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 The potential Spanish electricity excess is evaluated up to the year 2050

 Results depend on the assumed renewable production pattern and demand scenario

 The annual surplus for the year 2050 might vary between 1.4 TWh and 13.5 TWh

 The Power-to-Gas capacity required to store it would be in the range 7.0 – 19.5 GW 
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Abstract

Innovative technologies and strategies to decarbonize electricity generation, transport, 

and heat supply sector are key factors to achieve the global climate targets set by 

international organizations. One of these strategies implies a significant increase of the 

share of renewable electricity in the energy mix. Given the intermittent behaviour of 

renewable energy sources (RES), a detailed assessment of future energy scenarios is 

required to estimate the potential surplus in electricity production. To facilitate the 

penetration of renewable energy sources up to significant shares, massive long-term 

electricity storage technologies must be considered. Among these technologies, power-

to-gas (PtG) systems may foster the fossil fuels switch by providing storage of surplus 

renewable electricity in the form of hydrogen or synthetic natural gas. Thus, this energy 

carrier could be reconverted to electrical power to cover peak demand periods. In this 

work, a study of the prospective Spanish scenario is presented and the potential of PtG 

technology is assessed in terms of expected renewable surplus. We found that the 

annual electricity surplus for 2050 might vary between 1.4 TWh and 13.5 TWh, and the 
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required PtG capacity would be in the range 7.0 – 19.5 GW, depending on the 

renewable production pattern and the increment of demand.  
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1. Introduction

In 2009, the European Renewable Energy Directive (2009/28/EC) [1] established the 

global policy to achieve renewable shares of at least 20% by 2020 in the European final 

energy consumption and a share of 10% in the sector of transport. Since each European 

country presents different available resources and its own energy market, the individual 

national targets are independently set (although always aligned with the European 

regulation). In this context, the Spanish Royal Decree 661/2007 of the 25th of May 

regulated electrical energy production under special regimes and provided a draft 

version of the Renewable Energy Plan 2011-2020 (REP 2011-2020). The derived 

Spanish National Renewable Energy Action Plan 2011-2020 (NREAP) is currently 

applied to meet the legally binding 2020 European targets in Spain.

The increase of the renewable share in the electricity production brings along with 

fluctuating surplus of power that limits the operational predictability and flexibility of 

the electricity network. Therefore, energy storage techniques have revealed as essential 

factors in future green electricity systems, to smartly manage the intermittent renewable 

power. Current storage techniques (pumped hydroelectric energy storage, compressed 

air energy storage, flywheels, batteries and thermal energy storage) present limited 

storage potentials related to their characteristic discharge times or energy storage 

densities [2]. Thus, Power to Gas (PtG) was proposed in the last years as a very 
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promising storage technology to overcome these problems. PtG stores renewable 

electricity by converting a mixture of H2 (from water electrolysis) and CO2 into 

synthetic natural gas (SNG), which can be stored and easily distributed through the 

national natural gas network [3]. 

Several studies have already assessed the inclusion of PtG in the electricity systems of 

countries from central and northern Europe. Most of them analyse the German case, for 

which economic assessments are presented regarding Power to Gas and Power to Liquid 

systems [4][5]. Under a 85% renewable energy scenario in Germany, Jentsch et al. 

estimated the economical optimum for a PtG capacity implementation between 6 GW 

and 12 GW [6]. Schneider and Kötter thoroughly studied the existing geographical 

restrictions to install PtG facilities in the German state of Rhineland-Palatinate, and 

extrapolated the result to the whole country [7]. They determined the maximum PtG 

capacity that can be implemented in the country as 15.4 GW. Steubing et al. built a 

spatial model which identifies optimal bioenergy plant sizes and locations in 

Switzerland [8]. This work could be further widen to include the assessment of 

economically and environmentally optimal location of PtG fed by wood-based syngas 

in the country. Qadrdan et al. modelled the impact of integrating the British gas and 

electricity national grids through Power to Gas [9], given the large wind power capacity 

expected to be installed in the northern parts of England and Wales. They found that the 

operation cost of the grid would be reduced in 11% and wind curtailment could be 

reduced between 27% and 62% depending on demand. In this case, PtG capacity to be 

installed would range between 5 and 12 GW. Reiter and Lindorfer showed that the 

available CO2 sources in Austria are enough to store in the form of methane all the 

national excesses of electricity generation from photovoltaics and wind power [10]. The 
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biogas upgrading facilities are pointed out as the most suited ones for PtG integration 

since they present the lowest cost and the shortest distances to RES. Other alternative 

sources of CO2 like power plants and refineries would be required since the amount of 

CO2 generated from biogas plants is relatively low.  

The increasing interest of southern European countries in PtG technology makes 

necessary the development of new studies of prospective scenarios. This study presents 

estimations of excess of electricity which might be stored under future Spanish energy 

scenarios. First, the evolution of the Spanish electricity system in the period 2020-2050, 

in terms of power capacity, energy production, and demand is estimated. Then, this 

model is used to analyze the amount of renewable electricity that could exceed the 

demand under different renewable generation patterns, and to estimate the PtG power 

capacity required to store it. Therefore, the aim of this study is to develop an energy 

system model representing future Spanish electricity generation, demand and 

constraints of the energy mix. Finally, based on the obtained results, Power to Gas 

capacity that could be installed in Spain for the next decades has been estimated.

