw kaolins(a), Metakaolins(b), 

synthetic zeolite A(c) and commercial zeolite A(d). 

Figure 2. SEM micrographs of the synthetic zeolite A from Ansho (A) and Bombowha (B) 

kaolins by alkali fusion (F) and conventional (P) hydrothermal synthesis at different aging times. 

Figure 3. SEM micrographs of synthetic zeolite A (B-R-3M-3 h) and commercial zeolite A 

(CZA). 

Figure 4. Cr(III) removal from tannery wastewaters using  synthetic zeolite A (B-R-3M-3h). 

( ): % Removal, ( ): Adsorption capacity, qe. 

Figure 5. Adsorption kinetics for Cr(III) removal using synthetic zeolite A (B-R-3M-3h). 

Figure 6. Adsorption isotherm for Cr(III) removal by synthetic zeolite A (⎯ ⎯)and by 

commercial zeolite A (-- --). 

Figure 7. XRD patterns of synthetic zeolite A (B-R-3M-3h) after adsorption experiment with 

different doses; (a) 5 g/L (b) 10 g/L (c) 25 g/L (d) 50 g/L (e) 75 g/L and (f) 100 g/L. 

Figure 8. XRD patterns of commercial zeolite A after adsorption experiment with different 

adsorbent doses: (a) 5 g/L (b) 25 g/L (c) 50 g/L (d) 100 g/L. 

Figure 9. Cs-corrected STEM-HAADF images of synthetic zeolite A (B-R-3M-3h). 

Figure 10. Cs-corrected STEM-HAADF images and EDS spectrum of Cr(III) exchanged 

synthetic zeolite A (B-R-3M-3h). 
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Figure 2
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Figure 4. Cr(III) removal from tannery wastewaters using  synthetic zeolite A (B-R-3M-3h). 

( ): % Removal, ( ): Adsorption capacity, qe. 
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Figure 5. Adsorption kinetics for Cr(III) removal using synthetic zeolite A (B-R-3M-3h) 
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Figure 6. Adsorption isotherm for Cr(III) removal by synthetic zeolite A (⎯ ⎯) and by 

commercial zeolite A (-- --). 
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Figure 7. XRD patterns of synthetic zeolite A (B-R-3M-3h) after adsorption experiment with 

different doses; (a) 5 g/L (b) 10 g/L (c) 25 g/L (d) 50 g/L (e) 75 g/L and (f) 100 g/L 
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Figure 8. XRD patterns of commercial zeolite A after adsorption experiment with different 

adsorbent doses: (a) 5 g/L (b) 25 g/L (c) 50 g/L (d) 100 g/L 
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Figure 9
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Figure 10. Cs-corrected STEM-HAADF images and EDS spectrum of Cr(III) exchanged 

synthetic zeolite A (B-R-3M-3h) 
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