2. Spanish electricity system

First official data of Spanish electricity system date from 1901 and it registered an 

installed power capacity of 78.2 MW that included hydropower (39%) and thermal 

power (61%) [11][12][13]. Since then, the energy system has been continuously 

transformed as a consequence of social evolution, but also affected for different 

historical milestones such as Civil War (1936 – 1939), droughts, the oil crisis of 1979, 

the application of European and national regulations, the introduction of renewables 

sources, and the Great Recession.
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During the last decade of the XX century, the Spanish generation mix barely changed. 

Only combined heat and power (CHP) facilities grew significantly during this period. 

Afterwards, combined cycles and wind power rose rapidly to satisfy the increasing 

demand and reduce CO2 emissions related to coal power (Figure 1). Nowadays, even 

though demand has decreased and subsidies to green electrical production have been cut 

back, RES have still experienced an increment of their share in the electricity market as 

a consequence of their cost reduction and improved competiveness (Figure 2). 

Figure 1. Installed power capacity in mainland Spain (1990 – 2016). Data from [14]



ACCEPTED MANUSCRIPT

6

 

Figure 2. Power generation in mainland Spain (1990 – 2015). Data from [15] 

Hydropower is a consolidated technology in Spain with 20.3 GW of installed capacity 

[14] distributed among over 870 plants [16], and whose estimated potential reaches 33 

GW [17]. However, large projects are not expected to be launched in the short or mid-

term [18], due to the lack of knowledge about available water resources (last evaluation 

was in 1980) [19] and the long periods required to process construction and operation 

licenses (6 years in average) [20]. Studies indicate a moderate development for the 

coming decades based on already existing infrastructures, through the implementation 

of water turbines in irrigation dams, retrofitting plants or renovating equipment. 

Therefore, although hydropower will slowly increase, its share in the energy mix will 

progressively be reduced in comparison to other RES with greater growing potentials 

[21]. 

There are not projected plans of increasing installed capacity of nuclear power in the 

mid-term. The seven plants commissioned between 1983 and 1988 (about 1 GW each) 

still participate in the energy market with average annual operating hours above 7700 
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[22]. According to their licenses terms, all of them should shut down between 2020 and 

2024 [22][23]. Nevertheless, under favorable statements, the Ministry of Industry and 

Economy may issue periodic licenses renewals of 10 years [24]. In fact, since Spanish 

electricity system cannot deal with their removal in the short- or mid-term, the lifetime 

of nuclear plants will probably be extended up to 60 years (until 2043 – 2048) or even 

be unlimited as happened in other countries [25].   

Coal participation in energy mix has been strongly reduced from 2007 onwards but the 

installed capacity has barely changed. Traditionally, coal power acted as backup 

technology to cover electrical demand given the limited flexibility of nuclear power and 

hydropower. Nowadays, the backup role is mainly covered by combined cycles, which 

exhibit much lower specific emissions of CO2 (see Figure 2). The Spanish Government 

aims to promote during the next years the consumption of national coal up to annual 

participations of 7.5% in the energy mix. This strategy reduces energy dependence and 

instabilities caused by the variations in the price of imported fuels [26]. Contrary, 

prospective scenarios attending the restrictive environmental regulations which limits 

NOX emissions would lead to 10.3 GW of installed capacity in 2020 [27]. Finally, 

carbon capture technologies could soften the progressive reduction of coal share, but 

they are not expected to be reliable before 2030 [28]. 

Currently, fuel oil in Spain only works in the islands because of their limited electric 

network and interconnections. In the mainland, the installed capacity of fuel oil has 

been substituted by other sources with better economic and environmental 

performances.

CHP facilities are present in more than 600 companies. Chemical, paper, and food 

industries contribute with the 50% of the total power production by means of CHP 



ACCEPTED MANUSCRIPT

8

facilities. Given its dependence on industry, the development of CHP technology was 

slowed down in the last years as a consequence of the Great Recession. In order to 

reverse this situation, the Spanish CHP association projects to invest 1500 M€ for 

increasing the efficiency of more than half of installed capacity [29].

Combined cycles were introduced in Spain in 2002. By 2007 they had already become 

the technology with the largest installed capacity in the country. This uncontrolled 

expansion has led these facilities to be underused with annual hours of operation below 

1000 h –16 plants out of 49 are not economically feasible– [30]. So, progressive 

shutdowns are expected to occur whenever the closure is authorized.

Considering a sustainable exploitation of resources, the maximum potential for biomass 

power would lay in the range 3 – 5 GW [31]. However, social and technical barriers 

associated to biomass power were underestimated (e.g., variety of crops, fuel 

dispersion, support from industry) and installed capacity does not achieve the 3 GW. In 

2030, the expected share of biomass would be around 5 % of total production [32].

In 2010, solar thermal power installed in Spain accounted for the 60% of worldwide 

capacity. The installation of more than 15 GW was projected under the subsidized 

renewable regime, but only 2.4 GW were finally installed [33]. Therefore, between 4.8 

GW and 10 GW of installed capacity are expected for 2020 [33][34]. Given the high 

stability of thermal solar operation associated with thermal energy storage, its 

development in long-term scenarios with high renewable shares could be promoted. 

Thus, 20 GW are expected as a desirable capacity for 2050 [35]. 

In 2008, photovoltaic power experienced the greatest annual growth with an increment 

of 60% of installed capacity [14]. The large subsides given to PV (12 times the 
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corresponding one to wind power production) leaded to an accelerated proliferation of 

new facilities which in numerous occasions were underqualified and rapidly began to 

deteriorate [31]. Nowadays, the radical reduction of subsides has broken the expansion 

trend and the expectative of 7.25 GW installed capacity will probably be achieved 

beyond 2020 [33]. 

Finally, wind power has become the RES with the largest installed capacity in Spain, 

which generated in 2013 about 1.17 TWh of surplus power [36]. The maximum 

potential of on-shore wind installed capacity would amount to 151 GW once protected 

and unprofitable areas are removed [37]. In practice, total capacity is expected to rise up 

to 24 GW for 2020, whilst repowering could contribute by adding 5 GW in mid-term 

[31]. Additionally, growth potential concerning off-shore wind power is estimated 

between 5 GW and 8.5 GW [37].

3. Methodology

The definition of a future scenario for the Spanish electricity system has to consider 

both the predicted energy demand and the expected electricity production. The 

prediction of energy demand evolution is based on the results provided by ‘The Global 

Calculator’, a useful tool developed by the International Energy Agency which has 

been previously validated. This tool models the world’s energy, land and food systems 

to explore future scenarios [38]. Then, the energy production is calculated as the 

product of the estimated installed power capacity and the operating hours, which are 

heuristically inferred from the analysis presented in Section 2. Since demand and 

production are established separately, additional restrictions were imposed to validate 

the feasibility of these scenarios (Figure 3). The installed capacity forecast provided by 
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Spanish institutions gives reliability to the defined scenarios while restrictions guarantee 

the technical consistency. 

Once the future scenario is established, the energy storage potential may be obtained as 

the difference between the potential production and the expected demand throughout 

time. The first step in this calculation process is the determination of the time-

discretization unit that will better fit with this type of analysis. We could discretize the 

year in periods that span between an hour (minimum period of time considered in 

Spanish energy market) and a year. An hourly interval would be unnecessarily accurate 

since a long-term estimated scenario will probably introduce significant deviations from 

real hourly patterns of electricity production and demand. On the contrary, monthly and 

longer periods would not allow the detection of energy surplus situations. Therefore, a 

daily discretization is used in the model. 

 

Figure 3. Model flow chart. 
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3.1. Energy demand scenarios

The estimation of future electricity demand is done based on results provided by The 

Global Calculator tool [38], funded by the UK Government’s International Climate 

Fund and the EU’s Climate-KIC. This tool incorporates a model of the world’s energy, 

land and food systems to explore the future thermal requirements, electrical power 

demand, or greenhouse gas emissions. The possible scenarios depend on multiple 

variables like social habits, industrial investments, or policies (Annex A).

Several potential situations were evaluated and all of them can be framed within two 

significant scenarios with different growth rates of electricity demand. In Scenario 1, 

the demand moderately increases 1.36% per year, whilst in Scenario 2 the annual 

growth rate is 1.73% (Figure 4).

 

Figure 4. Energy demand scenarios for the electricity system. Historical data from [15] 

In both scenarios, the increment of the global mean temperature by the year 2100 would 

be restricted to 2ºC. The main social assumptions considered in The Global Calculator 

tool that will lead to the achievement of the 2ºC scenario are: (i) the increase of average 
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occupancy in cars and trains by a 15%, (ii) the limitation of building temperatures at 

18ºC and 26ºC during winter and summer respectively, and (iii) a significant promotion 

of recycling. 

To achieve a moderate growth of electricity demand (i.e., Scenario 1), investments must 

be focused on improving the efficiencies of fossil power plants, paper and cement 

industries, instead of on electrifying the transport. Furthermore, appliance efficiency 

and treatment of wastes and residues are also crucial to keep annual demand growth 

around 1.36%.

3.2. Operating hours

The operating hours of renewable and nuclear energy sources are estimated through a 

deep analysis based on historical data of the last decade, current energy Spanish policies 

and technology maturity (Table 1). Since fossil plants act as backup power, the share of 

renewable sources in the electricity system will also determine the fossil necessities. 

The operating hours of fossil fuel power plants in the model must also fulfil the specific 

restrictions established in Section 3.3.

Four general trends are easily distinguished when historical data of operating hours are 

represented (Figure 5). Wind power, hydropower, small hydro, and nuclear power have 

become mature technologies that operate steadily on average (Figure 5a). Photovoltaics 

and solar thermal energy rose rapidly in a 2 – 3 years period coming to a stagnant 

between 1800 – 2000 hours (Figure 5b). CHP and biomass power plants have slowly 

increased their operation since 2002 (Figure 5c). Lastly, coal power plants and 

combined cycle plants have reduced their operating hours to counterbalance the increase 

of renewable sources from 2007 onwards (Figure 5d).
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Figure 5. Operating hours [h] in the Spanish electricity system (2002 – 2013) [39].

Hydropower and small hydro remain stable with periodic fluctuations according to 

natural, wet and dry environmental cycles. Fuel replacement in nuclear plants produces 

periodic oscillations in annual operation. Unplanned shutdowns of nuclear plants get 

more and more frequent –all of these plants date from before 1988– slightly diminishing 

the average number of operating hours  [40]. 

Wind power operates nearly over 2000 annual hours, mostly due to weather conditions 

but also as a consequence of Government’s policies that limit benefits to renewable 

generation. In the period 2010 – 2014, wind power received subsides only for the first 

2350 hours of operation [41]. Photovoltaics case is illustrative since operating hours 
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swiftly grew up to the maximum number of subsidized operation hours [42]. Nowadays, 

subsidizes to renewable energy sources are individualized and progressively cut, so 

their operation hours are expected to rise [43][44]. Lastly, restrictions to solar thermal 

power started from 2350 hours, not affecting the increase of operating hours [41]; whilst 

CHP and biomass power were not even limited. Therefore, operating hours of solar 

thermal, CHP and biomass would increase according to the technology development.

Table 1. Estimation of operating hours [h] in the future Spanish electricity system.

2020 2030 2040 2050
Hydropower 1600 1620 1640 1660
Small hydro 2700 2720 2740 2760
Wind power 2450 2600 2650 2700
Photovoltaics 1850 2000 2300 2650
Solar thermal 2200 2600 3050 3500
Biomass 5500 6000 6350 6750
CHP 4700 5000 5300 5600
Nuclear power 7200 7000 6850 -

3.3. Restrictions to the energy mix model

The estimation of the Spanish electric power system derived from our model is kept as 

close as possible to the distribution presented in Section 2. However, some restrictions 

are imposed to the initial defined scenario in order to achieve a coherent final scenario. 

These restrictions are:

 Whenever backup power is required, biomass based power plants will have 

preference against fossil fuel power plants.

 Coal share is maintained at 7.0% – 8.0% in 2020 [26], and then progressively 

diminished.
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 The participation of combined cycles varies depending on the availability of 

renewable energy sources.

 Installed backup capacity (biomass, coal and natural gas) must be able to satisfy 

electricity demand when the availability of renewable power is reduced to 45% 

and availability of base power (nuclear and CHP) to 95%. 

A key aspect to be considered when sizing the energy mix is the fact that backup 

capacity must be operated a minimum number of hours to ensure its economic 

feasibility. This implies that existing nuclear plants should be operated beyond 2050, 

instead of being replaced by renewable power. Otherwise, the required backup power 

would be excessively underused.

3.4. Energy demand time-pattern

In order to identify electricity surplus situations, the annual demand must be distributed 

throughout each day of the year. This distribution is done based on historical data, since 

energy demand mainly depends on sociological aspects related to lifestyle, festivities 

and seasons, which barely vary in long-term. We have summarized the annual period in 

a list of day-types together with their average annual needs between 2010 and 2013 

(Table 2) [45]. The values are presented in Table 2 as the percentage of the total annual 

demand that the daily demand represents. Thus, future daily demand is calculated 

considering the type of day and the total annual demand.
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Table 2. Average daily demand (annual percentage) [%] throughout years 2010 – 2013 [45].

Day Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.
Working day (1st half-month) 0.3036 0.3145 0.2924 0.2695 0.2765 - 0.2992 0.2772 0.2800 0.2765 0.2788 -
Working day (2nd half-month) 0.3220 0.3060 0.2838 0.2695 0.2844 - 0.2992 0.2940 0.2800 0.2607 0.2952 -
1st Saturday 0.2484 0.3060 0.2666 0.2541 0.2291 0.2400 0.2728 0.2436 0.2400 0.2449 0.2460 0.2816
2nd Saturday 0.2852 0.2890 0.2580 0.2541 0.2370 0.2400 0.2640 0.2436 0.2400 0.2291 0.2460 0.2640
3rd Saturday 0.2852 0.2720 0.2408 0.2310 0.2449 0.2400 0.2552 0.2604 0.2400 0.2291 0.2460 0.2904
4th and 5th Saturday 0.2852 0.2805 0.2580 0.2310 0.2449 0.2400 0.2552 0.2604 0.2400 0.2449 0.2624 0.2728
1st Sunday 0.2392 0.2805 0.2494 0.2156 0.2054 0.2320 0.2552 0.2184 0.2240 0.2212 0.2378 0.2552
2nd Sunday 0.2576 0.2720 0.2408 0.2233 0.2370 0.2320 0.2376 0.2184 0.2240 0.2212 0.2542 0.2552
3rd Sunday 0.2760 0.2550 0.2408 0.2310 0.2291 0.2320 0.2376 0.2268 0.2240 0.2054 0.2378 0.2640
4th and 5th Sunday 0.2668 0.2720 0.2236 0.2079 0.2212 0.2320 0.2376 0.2352 0.2240 0.2291 0.2460 0.2376
New Year (1st Jan.) 0.2300 - - - - - - - - - - -
Epiphany (6th Jan.) 0.2576 - - - - - - - - - - -
Maundy Thursday - - - 0.2310 - - - - - - - -
Good Friday plus weekend - - - 0.2233 - - - - - - - -
Workers’ Day (1st May) - - - - 0.2133 - - - - - - -
Assumption of Mary (15th Aug.) - - - - - - - 0.2352 - - - -
National Day (12th Oct.) - - - - - - - - - 0.2291 - -
All Saints’ Day (1st Nov.) - - - - - - - - - - 0.2214 -
Constitution’s Day (6th Dec.) - - - - - - - - - - - 0.2816
Immaculate Conception (8th Dec.) - - - - - - - - - - - 0.2464
Christmas Eve (24th Dec.) - - - - - - - - - - - 0.2728
Christmas (25th Dec.) - - - - - - - - - - - 0.2376
New Year’s Eve (31st Dec.) - - - - - - - - - - - 0.2288
Working day (last week of June) - - - - - 0.2960 - - - - - -
Working day (week of 6th Dec.) - - - - - - - - - - - 0.2992
Working day (after 25th Dec.) - - - - - - - - - - - 0.2376
Working day (rest) - - - - - 0.2720 - - - - - 0.3080
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3.5. Energy production time pattern

Energy demand does not affect generation patterns as shown in Table 3, where monthly 

distribution of annual electricity production by technology is presented. Hydropower, 

wind power and solar power are weather-dependent, presenting seasonal productions. 

CHP facilities linked to industrial processes have a stable monthly power production 

which is only reduced in August due to the summer break. Nuclear provides base-load 

power. Nuclear power production is occasionally reduced due to fuel replacement in the 

reactors or unexpected shutdowns. Similarly, biomass plants work steadily, since they 

are still emerging in Spain. Lastly, fossil fuel power plants operate as back-up suppliers 

to match production and demand.

Table 3. Average monthly production [%] 2008 – 2013 [39].

Hydropower Wind power Photovoltaics Solar thermal Biomass CHP Nuclear
Jan. 11.2 9.6 4.9 2.4 8.3 8.7 8.9
Feb. 9.8 9.8 6.5 4.2 7.7 8.1 8.4
Mar. 11.2 9.7 7.9 4.6 8.0 8.7 8.7
Apr. 10.7 8.3 8.9 6.2 8.1 8.3 8.1
May 9.6 7.6 10.7 9.9 8.1 8.4 7.4
June 8.1 6.6 10.8 12.5 8.1 8.1 7.6
July 6.7 6.4 11.8 15.9 8.7 8.5 8.7
Aug. 5.6 6.4 10.9 14.8 8.5 7.1 9.4
Sep. 4.5 6.3 9.2 12.2 8.2 8.3 8.7
Oct. 5.3 7.7 8.0 8.7 8.7 8.6 8.3
Nov. 7.6 10.6 5.5 4.3 8.6 8.6 7.7
Dec. 9.7 11.0 4.9 4.3 9.0 8.6 8.1

According to reviewed data, daily energy production is constantly distributed during the 

month except for wind power, which presents a daily chaotic distribution. Therefore, the 

model assumes that the monthly power production by means of solar and hydro 

technologies (Table 3) is homogeneously distributed among the days of every month. 
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Besides, the estimation of electricity production from nuclear and CHP is simplified by 

considering constant monthly and daily distribution.

The model only considers daily fluctuations for wind power generation given its strong 

variability [45]. Hence, calculations are performed by using historical wind production 

patterns between 2009 and 2013. A range of possible daily wind productions is derived 

from these historical data. The utilization of an average value for the daily production 

would have eliminated the intrinsic irregularities and the daily peak production of wind 

power.

Biomass, coal and natural gas do not present specific patterns since they act as backup 

technologies to match production and demand when the rest of energy sources do not 

cover the power needs. 

4. Results

The applied methodology identifies those periods with electricity surplus production by 

using the daily differences between production and demand. The following results show 

the obtained estimations for the energy scenarios of the years 2020, 2030, 2040 and 

2050.

4.1. Installed power capacity and generation

The proposed scenarios essentially differ in the electrical demand growth rates. The 

power requirement of each scenario leads to different proposals for the Spanish energy 

mix (Table 4 and Table 5). The moderate annual increment of electricity demand 

(1.36% - Scenario 1) may be covered by the installed power capacity defined in Section 

2. Thus, the electricity production from CHP is doubled in 2050, small hydro 

participation increases up to 4.0% – 4.5%, and biomass installed capacity reaches 5GW. 
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However, higher annual growth (1.73% - Scenario 2) will require larger installed 

capacity to satisfy electrical demand.

Under both scenarios, the nuclear technology must continue in operation at similar load 

levels. From an economic point of view, the nuclear base load cannot be replaced by 

renewable energy sources since the required installed capacity of backup power would 

be extremely high and consequently underused. The participation of coal power and 

combined cycles remains below 2200 hours even when nuclear plants operates 7300 

hours and 6000 hours for Scenario 1 and 2 respectively (Table 6). 

The participation of wind power and natural gas in the electricity production is given as 

ranges related to historical wind patterns. A worse agreement between electricity 

demand and wind power production implies a greater potential for energy storage, also 

increasing the required share of natural gas in the energy market. 

In 2050, renewable energy sources provide more than 63% of energy production, while 

fossil fuels fall below 11%. Moreover, surplus power may range between 1.4 TWh and 

13.5 TWh depending on the electrical demand and the pattern of wind power.

Table 4. Installed power capacity [GW] in the future Spanish electricity system.

Demand growth rate: 1.36% Demand growth rate: 1.73%
2020 2030 2040 2050 2020 2030 2040 2050

Hydropower 17.9 18.1 18.6 19.2 17.9 19.6 21.7 23.9
Small hydro 2.4 3.8 6.1 6.4 2.4 3.7 4.2 4.7
Wind power 26.0 28.7 32.1 35.8 24.5 32.6 39.8 44.4
Photovoltaics 5.4 7.3 8.2 9.1 5.4 7.3 9.8 15.7
Solar thermal 10.6 13.2 16.4 20.3 9.7 13.0 17.5 23.6
Biomass 1.2 2.8 3.8 5.3 1.2 2.0 3.5 6.2
CHP 8.1 9.9 10.8 11.6 8.1 10.8 13.2 16.1
Nuclear power 7.9 7.9 7.9 6.1 7.9 7.9 8.4 8.1
Coal power 10.4 9.4 9.0 8.6 10.4 9.3 7.6 6.9
Combined cycle 24.2 22.5 21.4 20.4 24.2 22.5 21.4 20.4
Total 114.1 123.6 134.3 142.8 111.7 128.7 147.1 170.0
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Table 5. Energy production [TWh] in the future Spanish electricity system.

Demand growth rate: 1.36% Demand growth rate: 1.73%
2020 2030 2040 2050 2020 2030 2040 2050

Hydropower 28.7 29.3 30.6 31.9 28.7 31.8 35.5 39.7
Small hydro 6.4 10.4 16.6 17.7 6.4 10.0 11.5 12.9

Wind power 63.2 – 
60.9

74.3 – 
70.5

84.0 – 
80.2

95.2 – 
91.4

59.9 – 
58.6

84.3 – 
79.9

103.0 – 
96.9

113.8 – 
106.4

Photovoltaics 10.1 14.6 18.9 24.1 10.1 14.6 22.6 41.6
Solar thermal 23.3 34.2 49.9 71.2 21.3 33.9 53.5 82.4
Biomass 6.7 16.7 23.9 35.9 6.7 12.0 22.1 41.5
CHP 38.3 49.6 57.0 65.2 38.3 54.2 70.0 90.2
Nuclear power 56.6 55.1 53.9 44.7 56.6 55.1 57.3 48.7
Coal power 22.9 19.6 18.7 17.2 20.5 13.9 6.2 4.9

Combined cycle 30.0 – 
32.3

23.5 – 
27.3

21.3 – 
25.1

26.0 – 
29.8

45.0 – 
46.3

38.6 – 
43.0

31.9 – 
38.0

15.2 – 
22.6

Total production 286.2 327.3 374.8 429.1 293.5 348.4 413.6 490.9

Surplus power 0.49 – 
2.80

0.45 – 
4.20

1.02 – 
4.79

1.41 – 
5.24

0.17 – 
1.44

0.51 – 
4.90

2.46 – 
8.60

6.10 – 
13.54

Table 6. Operation hours of fossil sources [h] in the future Spanish electricity system.

Demand growth rate: 1.36% Demand growth rate: 1.73%
2020 2030 2040 2050 2020 2030 2040 2050

Coal power 2204 2080 2084 2005 1980 1500 817 715

Combined cycle 1243 - 
1338

1045 - 
1212

995 - 
1171

1277 - 
1466

1865 - 
1917

1716 - 
1911

1489 - 
1775

745 - 
1110

4.2. Electricity storage potential

The daily distributions of demand and production along the year allow the calculation of 

the surplus power and the identification of those periods with greater storage potential. 

Besides, the historical patterns of wind power generation are used to establish the 

minimal and maximum reasonable limits for the estimated surplus. 

Potential storage situations were mainly found within the period from March to June. In 

fact, surplus power is guaranteed in April and May regardless of the year and scenario. 
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December presents strong variability depending on the agreement between the 

commonly high renewable production and the decay in electricity demand during the 

last week of the year. In contrast, January and February might present a lack of energy 

excess in 2050 even under situations of high shares of renewable power in the energy 

mix (Figure 6).

Figure 6. Ranges of possible monthly surplus energy [GWh] in the future Spanish 

electricity system.
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4.3 Power to Gas potential conversion capacity

Electrical energy storage is one of the key technologies identified to meet challenges 

derived from the future energy scenarios with renewable electricity surpluses. These 

systems store energy in a certain state –according to the technology used– to be later 

reconverted into electrical energy when demanded. There exists a wide variety of 

options with complex characteristics. Given the long-term and great power capacity of 

Power to Gas technology, it appears as one of the most promising options for massive 

storage in national electric systems [46].

Results of electricity potential storage presented in the previous section are now used to 

size the required Power to Gas capacity to process the whole energy surplus. In energy 

systems characterized by base loads around 20 GW and high shares of wind power (as 

the predicted Spanish system), electricity surplus behaves smoothly with hourly peaks 

that rise up to the 8% of the daily excess [47]. Therefore, maximum capacity to be 

installed should be able to process in an hour the 8% of the highest daily surplus power. 

However, an installed PtG capacity able to process the 100% of energy surplus would 

be underused, since we could process even the 90% of annual excess with less than the 

half of that capacity (Figure 7). 

Thus in Scenario 1, a suitable option for the Spanish electricity system is to install 10.5 

GW of PtG in 2040, and then reach 13.0 GW in 2050. These values would guarantee the 

storage of over 90% of excess power regardless of the wind pattern. Besides, if the 

agreement between demand and wind production is favourably matched, the power 

capacities needed to process the 90% of excess could be reduced down to 7.0 GW. In 

Scenario 2, processing the 90% of surplus power would require 15.0 GW in 2040 and 
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19.5 GW in 2050, although it could be as low as 8 GW and 14.5 GW if wind production 

adequately matches energy demand.

 

Figure 7. Surplus energy processed [%] as a function of installed Power to Gas capacity 

[GW].

The utilization of such technology would allow to valorize the electricity surplus at the 

same time that frequent curtailments in wind farms would be avoided. Besides, the 

electrical transmission congestion could be suitably managed by this large-scale 

electricity storage, what would soften the stress over system operators [48]. If Power to 

Gas plants are located near the renewable power plants, ohmic losses and transmission 
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congestion are avoided, since energy could be easily transmitted through the natural gas 

network as methane. This kind of economic advantages have already been proved in the 

largest worldwide Power to Gas plant (6 MW), which was recently qualified for 

participating in the German electricity balancing market [49].

The international export of electricity between European countries is not an option 

when a global scenario of high renewable share is approached, since near countries will 

have electricity surplus at the same periods. Electricity is required to be displaced in 

time instead of in space, so massive electricity storage should act as a local solution 

adapted to each country. Besides, transmission congestion might be relevant during 

international energy trades [50].

3. Conclusions 

The prospective renewable energy surplus and the derived Power to Gas potential have 

been assessed for the Spanish case up to the year 2050, on the basis of historical data, 

current policies, technology maturity, and growth forecast from Spanish institutions. 

Two possible scenarios of electricity demand were considered, which will require 

different installed power capacity. Depending on the national investment strategy, the 

annual increment on demand might be moderate (1.36%, Scenario 1) or high (1.73%, 

Scenario 2). Moreover, the resulting amounts of renewable electricity surplus have been 

estimated under different historical renewable generation patterns.

A moderate increment on demand (1.36%) will imply that the production from CHP is 

doubled, the small hydro participation increases up to 4.0% – 4.5%, and biomass 

installed capacity reaches 5GW by the year 2050, according to the forecast of the 

corresponding institutions. However, higher annual growth (1.73%) requires larger 
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installed capacities to satisfy electricity demand. Under both scenarios, nuclear power 

must be operated beyond 2050. Such base load cannot be replaced by renewable energy 

sources since the required backup power would be extremely underused; even so, the 

participation of coal power and combined cycles lies below 2200 hours. 

In 2050, renewable energy sources would provide more than 63% of the power 

production, whilst fossil fuels fall below to 11%. Thus, the annual amounts of 

renewable surplus would amount to 1.4 – 5.2 TWh for Scenario 1, and 6.1 – 13.5 TWh 

for Scenario 2, depending on production and demand matching. Potential storage 

situations are mainly found from March to June. Regardless of the scenario, surplus 

power is ensured in April and May. The required PtG capacities for processing the 90% 

of total excess would range between 7.0 and 13.0 GW for Scenario 1, and between 14.5 

and 19.5 GW for Scenario 2. Similar conclusions are achieved in those studies for 

Germany and Great Britain.

Once these results have been determined, the optimal size and location of Power to Gas 

plants with regards to environmental and economic performance should be further 

assessed with a spatially explicit value chain model of the production of synthetic 

natural gas (SNG) from biological and catalytic methanation. This next step shall 

consist of several individual models for the availability, transportation, conversion of 

wastes, water and CO2 to SNG and heat, and the use of these products to substitute non-

renewable energy services. An optimization strategy should be applied to finally select 

the optimal technology configuration for the defined sizes and different locations for the 

required compromise between the environmental and the economic performance.
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Annex A. Forecast of electricity demand.

The electricity demand trends are calculated based on information provided by the 

Global Calculator tool, funded by the UK Government’s International Climate Fund 

and the EU’s Climate-KIC. This tool allows the user to simulate the evolution of a 

number of environmental parameters as a function of a large amount of variables related 

to way of living, energy mix, demographics and so. 

Table A.1 presents the definition of four scenarios which lead to different values of the 

electricity demand yearly increment: + 1.73%/year, + 1.36%/year, + 1.80%/year and + 

1.40%/year. Two of them (+ 1.73%/year, + 1.36%/year) ensure the limitation of global 

temperature increase up to 2ºC by 2100 while the two others (+ 1.80%/year and + 

1.40%/year) do not. The variables which define each scenario are gathered in fifteen 

categories: travel, homes, diet, transport, buildings, manufacturing, CCS, bioenergy, 

fossil fuel, nuclear, renewable, food, land use, demographics and emissions beyond 

2050. In order to simplify the quantification of these variables for every scenario, each 

one may be only varied between 0-4 and each level is properly defined in the cited 

application (http://tool.globalcalculator.org/).

Table A.1. Definition of scenarios (variables and levels) related to different electricity 

demand increments.

Variable (Global calculator tool, 
version 2017)

Variable (Global calculator tool, 
version 2014)

Electricity 
increment: 
1.73% /year
2ºC 
increment 
avoided: Yes

Electricity 
increment: 
1.36% /year
2ºC 
increment 
avoided: Yes

Electricity 
increment: 
1.80% /year
2ºC 
increment 
avoided: No

Electricity 
increment: 
1.40% /year
2ºC 
increment 
avoided: No

TRAVEL
Passenger distance Passenger distance 2.0 2.0 2.0 2.0
Freight distance Freight distance 2.0 2.0 2.0 2.0
Mode Mode 2.2 2.2 2.0 2.2
Occupancy & load Occupancy & freight load 2.5 2.5 2.0 2.5
Car own or hire - - - - -

http://tool.globalcalculator.org/
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HOMES
Temperature & hot water use Temperature & hot water use 3.0 3.0 2.0 2.0
Lighting & appliance use Lighting & appliance use 2.3 2.3 2.0 2.3
Building size Building size 2.3 2.3 2.0 2.3
Product lifespan & demand Product lifespan & demand 2.3 2.3 2.0 2.3
DIET
Calories consumed Calories consumed 2.0 2.0 2.0 2.0
- Meat consumed 2.4 2.4 2.0 2.4
Quantity of meat - - - - -
Type of meat - - - - -
TRANSPORT
Electric & hydrogen Electric & hydrogen 3.0 2.0 2.0 2.0
Transport efficiency Transport efficiency 3.0 3.0 2.0 3.0
BUILDINGS
Building insulation Building insulation 3.0 3.0 2.0 3.0
Temperature & cooking tech. Temperature & cooking tech. 2.4 3.0 2.0 2.0
Appliance efficiency Appliance efficiency 2.4 2.7 2.0 2.0
MANUFACTURING
Design, materials & recycling Design, materials & recycling 3.0 3.0 2.0 3.0
Iron, steel & aluminum Iron, steel & aluminum 2.0 2.0 2.0 2.0
Chemicals Chemicals 2.0 2.0 2.0 2.0
Paper & others Paper & others 2.0 2.2 2.0 2.0
Cement Cement 2.0 2.2 2.0 2.0
CARBON CAPTURE AND 
STORAGE
CCS (manufacturing) CCS (manufacturing) 3.0 3.0 2.0 2.0
CCS (electricity) CCS (electricity) 3.0 3.0 2.0 2.0
BIOENERGY
Bioenergy yields Bioenergy yields 1.0 1.0 1.0 1.0
Solid or liquid - - - - -
FOSSIL FUEL
Coal / oil / gas Coal (incl- biomass) / oil / gas 3.0 3.0 3.0 3.0
Fossil fuel efficiency Fossil fuel efficiency 2.5 3.0 2.0 2.5
NUCLEAR
Nuclear Nuclear 2.0 2.0 2.0 2.0
RENEWABLES
Wind Wind 3.0 3.0 3.0 3.0
Hydroelectric Hydroelectric 2.0 2.0 2.0 2.0
Marine Marine 1.0 1.0 1.0 1.0
Solar Solar 3.0 3.0 3.0 3.0
Geothermal Geothermal 1.0 1.0 1.0 1.0
Storage & demand shifting Storage & demand shifting 3.0 3.0 2.8 3.0
FOOD
Crop yields Crop yields 2.0 2.0 2.0 2.0
Wastes & residues Wastes & residues 1.5 2.0 1.5 1.5
- Livestock yields 2.0 2.0 2.0 2.0
Livestock (grain/residues fed) - - - - -
Livestock (pasture fed) - - - - -
LAND USE
Land-use efficiency Land-use efficiency 2.0 2.0 2.0 2.0
Surplus land (forest & bioenergy) Surplus land (forest & bioenergy) 1.5 1.0 1.5 1.0
DEMOGRAPHICS
Global population Global population 2.0 2.0 2.0 2.0
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Urbanization Urbanization 2.0 2.0 2.0 2.0
EMISSIONS AFTER 2050
Emissions trajectory Emissions trajectory 2.0 2.0 2.0 2.0
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